Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neurochir (Wien) ; 161(12): 2453-2466, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612277

RESUMO

BACKGROUND: Neuroma pathology is commonly described as lacking a clear internal structure, but we observed evidence that there are consistent architectural elements. Using human neuroma samples, we sought to identify molecular features that characterize neuroma pathophysiology. METHODS: Thirty specimens-12 neuromas-in-continuity (NICs), 11 stump neuromas, two brachial plexus avulsions, and five controls-were immunohistochemically analyzed with antibodies against various components of normal nerve substructures. RESULTS: There were no substantial histopathologic differences between stump neuromas and NICs, except that NICs had intact fascicle(s) in the specimen. These intact fascicles showed evidence of injury and fibrosis. On immunohistochemical analysis of the neuromas, laminin demonstrated a consistent double-lumen configuration. The outer lumen stained with GLUT1 antibodies, consistent with perineurium and microfascicle formation. Antibodies to NF200 revealed small clusters of small-diameter axons within the inner lumen, and the anti-S100 antibody showed a relatively regular pattern of non-myelinating Schwann cells. CD68+ cells were only seen in a limited temporal window after injury. T-cells were seen in neuroma specimens, with both a temporal evolution as well as persistence long after injury. Avulsion injury specimens had similar architecture to control nerves. Seven pediatric specimens were not qualitatively different from adult specimens. NICs demonstrated intact but abnormal fascicles that may account for the neurologically impoverished outcomes from untreated NICs. CONCLUSIONS: We propose that there is consistent pathophysiologic remodeling after fascicle disruption. Particular features, such as predominance of small caliber axons and persistence of numerous T-cells long after injury, suggest a potential role in chronic pain associated with neuromas.


Assuntos
Neuroma/patologia , Células de Schwann/patologia , Adulto , Idoso , Axônios/patologia , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroma/metabolismo
2.
Cureus ; 10(1): e2087, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29560300

RESUMO

BACKGROUND: Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. METHODS: In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. RESULTS: Five cases of upper-trunk stretch injuries-four from childbirth injury and one from a motorcycle accident-and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. CONCLUSIONS: In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA