Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 261(3): 335-348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37650293

RESUMO

FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

2.
J Cell Physiol ; 237(3): 1845-1856, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34881818

RESUMO

Abdominal irradiation (IR) may destroy the intestinal mucosal barrier, leading to severe intestinal infection and multiple organ dysfunction syndromes. The role of intestinal microbiota in the development of IR-induced intestinal injury remains largely unknown. Herein, we reported that abdominal IR altered the composition of the microbiota and reduced the abundance and diversity of the gut microbiome. Alterations of bacteria, in particular reduction of Lactobacillus, played a critical role in IR-induced intestinal injury. Fecal microbiota transplant (FMT) from normal mice or administration of Lactobacillus plantarum to intestinal microbiota-eliminated mice substantially reduced IR-induced intestinal damage and prevented mice from IR-induced death. We further characterized that L. plantarum activated the farnesoid X receptor (FXR) - fibroblast growth factor 15 (FGF15) signaling in intestinal epithelial cells and hence promoted DNA-damage repair. Application of GW4064, an activator of FXR, to microbiota eliminated mice markedly mitigated IR-induced intestinal damage, reduced intestinal epithelial cell death and promoted the survival of IR mice. In contrast, suppression of FXR with Gly-ß-MCA, a bile acid and an intestine-selective and high-affinity FXR inhibitor, abrogated L. Plantarum-mediated protection on the ileum of IR mice. Taken together, our findings not only provide new insights into the role of intestinal flora in radiation-induced intestinal injury but also shed new light on the application of probiotics for the protection of radiation-damaged individuals.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Animais , Ácidos e Sais Biliares , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Camundongos Endogâmicos C57BL
3.
Biochem Biophys Res Commun ; 600: 156-162, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35240510

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder defined as the presence of intrahepatic lipid deposition and steatosis as well as chronic inflammation without excessive alcohol consumption. Our previous studies found that inulin could dramatically improve lipid metabolism disorders in NAFLD murine models. In recent years, mounting evidence has approved that there are disproportionately increased bile acids (BAs) in patients with NAFLD while the hepatic bile acids signaling is suppressed. Meanwhile the primary function of bile acids is to promote the excretion of cholesterol and therefore keep the cholesterol metabolism balance. Hence, we investigate whether inulin exerts beneficial effects on lipid metabolism disorders by modulating bile acids signaling in our present study. And we found that inulin treatment significantly reversed the abnormal accumulation of bile acids in high-fat-induced NAFLD mice. Furthermore, our data confirmed that inulin supplementation attenuates NAFLD via restoring the activity of FXR accompanied by increasing hepatic bile acids de novo synthesis and further enhancing bile acids excretion in mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Humanos , Inulina/metabolismo , Inulina/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
Acta Pharmacol Sin ; 43(9): 2362-2372, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35105957

RESUMO

Bile acid (BA) homeostasis is regulated by the extensive cross-talk between liver and intestine. Many bile-acid-activated signaling pathways have become attractive therapeutic targets for the treatment of metabolic disorders. In this study we investigated the regulatory mechanisms of BA in the intestine. We showed that the BA levels in the gallbladder and faeces were significantly increased, whereas serum BA levels decreased in systemic Krüppel-like factor 9 (Klf9) deficiency (Klf9-/-) mice. These phenotypes were also observed in the intestine-specific Klf9-deleted (Klf9vil-/-) mice. In contrast, BA levels in the gallbladder and faeces were reduced, whereas BA levels in the serum were increased in intestinal Klf9 transgenic (Klf9Rosa26+/+) mice. By using a combination of biochemical, molecular and functional assays, we revealed that Klf9 promoted the expression of apical sodium-dependent bile acid transporter (Asbt) in the terminal ileum to enhance BA absorption in the intestine. Reabsorbed BA affected liver BA synthetic enzymes by regulating Fgf15 expression. This study has identified a previously neglected transcriptional pathway that regulates BA homeostasis.


Assuntos
Ácidos e Sais Biliares , Fatores de Transcrição Kruppel-Like/metabolismo , Simportadores , Animais , Ácidos e Sais Biliares/metabolismo , Circulação Êntero-Hepática , Intestinos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Fatores de Transcrição/metabolismo
5.
Lipids Health Dis ; 21(1): 97, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209166

RESUMO

BACKGROUND: Cholesterol gallstone disease (CGD) is accompanied by biliary cholesterol supersaturation. Hepatic Niemann-Pick C1-like 1 (NPC1L1), which is present in humans but not in wild-type (WT) mice, promotes hepatocyte cholesterol uptake and decreases biliary cholesterol supersaturation. In contrast, intestinal NPC1L1 promotes intestinal cholesterol absorption, increasing biliary cholesterol supersaturation. Ezetimibe (EZE) can inhibit both hepatic and intestinal NPC1L1. However, whether hepatic NPC1L1 can affect CGD progress remains unknown. METHODS: Mice expressing hepatic NPC1L1 (NPC1L1hepatic-OE mice) were generated using Adeno-associated viruses (AAV) gene delivery. The protein level and function of hepatic NPC1L1 were examined under chow diet, high fat-cholesterol diet (HFCD), and lithogenic diet (LD) feeding. Gallstone formation rates were examined with or without EZE treatment. Fibroblast growth factor 15 (FGF15) treatment and inhibition of fibroblast growth factor receptor 4 (FGFR4) were applied to verify the mechanism of hepatic NPC1L1 degradation. RESULTS: The HFCD-fed NPC1L1hepatic-OE mice retained the biliary cholesterol desaturation function of hepatic NPC1L1, whereas EZE treatment decreased biliary cholesterol saturation and did not cause CGD. The ubiquitination and degradation of hepatic NPC1L1 were discovered in LD-fed NPC1L1hepatic-OE mice. Treatment of FGF15 during HFCD feeding and inhibition of FGFR4 during LD feeding could affect the protein level and function of hepatic NPC1L1. CONCLUSIONS: LD induces the ubiquitination and degradation of hepatic NPC1L1 via the FGF15-FGFR4 pathway. EZE may act as an effective preventative agent for CGD.


Assuntos
Proteínas de Membrana Transportadoras , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Animais , Colesterol/metabolismo , Dieta Hiperlipídica , Ezetimiba/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
6.
EMBO J ; 36(12): 1755-1769, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28446510

RESUMO

Lysosome-mediated autophagy is essential for cellular survival and homeostasis upon nutrient deprivation, but is repressed after feeding. Despite the emerging importance of transcriptional regulation of autophagy by nutrient-sensing factors, the role for epigenetic control is largely unexplored. Here, we show that Small Heterodimer Partner (SHP) mediates postprandial epigenetic repression of hepatic autophagy by recruiting histone demethylase LSD1 in response to a late fed-state hormone, FGF19 (hFGF19, mFGF15). FGF19 treatment or feeding inhibits macroautophagy, including lipophagy, but these effects are blunted in SHP-null mice or LSD1-depleted mice. In addition, feeding-mediated autophagy inhibition is attenuated in FGF15-null mice. Upon FGF19 treatment or feeding, SHP recruits LSD1 to CREB-bound autophagy genes, including Tfeb, resulting in dissociation of CRTC2, LSD1-mediated demethylation of gene-activation histone marks H3K4-me2/3, and subsequent accumulation of repressive histone modifications. Both FXR and SHP inhibit hepatic autophagy interdependently, but while FXR acts early, SHP acts relatively late after feeding, which effectively sustains postprandial inhibition of autophagy. This study demonstrates that the FGF19-SHP-LSD1 axis maintains homeostasis by suppressing unnecessary autophagic breakdown of cellular components, including lipids, under nutrient-rich postprandial conditions.


Assuntos
Autofagia , Repressão Epigenética , Fatores de Crescimento de Fibroblastos/metabolismo , Histona Desmetilases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Hepatócitos/ultraestrutura , Histonas/metabolismo , Fígado/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/deficiência , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 294(22): 8732-8744, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30996006

RESUMO

The bile acid (BA) nuclear receptor, farnesoid X receptor (FXR/NR1H4), maintains metabolic homeostasis by transcriptional control of numerous genes, including an intestinal hormone, fibroblast growth factor-19 (FGF19; FGF15 in mice). Besides activation by BAs, the gene-regulatory function of FXR is also modulated by hormone or nutrient signaling-induced post-translational modifications. Recently, phosphorylation at Tyr-67 by the FGF15/19 signaling-activated nonreceptor tyrosine kinase Src was shown to be important for FXR function in BA homeostasis. Here, we examined the role of this FXR phosphorylation in cholesterol regulation. In both hepatic FXR-knockout and FXR-knockdown mice, reconstitution of FXR expression up-regulated cholesterol transport genes for its biliary excretion, including scavenger receptor class B member 1 (Scarb1) and ABC subfamily G member 8 (Abcg5/8), decreased hepatic and plasma cholesterol levels, and increased biliary and fecal cholesterol levels. Of note, these sterol-lowering effects were blunted by substitution of Phe for Tyr-67 in FXR. Moreover, consistent with Src's role in phosphorylating FXR, Src knockdown impaired cholesterol regulation in mice. In hypercholesterolemic apolipoprotein E-deficient mice, expression of FXR, but not Y67F-FXR, ameliorated atherosclerosis, whereas Src down-regulation exacerbated it. Feeding or treatment with an FXR agonist induced Abcg5/8 and Scarb1 expression in WT, but not FGF15-knockout, mice. Furthermore, FGF19 treatment increased occupancy of FXR at Abcg5/8 and Scarb1, expression of these genes, and cholesterol efflux from hepatocytes. These FGF19-mediated effects were blunted by the Y67F-FXR substitution or Src down-regulation or inhibition. We conclude that phosphorylation of hepatic FXR by FGF15/19-induced Src maintains cholesterol homeostasis and protects against atherosclerosis.


Assuntos
Colesterol/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Quinases da Família src/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Ácidos e Sais Biliares/metabolismo , Colesterol/sangue , Regulação para Baixo , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
8.
J Hepatol ; 73(5): 1131-1143, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32422221

RESUMO

BACKGROUND & AIMS: Donation after brain death (DBD) grafts are associated with reduced graft quality and function post liver transplantation (LT). We aimed to elucidate i) the impact of FGF15 levels on DBD grafts; ii) whether this impact resulted from altered intestinal FXR-FGF15; iii) whether administration of FGF15 to donors after brain death could confer a benefit on graft function post LT; and iv) whether FGF15 affects bile acid (BA) accumulation. METHODS: Steatotic and non-steatotic grafts from DBD donors and donors without brain death were transplanted in rats. FGF15 was administered alone or combined with either a BA (cholic acid) or a YAP inhibitor. RESULTS: Brain death induced intestinal damage and downregulation of FXR. The resulting reduced intestinal FGF15 was associated with low hepatic FGF15 levels, liver damage and regenerative failure. Hepatic FGFR4-Klb - the receptor for FGF15 - was downregulated whereas CYP7A1 was overexpressed, resulting in BA accumulation. FGF15 administration to DBD donors increased hepatic FGFR4-Klb, reduced CYP7A1 and normalized BA levels. The benefit of FGF15 on liver damage was reversed by cholic acid, whereas its positive effect on regeneration was maintained. YAP signaling in DBD donors was activated after FGF15 treatment. When a YAP inhibitor was administered, the benefits of FGF15 on regeneration were abolished, whereas its positive effect on hepatic damage remained. Neither the Hippo-YAP-BA nor the BA-IQGAP1-YAP axis was involved in the benefits of FGF15. CONCLUSION: Alterations in the gut-liver axis contribute to the reduced quality of DBD grafts and the associated pathophysiology of LT. FGF15 pre-treatment in DBD donors protected against damage and promoted cell proliferation. LAY SUMMARY: After brain death, potential liver donors have reduced intestinal FXR, which is associated with reduced intestinal, circulatory and hepatic levels of FGF15. A similar reduction in the cell-surface receptor complex Fgfr4/Klb is observed, whereas CYP7A1 is overexpressed; together, these molecular events result in the dangerous accumulation of bile acids, leading to damage and regenerative failure in brain dead donor grafts. Herein, we demonstrate that when such donors receive appropriate doses of FGF15, CYP7A1 levels and hepatic bile acid toxicity are reduced, and liver regeneration is promoted.


Assuntos
Ácidos e Sais Biliares , Morte Encefálica/metabolismo , Fatores de Crescimento de Fibroblastos , Transplante de Fígado , Fígado/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Função Retardada do Enxerto/metabolismo , Função Retardada do Enxerto/patologia , Função Retardada do Enxerto/prevenção & controle , Regulação para Baixo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regeneração Hepática/efeitos dos fármacos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Ratos , Transdução de Sinais , Proteínas de Sinalização YAP
9.
Gastroenterology ; 156(4): 1052-1065, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30521806

RESUMO

BACKGROUND & AIMS: The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS: We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS: We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-α- and -ß-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS: Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia.


Assuntos
Colesterol/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana Transportadoras/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/análise , Colesterol/sangue , HDL-Colesterol/análise , HDL-Colesterol/sangue , LDL-Colesterol/análise , LDL-Colesterol/sangue , Ingestão de Alimentos , Jejum , Fezes/química , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/genética , Células HT29 , Humanos , Íleo/metabolismo , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/genética , Jejuno/metabolismo , Jejuno/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/metabolismo , Fosforilação , Período Pós-Prandial , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/genética , Regulação para Cima
10.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G404-G411, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653340

RESUMO

The gastrointestinal phenotype of cystic fibrosis (CF) features intestinal bile acid (BA) malabsorption, impaired intestinal farnesoid X receptor (FXR) activation, and consequently reduced fibroblast growth factor 19 (FGF19, FGF15 in mice) production. The osmotic laxative polyethylene glycol (PEG) has been shown to decrease intestinal mucus accumulation in CF mice and could, by doing so, improve BA reabsorption. Here we determined the effect of PEG on BA excretion and FXR-FGF15 signaling in CF mice. Male Cftr-/-tm1Unc (CF) and wild-type (WT) littermates were administered PEG 4000 in drinking water and fed either chow or a semisynthetic diet. PEG was withdrawn for 3 days before termination. Fecal BA excretion was measured at PEG dosages of 37 g/l (100%) and 0 g/l (0%). Ileal FXR activation was assessed by gene expression of its downstream targets Fgf15 and small heterodimer partner ( Shp). In CF mice, PEG withdrawal increased fecal BA excretion on either diet compared with full PEG dosage (chow, 2-fold, P = 0.06; semisynthetic, 4.4-fold, P = 0.007). PEG withdrawal did not affect fecal BA excretion in WT mice on either diet. After PEG withdrawal, gene expression levels of intestinal FXR target genes Fgf15 and Shp were decreased in CF mice but unaffected in WT littermates. PEG did not affect the gene expression of the main intestinal BA transporter apical sodium-dependent bile acid transporter (ASBT). PEG treatment ameliorates intestinal BA malabsorption in CF mice and restores intestinal FXR-FGF15 signaling, independent from Asbt gene expression. These findings highlight the potential of PEG in the prevention and treatment of the gastrointestinal phenotype of CF. NEW & NOTEWORTHY A gastrointestinal feature of cystic fibrosis is bile acid malabsorption and consequent impairment of farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling. FXR-FGF15 signaling regulates various metabolic processes and could be implicated in metabolic and gastrointestinal complications of cystic fibrosis, such as diabetes and liver disease. In cystic fibrosis mice, treatment with the osmotic laxative polyethylene glycol is associated with decreased fecal bile acid loss and restoration of FXR-FGF15 signaling.


Assuntos
Fibrose Cística/metabolismo , Homeostase/fisiologia , Laxantes/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Ácidos e Sais Biliares/metabolismo , Fibrose Cística/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Íleo/metabolismo , Intestinos/fisiologia , Fígado/metabolismo , Masculino , Camundongos Transgênicos , Receptores Citoplasmáticos e Nucleares/genética
11.
Biochem J ; 475(18): 2985-2996, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30127091

RESUMO

Fibroblast growth factors (FGF) 19, 21 and 23 are characterized by being endocrinely secreted and require co-receptor α-klotho or ß-klotho (BKL) for binding and activation of the FGF receptors (FGFR). FGF15 is the rodent orthologue of human FGF19, but the two proteins share only 52% amino acid identity. Despite the physiological role of FGF21 and FGF19 being quite different, both lower blood glucose (BG) when administered to diabetic mice. The present study was designed to clarify why two human proteins with distinct physiological functions both lower BG in db/db mice and if the mouse orthologue FGF15 has similar effect to FGF19 and FGF21. Recombinant human FGF19, -21 and a mouse FGF15 variant (C110S) were expressed and purified from Escherichia coli While rhFGF19 (recombinant human fibroblast growth factor 19) and rhFGF21 (recombinant human fibroblast growth factor) bound FGFRs in complex with both human and mouse BKL, rmFGF15CS (recombinant mouse fibroblast growth factor 15 C110S) only bound the FGFRs when combined with mouse BKL. Recombinant hFGF21 and rhFGF19, but not rmFGF15CS, increased glucose uptake in mouse adipocytes, while rhFGF19 and rmFGF15CS potently decreased Cyp7a1 expression in rat hepatocytes. The lack of effect of rmFGF15CS on glucose uptake in adipocytes was associated with rmFGF15CS's inability to signal through the FGFR1c/mouse BKL complex. In db/db mice, only rhFGF19 and rhFGF21 decreased BG while rmFGF15CS and rhFGF19, but not rhFGF21, increased total cholesterol. These data demonstrate receptor- and species-specific differential activity of FGF15 and FGF19 which should be taken into consideration when FGF19 is used as a substitute for FGF15.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Humanos , Camundongos , Ratos , Especificidade da Espécie
12.
Handb Exp Pharmacol ; 256: 325-357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31201553

RESUMO

Nonalcoholic steatohepatitis (NASH) is within the spectrum of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). The prevalence of NASH is rising and has become a large burden to the medical system worldwide. Unfortunately, despite its high prevalence and severe health consequences, there is currently no therapeutic agent approved to treat NASH. Therefore, the development of efficacious therapies is of utmost urgency and importance. Many molecular targets are currently under investigation for their ability to halt NASH progression. One of the most promising and well-studied targets is the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR). In this chapter, the characteristics, etiology, and prevalence of NASH will be discussed. A brief introduction to FXR regulation of BA homeostasis will be described. However, for more details regarding FXR in BA homeostasis, please refer to previous chapters. In this chapter, the mechanisms by which tissue and cell type-specific FXR regulates NASH development will be discussed in detail. Several FXR agonists have reached later phase clinical trials for treatment of NASH. The progress of these compounds and summary of released data will be provided. Lastly, this chapter will address safety liabilities specific to the development of FXR agonists.


Assuntos
Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Ácidos e Sais Biliares , Humanos
13.
Semin Cell Dev Biol ; 53: 85-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26428296

RESUMO

The metabolic fibroblast growth factors (FGFs), FGF1, FGF15/19, and FGF21 differ from classic FGFs in that they modulate energy homeostasis in response to fluctuating nutrient availability. These unique mediators of metabolism regulate a number of physiological processes which contribute to their potent pharmacological properties. Administration of pharmacological doses of these FGFs causes weight loss, increases energy expenditure, and improves carbohydrate and lipid metabolism in obese animal models. However, many questions remain regarding the precise molecular and physiological mechanisms governing the effects of individual metabolic FGFs. Here we review the metabolic actions of FGF1, FGF15/19, and FGF21 while providing insights into their pharmacological effects by examining known biological functions.


Assuntos
Metabolismo Energético , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase , Animais , Humanos , Metabolismo dos Lipídeos , Modelos Biológicos
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 942-951, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29196240

RESUMO

Obstructive cholestasis causes liver injury via accumulation of toxic bile acids (BAs). Therapeutic options for cholestatic liver disease are limited, partially because the available murine disease models lack translational value. Profiling of time-related changes following bile duct ligation (BDL) in Gold Syrian hamsters revealed a biochemical response similar to cholestatic patients in terms of BA pool composition, alterations in hepatocyte BA transport and signaling, suppression of BA production, and adapted BA metabolism. Hamsters tolerated cholestasis well for up to 28days and progressed relatively slowly to fibrotic liver injury. Hepatocellular necrosis was absent, which coincided with preserved intrahepatic energy levels and only mild oxidative stress. The histological response to cholestasis in hamsters was similar to the changes seen in 17 patients with prolonged obstructive cholestasis caused by cholangiocarcinoma. Hamsters moreover upregulated hepatic fibroblast growth factor 15 (Fgf15) expression in response to BDL, which is a cytoprotective adaptation to cholestasis that hitherto had only been documented in cholestatic human livers. Hamster models should therefore be added to the repertoire of animal models used to study the pathophysiology of cholestatic liver disease.


Assuntos
Colestase/etiologia , Colestase/patologia , Modelos Animais de Doenças , Animais , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Cricetinae , Humanos , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Masculino , Mesocricetus
15.
Mol Pharm ; 15(11): 4827-4834, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247920

RESUMO

Our work has focused on defining the utility of fluorine (19F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea. In a pilot and three subsequent pharmacokinetic studies, we treated mice with two 19F-labeled bile acid analogues, CA-lys-TFA and CA-sar-TFMA. After oral dosing, we quantified 19F-labeled bile acid analogue levels in the gallbladder, liver, small and large intestine, and plasma using liquid chromatography mass spectrometry (LC-MS/MS). Both 19F bile acid analogues concentrated in the gallbladders of FGF15-deficient and WT mice, attaining peak concentrations at approximately 8.5 h after oral dosing. However, analogue levels in gallbladders of FGF15-deficient mice were several-fold less compared to those in WT mice. Live-animal 19F MRI provided agreement with our LC-MS/MS-based measures; we detected robust CA-lys-TFA 19F signals in gallbladders of WT mice but no signals in FGF15-deficient mice. Our finding that 19F MRI differentiates FGF15-deficient from WT mice provides additional proof-of-concept for the development of 19F bile acid analogues and 19F MRI as a clinical test to diagnose bile acid diarrhea due to FGF19 deficiency and other disorders.


Assuntos
Ácidos e Sais Biliares/farmacocinética , Diarreia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Sondas Moleculares/farmacocinética , Animais , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/química , Diarreia/genética , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Flúor/química , Vesícula Biliar/diagnóstico por imagem , Vesícula Biliar/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Distribuição Tecidual
16.
Cereb Cortex ; 27(2): 1137-1148, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26656997

RESUMO

A key step in the development of the cerebral cortex is a patterning process, which subdivides the telencephalon into several molecularly distinct domains and is critical for cortical arealization. This process is dependent on a complex network of interactions between signaling molecules of the Fgf and Wnt gene families and the Gli3 transcription factor gene, but a better knowledge of the molecular basis of the interplay between these factors is required to gain a deeper understanding of the genetic circuitry underlying telencephalic patterning. Using DNA-binding and reporter gene assays, we here investigate the possibility that Gli3 and these signaling molecules interact by directly regulating each other's expression. We show that Fgf signaling is required for Wnt8b enhancer activity in the cortical hem, whereas Wnt/ß-catenin signaling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and Wnt/ß-catenin signaling cooperate to regulate Gli3 expression. Taken together, these findings indicate that mutual interactions between Gli3, Wnt8b, and Fgf17 are crucial elements of the balance between these factors thereby conferring robustness to the patterning process. Hence, our study provides a framework for understanding the genetic circuitry underlying telencephalic patterning and how defects in this process can affect the formation of cortical areas.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Telencéfalo/fisiologia , Proteínas Wnt/fisiologia , Proteína Gli3 com Dedos de Zinco/fisiologia , Animais , Feminino , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Gravidez , Prosencéfalo/metabolismo , Prosencéfalo/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Telencéfalo/embriologia , Telencéfalo/metabolismo , Tálamo/embriologia , Tálamo/fisiologia , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteína Gli3 com Dedos de Zinco/genética
17.
J Hepatol ; 66(6): 1182-1192, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28189755

RESUMO

BACKGROUND & AIMS: Bile acid nuclear receptor farnesoid X receptor (FXR) is a key molecular mediator of many metabolic processes, including the regulation of bile acid, lipid and glucose homeostasis. A significant component of FXR-mediated events essential to its biological activity is attributed to induction of the enteric endocrine hormone fibroblast growth factor (FGF)19 or its rodent ortholog, FGF15. In this report, we compared the properties of human FGF19 and murine FGF15 in the regulation of hepatocarcinogenesis and metabolism in various mouse models of disease. METHODS: Tumorigenicity was assessed in three mouse models (db/db, diet-induced obese, and multi-drug resistance 2 [Mdr2]-deficient) following continuous exposure to FGF19 or FGF15 via adeno-associated viral-mediated gene delivery. Glucose, hemoglobin A1c and ß-cell mass were characterized in db/db mice. Oxygen consumption, energy expenditure, and body composition were evaluated in diet-induced obese mice. Serum levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were assessed in Mdr2-deficient mice. Expression profiles of genes encoding key proteins involved in bile acid synthesis and hepatocarcinogenesis were also determined. RESULTS: Both FGF15 and FGF19 hormones repressed bile acid synthesis (p<0.001 for both). However, murine FGF15 lacked the protective effects characteristic of human FGF19 in db/db mice with overt diabetes, such as weight-independent HbA1c-lowering and ß-cell-protection. Unlike FGF19, FGF15 did not induce hepatocellular carcinomas (HCC) in three mouse models of metabolic diseases (db/db, diet-induced obese, and multi-drug resistance 2 [Mdr2]-deficient mice), even at supra-pharmacological exposure levels. CONCLUSIONS: Fundamental species-associated differences between FGF19 and FGF15 may restrict the relevance of mouse models for the study of the FXR/FGF19 pathway, and underscore the importance of clinical assessment of this pathway, with respect to both safety and efficacy in humans. LAY SUMMARY: Activation of the nuclear receptor, FXR, leads to the production of a hormone called fibroblast growth factor 19 (FGF19) and subsequently regulation of multiple metabolic processes. Synthetic activators of FXR have been recently approved or are currently in clinical development for treatment of chronic liver diseases, including primary biliary cholangitis (PBC) and non-alcoholic steatohepatitis (NASH). The safety of these activators was partly assessed in mice exposed for prolonged periods of time. However, the results of this study show that mouse FGF15 and human FGF19 exhibit fundamentally different biological activities in mice. This could raise the concern of relying on rodent models for safety assessment of FXR activators. The potential risk of HCC development in patients treated with FXR agonists may need to be monitored.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/biossíntese , Carcinogênese/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fatores de Crescimento de Fibroblastos/genética , Hemoglobinas Glicadas/metabolismo , Humanos , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo , Especificidade da Espécie , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
18.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G266-G273, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104587

RESUMO

Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-ß (PKCß) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCß is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCß expression and signaling in the intestine and liver, while systemic PKCß deficiency promotes accumulation of cholesterol in the liver and bile. PKCß disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCß signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCß is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.


Assuntos
Colesterol na Dieta/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Proteína Quinase C beta/metabolismo , Animais , Dieta Hiperlipídica
19.
BMC Endocr Disord ; 17(1): 60, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946907

RESUMO

BACKGROUND: Recent studies show that bile acids are involved in glucose and energy homeostasis through activation of G protein coupled membrane receptor (TGR5) and farnesoid X receptor (FXR). A few researches have explored changes of TGR5 and FXR in animals with impaired glucose regulation. This study aimed to observe changes of plasma total bile acids (TBA), glucagon-like-peptide 1 (GLP-1), fibroblast growth factor 15 (FGF15), intestinal expressions of TGR5 and FXR, and correlations between them in rats with glucose intolerance. METHODS: Besides plasma fasting glucose, lipid, TBAs, alanine transaminase (ALT), active GLP-1(GLP-1A) and FGF15, a postprandial meal test was used to compare responses in glucose, insulin and GLP-1A among groups. The expressions of TGR5 and FXR in distal ileum and ascending colon were quantified by real-time PCR and western blot. RESULTS: TGR5 expression was significantly decreased in distal ileum in DM group compared to other groups, and TGR5 and FXR expressions in ascending colon were also decreased in DM group compared to other groups. Correlation analysis showed correlations between TBA and GLP-1A or FGF15. GLP-1A was correlated with TGR5 mRNA expression in colon, and FGF15 was correlated with FXR mRNA expression in colon. CONCLUSIONS: These results indicates that bile acid-TGR5/FXR axis contributes to glucose homeostasis.


Assuntos
Ácidos e Sais Biliares/sangue , Fatores de Crescimento de Fibroblastos/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Intolerância à Glucose/sangue , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Progressão da Doença , Mucosa Intestinal/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Ratos
20.
Biochim Biophys Acta ; 1849(2): 196-200, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24878541

RESUMO

The liver is able to regenerate itself in response to partial hepatectomy or liver injury. This is accomplished by a complex network of different cell types and signals both inside and outside the liver. Bile acids (BAs) are recently identified as liver-specific metabolic signals and promote liver regeneration by activating their receptors: Farnesoid X Receptor (FXR) and G-protein-coupled BA receptor 1 (GPBAR1, or TGR5). FXR is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. FXR promotes liver regeneration after 70% partial hepatectomy (PHx) or liver injury. Moreover, activation of FXR is able to alleviate age-related liver regeneration defects. Both liver- and intestine-FXR are activated by BAs after liver resection or injury and promote liver regeneration through distinct mechanism. TGR5 is a membrane-bound BA receptor and it is also activated during liver regeneration. TGR5 regulates BA hydrophobicity and stimulates BA excretion in urine during liver regeneration. BA signaling thus represents a novel metabolic pathway during liver regeneration. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Assuntos
Ácidos e Sais Biliares/metabolismo , Regeneração Hepática , Fígado/fisiologia , Animais , Humanos , Mucosa Intestinal/metabolismo , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA