Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(5): 930-941, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715408

RESUMO

Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."


Assuntos
Adaptação Biológica/genética , Coevolução Biológica , Herbivoria , Mariposas/genética , Sulfatases/genética , Animais , Feminino , Duplicação Gênica , Genoma de Inseto , Glucosinolatos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sulfatases/metabolismo
2.
BMC Evol Biol ; 18(1): 7, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29368587

RESUMO

BACKGROUND: Fungal plant pathogens secrete a large arsenal of hydrolytic enzymes during the course of infection, including peptidases. Secreted peptidases have been extensively studied for their role as effectors. In this study, we combined transcriptomics, comparative genomics and evolutionary analyses to investigate all 39 secreted peptidases in the fungal wheat pathogen Zymoseptoria tritici and its close relatives Z. pseudotritici and Z. ardabiliae. RESULTS: RNA-seq data revealed that a majority of the secreted peptidases displayed differential transcription during the course of Z. tritici infection, indicative of specialization for different stages in the life cycle. Evolutionary analyses detected widespread evidence of adaptive evolution acting on at least 28 of the peptidases. A few peptidases displayed lineage-specific rates of molecular evolution, suggesting altered selection pressure in Z. tritici following host specialization on domesticated wheat. The peptidases belonging to MEROPS families A1 and G1 emerged as a particularly interesting group that may play key roles in host-pathogen co-evolution, host adaptation and pathogenicity. Sister genes in the A1 and G1 families showed accelerated substitution rates after gene duplications. CONCLUSIONS: These results suggest widespread evolution of secreted peptidases leading to novel gene functions, consistent with predicted models of "escape from adaptive conflict" and "neo-functionalization". Our analyses identified candidate genes worthy of functional analyses that may encode effector functions, for example by suppressing plant defenses during the biotrophic phase of infection.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Seleção Genética , Triticum/microbiologia , Ascomicetos/patogenicidade , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Filogenia , Transcriptoma/genética , Virulência
3.
Mol Biol Evol ; 33(4): 971-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26681154

RESUMO

The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation-amplification-divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation-amplification-divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme.


Assuntos
Evolução Molecular , Variação Genética , Hidrolases/genética , Filogenia , Aldeído Liases/genética , Catálise , Domínio Catalítico , Duplicação Gênica
4.
Mol Biol Evol ; 32(7): 1788-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25767205

RESUMO

Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Filogenia , Proteínas de Plantas/genética , Plantas/enzimologia , Plantas/genética , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , Evolução Molecular , Flores/genética , Duplicação Gênica , Inativação Gênica , Genes de Plantas , Magnoliopsida/enzimologia , Dados de Sequência Molecular , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Especificidade da Espécie
5.
Genetics ; 207(2): 517-528, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28827288

RESUMO

A key unresolved issue in molecular evolution is how paralogs diverge after gene duplication. For multifunctional genes, duplication is often followed by subfunctionalization. Subsequently, new or optimized molecular properties may evolve once the protein is no longer constrained to achieve multiple functions. A potential example of this process is the evolution of the yeast heterochromatin protein Sir3, which arose by duplication from the conserved DNA replication protein Orc1 We previously found that Sir3 subfunctionalized after duplication. In this study, we investigated whether Sir3 evolved new or optimized properties after subfunctionalization . This possibility is supported by our observation that nonduplicated Orc1/Sir3 proteins from three species were unable to complement a sir3Δ mutation in Saccharomyces cerevisiae To identify regions of Sir3 that may have evolved new properties, we created chimeric proteins of ScSir3 and nonduplicated Orc1 from Kluyveromyces lactis We identified the AAA+ base subdomain of KlOrc1 as insufficient for heterochromatin formation in S. cerevisiae In Orc1, this subdomain is intimately associated with other ORC subunits, enabling ATP hydrolysis. In Sir3, this subdomain binds Sir4 and perhaps nucleosomes. Our data are inconsistent with the insufficiency of KlOrc1 resulting from its ATPase activity or an inability to bind ScSir4 Thus, once Sir3 was no longer constrained to assemble into the ORC complex, its heterochromatin-forming potential evolved through changes in the AAA+ base subdomain.


Assuntos
Evolução Molecular , Duplicação Gênica , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sítios de Ligação , Kluyveromyces/genética , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
6.
Gene ; 619: 37-43, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359917

RESUMO

Stop codon reassignments are widely distributed in prokaryotic, eukaryotic and organellar genomes, but are remarkably convergent in terms of the stop codons and amino acids reassigned. Strikingly, the identities of stop codon reassignments are closely matched to the properties of naturally occurring nonsense suppressor (NONS) tRNAs, suggesting that pre-existing nonsense suppression in an ancestral tRNA facilitated the occurrence of stop codon reassignments. Here this idea is expanded, by exploring the mechanism by which the gene duplication of tRNAs has occurred, leading to the reassignment of stop codons. Two types of stop codon reassignment are identified: those that necessitate a tRNA gene duplication, and those that do not because a single tRNA can recognize the reassigned stop codon and the canonical codon(s) for the cognate amino acid. Where tRNA gene duplication has occurred, this implies a multi-functional ancestral NONS tRNA, followed by adaptive mutation in the anticodon of one of the gene duplicates to become complementary to the stop codon, constituting a clear example of escape from adaptive conflict. The best exemplar is the UAA+UAG →gln reassignment, which has occurred 9 times independently in a diverse range of genomes, and appears to reflect the widespread occurrence of naturally occurring nonsense suppression of the UAA+UAG stop codons by glutamine tRNAs. Consideration of pre-existing tRNA functionality and the mechanism of gene duplication provide new insights into the process of stop codon reassignment.


Assuntos
Códon de Terminação/genética , Evolução Molecular , Duplicação Gênica , Código Genético , RNA de Transferência/genética , Animais , Bactérias/genética , Supressão Genética , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA