Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(4): H907-H915, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334972

RESUMO

Postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) often leads to exertional intolerance and reduced exercise capacity, particularly in individuals previously admitted to an intensive care unit (ICU). However, the impact of invasive mechanical ventilation (IMV) on PASC-associated cardiorespiratory abnormalities during exercise remains poorly understood. This single-center, cross-sectional study aimed to gather knowledge on this topic. Fifty-two patients with PASC recruited ∼6 mo after ICU discharge were clustered based on their need for IMV (PASC + IMV, n = 27) or noninvasive support therapy (PASC + NIS, n = 25). Patients underwent pulmonary function and cardiopulmonary exercise testing (CPX) and were compared with a reference group (CONTROL, n = 19) comprising individuals of both sexes with similar age, comorbidities, and physical activity levels but without a history of COVID-19 illness. Individuals with PASC, irrespective of support therapy, presented with higher rates of cardiorespiratory abnormalities than CONTROL, especially dysfunctional breathing patterns, dynamic hyperinflation, reduced oxygen uptake and oxygen pulse, and blunted heart rate recovery (all P < 0.05). Only the rate of abnormal oxygen pulse was greater among PASC + IMV group than PASC + NIS group (P = 0.05). Mean estimates for all CPX variables were comparable between PASC + IMV and PASC + NIS groups (all P > 0.05). These findings indicate significant involvement of both central and peripheral factors, leading to exertional intolerance in individuals with PASC previously admitted to the ICU, regardless of their need for IMV.NEW & NOTEWORTHY We found cardiorespiratory abnormalities in ICU survivors of severe-to-critical COVID-19 with PASC to be independent of IMV need. Overall, both group of patients experienced dysfunctional breathing patterns, dynamic hyperinflation, lower oxygen uptake and oxygen pulse, and blunted heart rate responses to CPX. PASC seems to impact exertional tolerance and exercise capacity due to ventilatory inefficiency, impaired aerobic metabolism, and potential systolic and autonomic dysfunction, all of these irrespective of support therapy during ICU stay.


Assuntos
COVID-19 , Feminino , Masculino , Humanos , SARS-CoV-2 , Estudos Transversais , Respiração Artificial , Progressão da Doença , Unidades de Terapia Intensiva , Oxigênio
2.
Exp Physiol ; 109(7): 1066-1079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38358958

RESUMO

The field of exercise physiology has undergone significant technological advancements since the pioneering works of exercise physiologists in the early to mid-20th century. Historically, the ability to detect metabolites in biofluids from exercising participants was limited to single-metabolite analyses. However, the rise of metabolomics, a discipline focused on the comprehensive analysis of metabolites within a biological system, has facilitated a more intricate understanding of metabolic pathways and networks in exercise. This review explores some of the pivotal technological and bioinformatic advancements that have propelled metabolomics to the forefront of exercise physiology research. Metabolomics offers a unique 'fingerprint' of cellular activity, offering a broader spectrum than traditional single-metabolite assays. Techniques, including mass spectrometry and nuclear magnetic resonance spectroscopy, have significantly improved the speed and sensitivity of metabolite analysis. Nonetheless, challenges persist, including study design and data interpretation issues. This review aims to serve as a guide for exercise physiologists to facilitate better research design, data analysis and interpretation within metabolomics. The potential of metabolomics in bridging the gap between genotype and phenotype is emphasised, underscoring the critical importance of careful study design and the selection of appropriate metabolomics techniques. Furthermore, the paper highlights the need to deeply understand the broader scientific context to discern meaningful metabolic changes. The emerging field of fluxomics, which seeks to quantify metabolic reaction rates, is also introduced as a promising avenue for future research.


Assuntos
Exercício Físico , Metabolômica , Metabolômica/métodos , Humanos , Exercício Físico/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos
3.
Diabetes Obes Metab ; 26(1): 351-361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828824

RESUMO

AIM: Effort intolerance is frequent in patients with overweight/obesity and/or type 2 diabetes (T2D) free from cardiac and respiratory disease. We sought to quantify the independent effects of T2D and body mass index (BMI) on cardiopulmonary capacity and gain insights on the possible pathophysiology by case-control and regression analyses. METHODS: Patients at high/moderate cardiovascular risk, with or without T2D, underwent spirometry and combined echocardiography-cardiopulmonary exercise test as part of their clinical workup. Subjects with evidence of cardiopulmonary disease were excluded. The effects of T2D and obesity were estimated by multivariable models accounting for known/potential confounders and the major pathophysiological determinants of oxygen uptake at peak exercise (VO2peak ) normalized for fat-free mass (FFM). RESULTS: In total, 109 patients with T2D and 97 controls were included in the analysis. The two groups had similar demographic and anthropometric characteristics except for higher BMI in T2D (28.6 ± 4.6 vs. 26.3 ± 4.4 kg/m2 , p = .0003) but comparable FFM. Patients with T2D achieved lower VO2peak than controls (18.5 ± 4.4 vs. 21.7 ± 8.3 ml/min/kg, p = .0006). Subclinical cardiovascular dysfunctions were observed in T2D: concentric left ventricular remodelling, autonomic dysfunction, systolic dysfunction and reduced systolic reserve. After accounting for confounders and major determinants of VO2peakFFM , T2D still displayed reduced VO2peak by 1.0 (-1.7/-0.3) ml/min/kgFFM , p = .0089, while the effect of BMI [-0.2 (-0.3/0.1) ml/min/kgFFM , p = .06 per unit increase], was largely explained by a combination of chronotropic incompetence, reduced peripheral oxygen extraction, impaired systolic reserve and ventilatory (in)efficiency. CONCLUSIONS: T2D is an independent negative determinant of VO2peak whose effect is additive to other pathophysiological determinants of oxygen uptake, including BMI.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Ecocardiografia , Teste de Esforço , Oxigênio , Consumo de Oxigênio
4.
Scand J Med Sci Sports ; 34(4): e14617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566409

RESUMO

PURPOSE: In Football, the high-intensity running bouts during matches are considered decisive. Interestingly, recent studies showed that peak fat oxidation rates (PFO) are higher in football players than other athletes. This study aimed to investigate whether PFO increases following a pre-season. Secondarily, and due to COVID-19, we investigated whether PFO is related to the physical performance in a subgroup of semi-professional male football players. METHODS: Before and after 8 weeks of pre-season training, 42 sub-elite male football players (18 semi-professionals and 24 non-professionals) had a dual-energy x-ray absorptiometry scan and performed a graded exercise test on a treadmill for the determination of PFO, the exercise intensity eliciting PFO (Fatmax) and peak oxygen uptake (V̇O2peak). Additionally, the semi-professional players performed a Yo-Yo Intermittent Recovery Test level 2 (YYIR2) before and after pre-season training to determine football-specific running performance. RESULTS: PFO increased by 11 ± 10% (mean ± 95% CI), p = 0.031, and V̇O2peak increased by 5 ± 1%, p < 0.001, whereas Fatmax was unchanged (+12 ± 9%, p = 0.057), following pre-season training. PFO increments were not associated with increments in V̇O2peak (Pearson's r2 = 0.00, p = 0.948) or fat-free mass (FFM) (r2 = 0.00, p = 0.969). Concomitantly, YYIR2 performance increased in the semi-professional players by 39 ± 17%, p < 0.001, which was associated with changes in V̇O2peak (r2 = 0.35, p = 0.034) but not PFO (r2 = 0.13, p = 0.244). CONCLUSIONS: PFO, V̇O2peak, and FFM increased following pre-season training in sub-elite football players. However, in a subgroup of semi-professional players, increments in PFO were not associated with improvements in YYIR2 performance nor with increments in V̇O2peak and FFM.


Assuntos
Desempenho Atlético , Corrida , Futebol , Humanos , Masculino , Teste de Esforço , Oxigênio , Estações do Ano
5.
Eur J Appl Physiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656379

RESUMO

PURPOSE: Eccentric strength training is an innovative and promising approach to improve exercise performance. However, most eccentric training studies in the past were performed with a focus on the lower extremities. The present study aimed to test the feasibility and effects on strength and power adaptations of a structured upper-body eccentric training program. METHODS: Fourteen (median age (Q1-Q3) 29 years (27-32); 9 females, 5 males) healthy, regularly exercising individuals performed 20 progressive training sessions (2-3 sessions/week at 20-50% peak power for 8-14 min) on a symmetric eccentric arm-crank ergometer. Before and after the intervention, anaerobic peak power (PP) and maximal concentric aerobic power output (POmax) on an arm-crank ergometer as well as the one repetition maximum (1RM) for bench press were determined as main outcome parameters. A p-value ≤ 0.05 was considered statistically significant. RESULTS: Significant improvements in PP (+ 4% (1-8), p = 0.007), POmax (+ 6% (0-8); p = 0.01), and 1RM (+ 12% (10-17); p < 0.001) were found. Exercise intensity was relatively low at 64% (55-70) of maximum heart rate. CONCLUSIONS: Twenty progressive training sessions on a symmetric arm-crank ergometer are effective in inducing significant aerobic and anaerobic performance and strength improvements in the upper body. This intervention is safe and feasible, and can be performed at relatively low cardiovascular intensities. Therefore, this training method offers an interesting approach from elite sports to rehabilitation.

6.
Echocardiography ; 41(6): e15857, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895911

RESUMO

BACKGROUND: In patients with hypertrophic cardiomyopathy (HCM), impaired augmentation of stroke volume and diastolic dysfunction contribute to exercise intolerance. Systolic-diastolic (S-D) coupling characterizes how systolic contraction of the left ventricle (LV) primes efficient elastic recoil during early diastole. Impaired S-D coupling may contribute to the impaired cardiac response to exercise in patients with HCM. METHODS: Patients with HCM (n = 25, age = 47 ± 9 years) and healthy adults (n = 115, age = 49 ± 10 years) underwent a cardiopulmonary exercise testing (CPET) and echocardiogram. S-D coupling was defined as the ratio of LV longitudinal excursion of the mitral annulus during early diastole (EDexc) and systole (Sexc) and compared between groups. Peak oxygen uptake (peak V̇O2) (Douglas bags), cardiac index (C2H2 rebreathe), and stroke volume index (SVi) were assessed during CPET. Linear regression was performed between S-D coupling and peak V̇O2, peak cardiac index, and peak SVi. RESULTS: S-D coupling was lower in HCM (Controls: 0.63 ± 0.08, HCM: 0.56 ± 0.10, p < 0.001). Peak V̇O2 and stroke volume reserve were lower in patients with HCM (Peak VO2 Controls: 28.5 ± 5.5, HCM: 23.7 ± 7.2 mL/kg/min, p < 0.001, SV reserve: Controls 39 ± 16, HCM 30 ± 18 mL, p = 0.008). In patients with HCM, S-D coupling was associated with peak V̇O2 (r = 0.47, p = 0.018), peak cardiac index (r = 0.60, p = 0.002), and peak SVi (r = 0.63, p < 0.001). CONCLUSION: Systolic-diastolic coupling was impaired in patients with HCM and was associated with fitness and the cardiac response to exercise. Inefficient S-D coupling may link insufficient stroke volume generation, diastolic dysfunction, and exercise intolerance in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Diástole , Teste de Esforço , Volume Sistólico , Sístole , Humanos , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Teste de Esforço/métodos , Volume Sistólico/fisiologia , Ecocardiografia/métodos , Tolerância ao Exercício/fisiologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Adulto , Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia
7.
Pediatr Exerc Sci ; 36(1): 15-22, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433523

RESUMO

PURPOSE: To investigate acute and long-term changes in hormonal and inflammatory biomarkers in nonambulant children with cerebral palsy in response to dynamic standing exercise. METHODS: Fourteen children with severe cerebral palsy were recruited. Anthropometrics and body composition measures were obtained. Physical activity levels before the study were assessed using hip-worn accelerometry. All children underwent a 30-minute dynamic standing exercise using the Innowalk standing aid. Respiratory data during exercise were collected using indirect calorimetry. Blood samples were collected before and after exercise. Blood samples were also obtained after two 16-week exercise protocols, in a resting state. Hormonal and inflammatory metabolites were measured from blood serum/plasma, and acute and long-term changes in biomarker levels were assessed using Wilcoxon signed-rank tests. RESULTS: Of the 14 children at baseline, all had slightly/moderately/severely elevated C-reactive protein and cortisol levels. C-reactive protein levels were decreased following a 30-minute bout of dynamic standing (before exercise: 53 mg/L [interquartile range: 40-201]; after exercise: 39 mg/L [interquartile range: 20-107]; P = .04). CONCLUSIONS: We show that several hormonal and inflammatory biomarkers are dysregulated in children with cerebral palsy. Our preliminary results from a small, but deep-phenotyped prospective cohort indicate acute and long-term alterations of several biomarkers in response to exercise.


Assuntos
Paralisia Cerebral , Criança , Humanos , Proteína C-Reativa , Estudos Prospectivos , Exercício Físico/fisiologia , Biomarcadores
8.
BMC Med Educ ; 24(1): 97, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287390

RESUMO

BACKGROUND: Physiology is widely recognized as a difficult course, which can potentially increase students' withdrawal and failures rates. Several factors are likely contributing to the difficulties in learning physiology, including inherent features of the discipline as well as aspects related to instructions and/or students' perception. With regards to the later, it is currently unknown how students of exercise physiology think and explain physiology in terms of its cause or consequence (i.e., teleological or mechanistic thinking). Therefore, the aims of the present study were to determine 1) whether undergraduate students' perception of cardiorespiratory physiology during exercise follows a predominant teleological or mechanistic thinking, and 2) whether prior enrollment in physiology courses can influence the predominance of teleological vs. mechanistic thinking. METHODS: The test instrument was an online questionnaire about exercise physiology consisting of nine incomplete sentences about exercise physiology where students had to choose between a teleological or a mechanistic complement. The questionnaire was administered to undergraduate students in the following areas: 1) Movement Sciences (n = 152), 2) Health-related (n = 81) and, 3) Health-unrelated programs (n = 64). Students in Movement Sciences and Health-related programs were also analyzed separately in the following categories: 1) students who previously undertook physiology courses, and 2) students who did not take physiology courses. RESULTS: Overall, all groups presented a percentage of teleological thinking above 58%, which is considerably high. Teleological thinking was significantly higher in health-unrelated programs than health-related and movement sciences programs (76 ± 16% vs. 58 ± 26% vs. 61 ± 25%; P < 0.01). Further, students with prior enrollment in physiology classes presented a significantly lower percentage of teleological thinking than students without physiology classes (59 ± 25% vs. 72 ± 22%, respectively; P < 0.01), but the overall teleological reasoning remained predominant. CONCLUSIONS: These results confirm the hypothesis that undergraduate students tend to present teleological as opposed to mechanistic thinking in exercise physiology. Furthermore, although undergraduate students with prior enrollment in physiology classes presented significantly lower teleological thinking, it remained highly predominant suggesting that teleological thinking is partially independent of the degree of familiarity with this discipline.


Assuntos
Fisiologia , Estudantes , Humanos , Aprendizagem , Resolução de Problemas , Percepção , Fisiologia/educação
9.
Int J Sport Nutr Exerc Metab ; : 1-12, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917989

RESUMO

This study aimed to determine whether caffeine gum influenced perceptual-cognitive and physical performance during the extra-time period of simulated soccer match-play. Semiprofessional male soccer players (n = 12, age: 22 ± 3 years, stature: 1.78 ± 0.06 m, mass: 75 ± 9 kg) performed 120-min soccer-specific exercise on two occasions. In a triple-blind, randomized, crossover design, players chewed caffeinated (200 mg; caffeine) or control (0 mg; placebo) gum for 5 min following 90 min of soccer-specific exercise. Perceptual-cognitive skills (i.e., passing accuracy, reaction time, composure, and adaptability) were assessed using a soccer-specific virtual reality simulator, collected pre- and posttrial. Neuromuscular performance (reactive-strength index, vertical jump height, absolute and relative peak power output, and negative vertical displacement) and sprint performance (15 and 30 m) were measured at pretrial, half-time, 90 min, and posttrial. Caffeine gum attenuated declines in reaction time (pre: 90.8 ± 0.8 AU to post: 90.7 ± 0.8 AU) by a further 4.2% than placebo (pre: 92.1 ± 0.8 AU to post: 88.2 ± 0.8 AU; p < .01). Caffeine gum reduced composure by 4.7% (pre: 69.1 ± 0.8 AU to post: 65.9 ± 0.8 AU) versus placebo (pre: 68.8 ± 0.8 AU to post: 68.3 ± 0.8 AU; p < .01). Caffeine gum did not influence any other variables (p > .05). Where caffeine gum is consumed by players prior to extra-time, reaction time increases but composure may be compromised, and neuromuscular and sprint performance remain unchanged. Future work should assess caffeine gum mixes with substances like L-theanine that promote a relaxed state under stressful conditions.

10.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474128

RESUMO

A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.


Assuntos
Treino Aeróbico , Transcriptoma , Masculino , Adulto Jovem , Humanos , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia
11.
Australas Psychiatry ; 32(1): 74-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105642

RESUMO

OBJECTIVE: This study aimed to determine the extent to which people admitted to a private psychiatric inpatient unit access and utilise the gymnasium and individualised coaching with an exercise physiologist (EP). METHODS: An audit of the medical record of 100 consecutive discharges and 60 individuals referred to an EP during the audit period was undertaken. Selected demographic information, physical health status, psychiatric diagnosis and routinely collected outcome data were extracted from files. RESULTS: Twenty-four percent of people discharged from the hospital had documentary evidence of having attended the gym. These people were noted to have used the gym regularly and had an exercise prescription documented on discharge. Those with substance use disorder were more likely to use the gym than those diagnosed with an affective disorder. There were no significant differences in outcomes between those who were noted to exercise and those who did not. CONCLUSION: Those who may most benefit from coaching around exercise in the context of hospital admission are not presently the individuals most likely to be referred to an EP. Standardised procedures for assessment, referral, exercise prescription and ongoing monitoring of activity and outcomes are recommended across the care continuum.


Assuntos
Academias de Ginástica , Pacientes Internados , Humanos , Austrália , Hospitais Psiquiátricos , Exercício Físico
12.
Biol Sport ; 41(3): 105-118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952916

RESUMO

This study examined the acute effects of exercise testing on immunology markers, established blood-based biomarkers, and questionnaires in endurance athletes, with a focus on biological sex differences. Twenty-four healthy endurance-trained participants (16 men, age: 29.2± 7.6 years, maximal oxygen uptake ( V ˙ O 2 max ): 59.4 ± 7.5 ml · min-1 · kg-1; 8 women, age: 26.8 ± 6.1 years, V ˙ O 2 max : 52.9 ± 3.1 ml · min-1 · kg-1) completed an incremental submaximal exercise test and a ramp test. The study employed exploratory bioinformatics analysis: mixed ANOVA, k-means clustering, and uniform manifold approximation and projection, to assess the effects of exhaustive exercise on biomarkers and questionnaires. Significant increases in biomarkers (lymphocytes, platelets, procalcitonin, hemoglobin, hematocrit, red blood cells, cell-free DNA (cfDNA)) and fatigue were observed post-exercise. Furthermore, differences pre- to post-exercise were observed in cytokines, cfDNA, and other blood biomarkers between male and female participants. Three distinct groups of athletes with differing proportions of females (Cluster 1: 100% female, Cluster 2: 85% male, Cluster 3: 37.5% female and 65.5% male) were identified with k-means clustering. Specific biomarkers (e.g., interleukin-2 (IL-2), IL-10, and IL-13, as well as cfDNA) served as primary markers for each cluster, potentially informing individualized exercise responses. In conclusion, our study identified exercise-sensitive biomarkers and provides valuable insights into the relationships between biological sex and biomarker responses.

13.
Physiol Genomics ; 55(4): 194-212, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939205

RESUMO

Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of health, resilience, and performance adaptations. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to confer similar benefits. Mechanisms of action of these distinct stimuli are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD (n = 21, 12 M/9 F, 22 ± 3 yr) or HITT (n = 19, 11 M/8 F, 22 ± 2 yr). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|log2FC|>1, FDR ≤ 0.05) immediately (h0, EVs only), h3, and h24 postexercise within and between exercise protocols. In aaddition, all apparently responsive transcripts (FDR < 0.2) underwent singular value decomposition to summarize data structures into latent variables (LVs) to deconvolve molecular expression circuits and interregulatory relationships. LVs were compared across time and exercise protocol. TRAD, a longer but less intense stimulus, generally elicited a stronger transcriptional response than HITT, but considerable overlap and key differences existed. Findings reveal shared and unique molecular responses to the exercise stimuli and lay groundwork toward establishing relationships between protein-coding genes and lesser-understood transcripts that serve regulatory roles following exercise. Future work should advance the understanding of these circuits and whether they repeat in other populations or following other types of exercise/stress.NEW & NOTEWORTHY We examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation.


Assuntos
Treinamento Resistido , Transcriptoma , Humanos , Adulto Jovem , Transcriptoma/genética , Exercício Físico/fisiologia , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo
14.
J Physiol ; 601(3): 407-416, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36518016

RESUMO

In recent years, there has been an explosion of new approaches (technological, methodological, pharmacological, etc.) designed to improve physical performance for athletes, the military and in other applications. The goal of the present discussion is to review and quantify several ways in which physiology can provide important insights about which tools may lead to improved performance (and may therefore be worth resource investment) and which tools are less likely to provide meaningful enhancement. To address these objectives, we review examples of technological solutions/approaches in terms of the magnitude of their potential (or actual) influences: transformational, moderate, ineffective or undetermined. As one example, if there were a technology which significantly increased arterial oxygen partial pressure by 10%, this would be relatively meaningless in healthy people resting at sea level, where it would have a minimal effect on arterial oxygen content. However, there might be specific situations where such an effect would be very helpful, including at high altitude or in some patient populations. We discuss the importance of quantitative evaluation of putative approaches to performance enhancement and highlight the important role of integrative physiologists in the development and critical appraisal of these approaches.


Assuntos
Altitude , Hipóxia , Humanos , Aclimatação/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio , Resistência Física/fisiologia
15.
J Physiol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606604

RESUMO

Endurance exercise performance is known to be closely associated with the three physiological pillars of maximal O2 uptake ( V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ ), economy or efficiency during submaximal exercise, and the fractional utilisation of V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ (linked to metabolic/lactate threshold phenomena). However, while 'start line' values of these variables are collectively useful in predicting performance in endurance events such as the marathon, it is not widely appreciated that these variables are not static but are prone to significant deterioration as fatiguing endurance exercise proceeds. For example, the 'critical power' (CP), which is a composite of the highest achievable steady-state oxidative metabolic rate and efficiency (O2 cost per watt), may fall by an average of 10% following 2 h of heavy intensity cycle exercise. Even more striking is that the extent of this deterioration displays appreciable inter-individual variability, with changes in CP ranging from <1% to ∼32%. The mechanistic basis for such differences in fatigue resistance or 'physiological resilience' are not resolved. However, resilience may be important in explaining superlative endurance performance and it has implications for the physiological evaluation of athletes and the design of interventions to enhance performance. This article presents new information concerning the dynamic plasticity of the three 'traditional' physiological variables and argues that physiological resilience should be considered as an additional component, or fourth dimension, in models of endurance exercise performance.

16.
Exp Physiol ; 108(3): 353-360, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622954

RESUMO

NEW FINDINGS: What is the central question of this study? Does 12 weeks of functional electrical stimulation (FES) rowing exercise training lead to suppressed systemic inflammation and an improvement in pulmonary function in persons with sub-acute spinal cord injury (SCI)? What is the main finding and its importance? Twelve weeks of FES rowing exercise improves pulmonary function and the magnitude of improvement is associated with reductions in inflammatory biomarkers. Thus, interventions targeting inflammation may lead to better pulmonary outcomes for person with sub-acute SCI. ABSTRACT: The current study was designed to test the hypotheses that (1) reducing systemic inflammation via a 12-week functional electrical stimulation rowing exercise training (FESRT) prescription results in augmented pulmonary function, and (2) the magnitude of improvement in pulmonary function is inversely associated with the magnitude of systemic inflammation suppression in persons with sub-acute (≤2 years) spinal cord injury (SCI). We conducted a retrospective analysis of a randomized controlled trial (NCT#02139436). Twenty-one participants were enrolled (standard of care (SOC; n = 9) or FESRT (n = 12)). The exercise prescription was three sessions/week at 70-85% of peak heart rate. A two-way analysis of covariance and regression analysis was used to assess group differences and associations between pulmonary function, log transformed high-sensitivity C-reactive protein (hsCRPlog ) and white blood cell count (WBC). Following FESRT, clinically significant improvements in forced expiratory volume in 1 s (FEV1 ; 0.25 (0.08-0.43) vs. -0.06 (-0.26 to 0.15) litres) and forced vital capacity (0.22 (0.04-0.39) vs. 0.08 (-0.29 to 0.12) litres) were noted and systemic WBC (-1.45 (-2.48 to -0.50) vs. 0.41 (-0.74 to 1.56) µl) levels were suppressed compared to SOC (mean change (95% confidence interval); P < 0.05). Additionally, both ΔhsCRPlog and ΔWBC were predictors of ΔFEV1 (r2  = 0.89 and 0.43, respectively; P < 0.05). Twelve weeks of FESRT improves pulmonary function and reduces WBC in persons with sub-acute SCI. The potency of FESRT to augment pulmonary function may depend on adequate suppression of systemic inflammation.


Assuntos
Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Humanos , Estudos Retrospectivos , Terapia por Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Inflamação , Proteína C-Reativa
17.
Exp Physiol ; 108(2): 207-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537856

RESUMO

NEW FINDINGS: What is the central question of this study? What are the independent effects of air temperature and humidity on performance, physiological and perceptual responses during endurance exercise? What is the main finding and its importance? When examined independently, elevated air temperature increased heat strain and impaired aerobic exercise performance, but to a lesser extent than has been reported previously. These findings highlight the importance of absolute humidity relative to temperature when exercising or working under severe heat stress. ABSTRACT: Many studies have reported that ambient heat stress increases physiological and perceptual strain and impairs endurance exercise, but effects of air temperature per se remain almost unexamined. Most studies have used matched relative humidity, thereby exponentially increasing absolute humidity (water content in air) concurrently with temperature. Absolute (not relative) humidity governs evaporative rate and is more important at higher work rates and air temperatures. Therefore, we examined the independent effects of air temperature and humidity on performance, thermal, cardiovascular and perceptual measures during endurance exercise. Utilizing a crossover design, 14 trained participants (7 females) completed 45 min fixed-intensity cycling (70% V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ) followed by a 20-km time trial in each of four environments: three air temperatures at matched absolute humidity (Cool, 18°C; Moderate, 27°C; and Hot, 36°C; at 1.96 kPa, air velocity ∼4.5 m/s), and one at elevated humidity (Hot Humid, 36°C at 3.92 kPa). Warmer air caused warmer skin (0.5°C/°C; P < 0.001), higher heart rate (1 bpm/°C; P < 0.001), sweat rate (0.04 l/h/°C; P < 0.001) and thermal perceptions during fixed-intensity exercise, but minimally affected core temperature (<0.01°C/°C; P = 0.053). Time-trial performance was comparable between Cool and Moderate (95% CI: -1.4, 5.9%; P = 0.263), but 3.6-6% slower in Hot (95% CI: ±2.4%; P ≤ 0.006). Elevated humidity increased core temperature (P < 0.001), perceived temperature and discomfort but not skin temperature or heart rate, and reduced mean blood pressure (P = 0.046) during fixed-intensity exercise. Elevated humidity impaired time-trial performance by 3.4% (95% CI: ±2.2%; P = 0.006). In conclusion, these findings quantify the importance of absolute humidity alongside air temperature when exercising under severe heat stress.


Assuntos
Regulação da Temperatura Corporal , Transtornos de Estresse por Calor , Feminino , Humanos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Alta , Umidade , Temperatura , Estudos Cross-Over
18.
Exp Physiol ; 108(12): 1500-1515, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742137

RESUMO

NEW FINDINGS: What is the central question of this study? Gonadal hormones modulate cerebrovascular function while insulin-like growth factor 1 (IGF-1) facilitates exercise-mediated cerebral angiogenesis; puberty is a critical period of neurodevelopment alongside elevated gonadal hormone and IGF-1 activity: but whether exercise training across puberty enhances cerebrovascular function is unkown. What is the main finding and its importance? Cerebral blood flow is elevated in endurance trained adolescent males when compared to untrained counterparts. However, cerebrovascular reactivity to hypercapnia is faster in trained vs. untrained children, but not adolescents. Exercise-induced improvements in cerebrovascular function are attainable as early as the first decade of life. ABSTRACT: Global cerebral blood flow (gCBF) and cerebrovascular reactivity to hypercapnia ( CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) are modulated by gonadal hormone activity, while insulin-like growth factor 1 facilitates exercise-mediated cerebral angiogenesis in adults. Whether critical periods of heightened hormonal and neural development during puberty represent an opportunity to further enhance gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ is currently unknown. Therefore, we used duplex ultrasound to assess gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ in n = 128 adolescents characterised as endurance-exercise trained (males: n = 30, females: n = 36) or untrained (males: n = 29, females: n = 33). Participants were further categorised as pre- (males: n = 35, females: n = 33) or post- (males: n = 24, females: n = 36) peak height velocity (PHV) to determine pubertal or 'maturity' status. Three-factor ANOVA was used to identify main and interaction effects of maturity status, biological sex and training status on gCBF and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Data are reported as group means (SD). Pre-PHV youth demonstrated elevated gCBF and slower CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response times than post-PHV counterparts (both: P ≤ 0.001). gCBF was only elevated in post-PHV trained males when compared to untrained counterparts (634 (43) vs. 578 (46) ml min-1 ; P = 0.007). However, CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time was faster in pre- (72 (20) vs. 95 (29) s; P ≤ 0.001), but not post-PHV (P = 0.721) trained youth when compared to untrained counterparts. Cardiorespiratory fitness was associated with gCBF in post-PHV youth (r2  = 0.19; P ≤ 0.001) and CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time in pre-PHV youth (r2  = 0.13; P = 0.014). Higher cardiorespiratory fitness during adolescence can elevate gCBF while exercise training during childhood primes the development of cerebrovascular function, highlighting the importance of exercise training during the early stages of life in shaping the cerebrovascular phenotype.


Assuntos
Hipercapnia , Fator de Crescimento Insulin-Like I , Masculino , Adulto , Criança , Feminino , Humanos , Adolescente , Exercício Físico/fisiologia , Circulação Cerebrovascular/fisiologia , Hormônios Gonadais
19.
Eur J Appl Physiol ; 123(7): 1529-1541, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929015

RESUMO

BACKGROUND: Stationary (SE) and dynamic (DE) rowing ergometers, that are utilized for indoor training and physical assessment of competitive rowers, may elicit different physiological and biomechanical responses. The present study used SE and DE ergometers to examine submaximal and peak physiological and biomechanical responses during an incremental rowing test. METHODS: Twelve National Collegiate Athletic Association (NCAA) Division I oarswomen performed seven-stage rowing tests with the last stage performed with maximal effort. Heart rate (HR), lactate (LA), oxygen uptake (VO2), ventilation (VE), stroke rate (SR), gross efficiency (GE), and rating of perceived exertion (RPE) were obtained; while trunk, hip, knee, shoulder, and elbow ranges of motion (ROM) were measured. RESULTS: SR was higher at maximal stage DE (29.3 vs. 34.8 strokes/min, p = 0.018, d = 1.213). No difference occurred in responses of maximal stage HR, RPE, VO2, VE, LA, or GE between the two ergometers. Submaximal LA and SR were greater on the DE for all submaximal stages. Submaximal VE was greater on the DE for all submaximal stages except Stage 3 (p = 0.160, d = 0.655). VO2 was higher on the DE Stages 2-5. GE was higher on the SE for Stages 2-5. Athletes showed increased trunk (p = 0.025, [Formula: see text] = 0.488) and knee (p = 0.004, [Formula: see text] = 0.668) ROM on SE. CONCLUSION: Rowing on the DE appears to elicit a greater stroke rate and more optimal joint angles especially at high intensities. Hence, the DE is worthy of consideration as a preferred ergometer for women rowers.


Assuntos
Esportes , Esportes Aquáticos , Humanos , Feminino , Ergometria , Exercício Físico/fisiologia , Esportes/fisiologia , Teste de Esforço , Frequência Cardíaca , Atletas , Consumo de Oxigênio/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-37182787

RESUMO

Studies of animal physiology not only provide valuable knowledge for the species in question, but also offer insights into human physiology. This thought is best highlighted by the 'Krogh Principle', which states "for many problems there is an animal on which it can be most conveniently studied". This graphical review focuses on three distinct stages of the oxygen transport cascade in which human exercise physiology knowledge has been enhanced by studies carried out in animal models. We begin by exploring ventilation, and the detrimental effects of cold, dry air on the airways in two sets of elite athletes, the cross-country skier and the racing sled dog. We then discuss the transport of oxygen via hemoglobin in humans and deer mice with relatively shifted oxygen dissociation curves. Finally, we consider the technical difficulties of measuring respiratory muscle blood flow in exercising humans and how an equine model can provide an understanding of the distribution of blood flow during exercise. These cases illustrate the complementary nature of physiological studies across species.


Assuntos
Fisiologia Comparada , Fenômenos Fisiológicos Respiratórios , Humanos , Animais , Cavalos , Cães , Modelos Animais , Pulmão , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA