Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 147(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32439755

RESUMO

Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Esmalte Dentário/metabolismo , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Camundongos Knockout , Odontogênese , Fatores de Transcrição SOXB1/genética , Nicho de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente/citologia , Dente/crescimento & desenvolvimento , Dente/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Proteína Homeobox PITX2
2.
Med Mol Morphol ; 56(3): 159-176, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37012505

RESUMO

The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Fator 4 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos , Odontoblastos , Animais , Camundongos , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fator 4 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/metabolismo , Camundongos Transgênicos , Odontoblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo
3.
J Biol Chem ; 292(36): 15062-15069, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28733464

RESUMO

An important event in organogenesis is the formation of signaling centers, which are clusters of growth factor-secreting cells. In the case of tooth development, sequentially formed signaling centers known as the initiation knot (IK) and the enamel knot (EK) regulate morphogenesis. However, despite the importance of signaling centers, their origin, as well as the fate of the cells composing them, remain open questions. Here, using lineage tracing of distinct epithelial populations, we found that the EK of the mouse incisor is derived de novo from a group of SRY-box 2 (Sox2)-expressing cells in the posterior half of the tooth germ. Specifically, EK progenitors are located in the posterior ventral basal layer, as demonstrated by DiI labeling of cells. Lineage tracing the formed EK with ShhCreER , which encodes an inducible Cre recombinase under the control of the Sonic hedgehog promoter, at subsequent developmental stages showed that, once formed, some EK cells in the incisor give rise to differentiated cells, whereas in the molar, EK cells give rise to the buccal secondary EK. This work thus establishes the developmental origin as well as the fate of the EK and reveals two strategies for the emergence of serially formed signaling centers: one through de novo establishment and the other by incorporation of progeny from previously formed signaling centers.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transdução de Sinais , Dente/citologia , Dente/crescimento & desenvolvimento , Animais , Rastreamento de Células , Camundongos , Camundongos Endogâmicos C57BL , Dente/metabolismo
4.
Histochem Cell Biol ; 149(6): 655-659, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29651535

RESUMO

Enamel knot (EK) is known to be a central organ in tooth development, especially for cusp patterning. To trace the exact position and movement among the inner dental epithelium (IDE) and EK cells, and to monitor the relationship between the EK and cusp patterning, it is essential that we understand the cell cycle status of the EK in early stages of tooth development. In this study, thymidine analogous (IdU, BrdU) staining was used to evaluate the cell cycle phase of the primary EK at the early casp stage (E13.0) and the gerbil embryo (E19) in a developing mouse embryo. The centerpiece of this study was to describe the cell cycle phasing and sequencing during proliferation in the IDE according to the expression of IdU and BrdU following their injection at calculated time points. The interval time between IdU injection and BrdU injection was set at 4 h. As a result, the cell cycle in the IDE of the mouse and gerbil was found to be synchronous. Conversely, the cell cycle in primary EKs of mice was much longer than that of the IDE. Therefore, the difference of cell cycle of the IDE and the EK is related to the diversity of cusp patterning and would provide a new insight into tooth morphogenesis.


Assuntos
Ciclo Celular , Esmalte Dentário/citologia , Esmalte Dentário/metabolismo , Morfogênese , Dente/citologia , Dente/metabolismo , Animais , Esmalte Dentário/embriologia , Epitélio/metabolismo , Gerbillinae , Camundongos , Camundongos Endogâmicos ICR , Dente/embriologia
5.
Cell Tissue Res ; 366(3): 617-621, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27590885

RESUMO

Vangl2, one of the core components of the planar cell polarity (PCP) pathway, has an important role in the regulation of morphogenesis in several tissues. Although the expression of Vangl2 has been detected in the developing tooth, its role in tooth morphogenesis is not known. In this study, we show that Vangl2 is expressed in the inner dental epithelium (IDE) and in the secondary enamel knots (SEKs) of bell stage tooth germs. Inhibition of Vangl2 expression by siRNA treatment in in vitro-cultured tooth germs resulted in retarded tooth germ growth with deregulated cell proliferation and apoptosis. After kidney transplantation of Vangl2 siRNA-treated tooth germs, teeth were observed to be small and malformed. We also show that Vangl2 is required to maintain the proper pattern of cell alignment in SEKs, which maybe important for the function of SEKs as signaling centers. These results suggest that Vangl2 plays an important role in the morphogenesis of teeth.


Assuntos
Polaridade Celular , Inativação Gênica , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Dente/crescimento & desenvolvimento , Animais , Apoptose , Proliferação de Células , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/metabolismo , Dente/citologia , Dente/metabolismo , Germe de Dente/citologia , Germe de Dente/metabolismo
6.
Histochem Cell Biol ; 144(4): 377-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26170146

RESUMO

Adenomatosis polyposis coli downregulated 1 (APCDD1), a negative regulator of Wnt signaling, was examined to understand detailed mechanisms underlying Wnt signaling tooth development. In situ hybridization showed that Apcdd1 was expressed in the condensed mesenchyme at the bud stage, and in the inner enamel epithelium (IEE), including enamel knot (EK) at the cap stage. In vitro organ cultivation by using Apcdd1 antisense oligodeoxynucleotides was performed at E13.5 for 2 days to define the developmental functions of APCDD1 during tooth development. Analysis of histogenesis and cellular events such as cell adhesion, proliferation, apoptosis and epithelial rearrangement after Apcdd1 knockdown showed altered morphogenesis of the tooth germ with decreased cell proliferation and altered localization of cell adhesion molecules. Actin filament staining and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) labeling of IEE cells showed that Apcdd1 knockdown enhanced epithelial rearrangement in the IEE and EK. To understand the precise signaling regulations of Apcdd1, we evaluated the altered expression patterns of signaling molecules, related with Wnt and enamel knot signalings using RT-qPCR. Tooth germs at cap stage were transplanted into the kidney capsules and were allowed to develop into calcified teeth for 3 weeks. Apcdd1 knockdown increased the number of ectopic cusps on the mesial side of the tooth. Our results suggested that APCDD1 modulates the gene expression of Wnt- and EK-related signaling molecules at the cap stage of tooth development, and is involved in tooth cusp patterning by modulating the epithelial rearrangement in the IEE.


Assuntos
Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Dente Molar/metabolismo , Odontogênese , Animais , Moléculas de Adesão Celular/metabolismo , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Idade Gestacional , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Dente Molar/embriologia , Morfogênese , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Técnicas de Cultura de Tecidos , Via de Sinalização Wnt
7.
Cell Tissue Res ; 362(2): 447-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318014

RESUMO

The shape of an individual tooth crown is primarily determined by the number and arrangement of its cusps, i.e., cusp patterning. Enamel knots that appear in the enamel organ during tooth morphogenesis have been suggested to play important roles in cusp patterning. Animal model studies have shown that the Hippo pathway effector Yap has a critical function in tooth morphogenesis. However, the role of the Hippo pathway/Yap in cusp patterning has not been well documented and its specific roles in tooth morphogenesis remain unclear. Here, we provide evidence that Yap is a key mediator in tooth cusp patterning. We demonstrate a correlation between Yap localization and cell proliferation in developing tooth germs. We also show that, between the cap stage and bell stage, Yap is crucial for the suppression of the primary enamel knot and for the patterning of secondary enamel knots, which are the future cusp regions. When Yap expression is stage-specifically knocked down during the cap stage, the activity of the primary enamel knot persists into the bell-stage tooth germ, leading to ectopic cusp formation. Our data reveal the importance of the Hippo pathway/Yap in enamel knots and in the proper patterning of tooth cusps.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esmalte Dentário/metabolismo , Morfogênese/fisiologia , Odontogênese/fisiologia , Fosfoproteínas/metabolismo , Transdução de Sinais , Germe de Dente/metabolismo , Dente/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Via de Sinalização Hippo , Masculino , Camundongos , Morfogênese/genética , Odontogênese/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP
8.
Cell Tissue Res ; 362(1): 61-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25893927

RESUMO

The activation of Wingless-type (Wnt)/ß-catenin signaling is of fundamental importance in organogenesis. Wnt signaling is also known to regulate signaling crucial for tooth development. However, the underlying mechanism of Wnt activation or inhibition remains largely unknown. Here, we demonstrate that Wnt inhibitory factor 1 (Wif1), a secreted Wnt antagonist, localizes to the dental epithelium and mesenchyme during early tooth development. Specifically, Wif1 is strictly expressed in the enamel knot at embryonic day 14.5 (E14.5) and E16.5. The functional significance of Wif1 during tooth morphogenesis remains to be clarified. Our results reveal that the promotion of apoptosis by the knockdown of Wif1 leads to a delay in an early event during tooth development. This study therefore provides novel insights into the role of Wif1 and validates Wif1 as a potent target in WNT signaling during tooth development. We suggest that the enamel knots are central regulators of tooth development. Furthermore, Wif1 localizes to the enamel knot in which Wif1 regulates apoptosis by mediating and regulating Wnt-ß-catenin signaling. Thus, Wif1 plays an essential role in tooth development.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Odontogênese/fisiologia , Dente/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Via de Sinalização Wnt
9.
Diagnostics (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900039

RESUMO

BACKGROUND: Enamel knots and Hertwig epithelial root sheath (HERS) regulate the growth and folding of the dental epithelium, which subsequently determines the final form of tooth crown and roots. We would like to investigate the genetic etiology of seven patients affected with unique clinical manifestations, including multiple supernumerary cusps, single prominent premolars, and single-rooted molars. METHODS: Oral and radiographic examination and whole-exome or Sanger sequencing were performed in seven patients. Immunohistochemical study during early tooth development in mice was performed. RESULTS: A heterozygous variant (c. 865A>G; p.Ile289Val) in CACNA1S was identified in all the patients, but not in an unaffected family member and control. Immunohistochemical study showed high expression of Cacna1s in the secondary enamel knot. CONCLUSIONS: This CACNA1S variant seemed to cause impaired dental epithelial folding; too much folding in the molars and less folding in the premolars; and delayed folding (invagination) of HERS, which resulted in single-rooted molars or taurodontism. Our observation suggests that the mutation in CACNA1S might disrupt calcium influx, resulting in impaired dental epithelium folding, and subsequent abnormal crown and root morphology.

10.
HGG Adv ; 4(2): 100186, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009414

RESUMO

TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the ß-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.


Assuntos
Displasia Ectodérmica , Dente , Animais , Camundongos , Filogenia , Peixe-Zebra , Displasia Ectodérmica/epidemiologia , Dente/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38259324

RESUMO

Over 90% of the U.S. adult population suffers from tooth structure loss due to caries. Most of the mineralized tooth structure is composed of dentin, a material produced and mineralized by ectomesenchyme derived cells known as odontoblasts. Clinicians, scientists, and the general public share the desire to regenerate this missing tooth structure. To bioengineer missing dentin, increased understanding of human tooth development is required. Here we interrogate at the single cell level the signaling interactions that guide human odontoblast and ameloblast development and which determine incisor or molar tooth germ type identity. During human odontoblast development, computational analysis predicts that early FGF and BMP activation followed by later HH signaling is crucial. Application of this sci-RNA-seq analysis generates a differentiation protocol to produce mature hiPSC derived odontoblasts in vitro (iOB). Further, we elucidate the critical role of FGF signaling in odontoblast maturation and its biomineralization capacity using the de novo designed FGFR1/2c isoform specific minibinder scaffolded as a C6 oligomer that acts as a pathway agonist. We find that FGFR1c is upregulated in functional odontoblasts and specifically plays a crucial role in driving odontoblast maturity. Using computational tools, we show on a molecular level how human molar development is delayed compared to incisors. We reveal that enamel knot development is guided by FGF and WNT in incisors and BMP and ROBO in the molars, and that incisor and molar ameloblast development is guided by FGF, EGF and BMP signaling, with tooth type specific intensity of signaling interactions. Dental ectomesenchyme derived cells are the primary source of signaling ligands responsible for both enamel knot and ameloblast development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA