Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Naturwissenschaften ; 105(5-6): 37, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789945

RESUMO

Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.


Assuntos
Comportamento Predatório/fisiologia , Tecnologia de Sensoriamento Remoto , Seda , Aranhas/fisiologia , Vibração , Animais , Fluxometria por Laser-Doppler
2.
Clin Biomech (Bristol, Avon) ; 96: 105659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35588587

RESUMO

BACKGROUND: To the best of our knowledge, no report has analyzed the postoperative results of poor prosthesis position, particularly when the femoral and tibial components are abnormally positioned relative to neutral lower limb alignment. We aimed to investigate pressure distribution in the knee at different lower limb alignments with diverse positions of femoral and tibial components. METHODS: We established a three-dimensional model of the lower limb using computed tomography and simulated total knee arthroplasty. Tibial and femoral components were changed to 7°, 5°, and 3° of valgus and neutral and 3°, 5°, and 7° of varus positions in the coronal plane. Finite element analysis was performed after applying pressure to simulate weight-bearing, and pressure distribution on the tibial surface was analyzed. We also conducted biomechanical testing using a weight-bearing rig with six cadavers. We measured the pressure at the tibial surface with the position of different components and lower limb alignment. FINDINGS: Peak pressure on the medial or lateral side of the tibia was determined by the mechanical axis. When tibial components are in 3°,5° and 7° of valgus/varus and femoral components are in 3°,5° and 7° of varus/valgus correspondence, no peak pressure was detected with normal alignment, despite malpositioned components. INTERPRETATION: Lower limb alignment is more critical than the position of the component. Medial and lateral tibial compartment pressures were evenly distributed if the alignment was neutral. Malpositioned femoral or tibial components changed the femorotibial mechanical axis, and peak pressure of the proximal tibia was positively related to alignment.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Tíbia/cirurgia
3.
Micromachines (Basel) ; 12(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34442524

RESUMO

In this paper, a new design technique is presented to estimate and reduce the cross-axis sensitivity (CAS) in a single-drive multi-axis microelectromechanical systems (MEMS) gyroscope. A simplified single-drive multi-axis MEMS gyroscope, based on a mode-split approach, was analyzed for cross-axis sensitivity using COMSOL Multiphysics. A design technique named the "ratio-matching method" of drive displacement amplitudes and sense frequency differences ratios was proposed to reduce the cross-axis sensitivity. Initially, the cross-axis sensitivities in the designed gyroscope for x and y-axis were calculated to be 0.482% and 0.120%, respectively, having an average CAS of 0.301%. Using the proposed ratio-matching method and design technique, the individual cross-axis sensitivities in the designed gyroscope for x and y-axis were reduced to 0.018% and 0.073%, respectively. While the average CAS was reduced to 0.045%, showing a reduction rate of 85.1%. Moreover, the proposed ratio-matching method for cross-axis sensitivity reduction was successfully validated through simulations by varying the coupling spring position and sense frequency difference variation analyses. Furthermore, the proposed methodology was verified experimentally using fabricated single-drive multi-axis gyroscope.

4.
Micromachines (Basel) ; 11(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255312

RESUMO

In this paper, a COMSOL Multiphysics-based methodology is presented for evaluation of the microelectromechanical systems (MEMS) gyroscope. The established finite element analysis (FEA) model was successfully validated through a comparison with analytical and Matlab/Simulink analysis results. A simplified single-drive, 3-axis MEMS gyroscope was analyzed using a mode split approach, having a drive resonant frequency of 24,918 Hz, with the x-sense, y-sense, and z-sense being 25,625, 25,886, and 25,806 Hz, respectively. Drive-mode analysis was carried out and a maximum drive-displacement of 4.0 µm was computed for a 0.378 µN harmonic drive force. Mechanical sensitivity was computed at 2000 degrees per second (dps) input angular rate while the scale factor for roll, pitch, and yaw was computed to be 0.014, 0.011, and 0.013 nm/dps, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA