RESUMO
Reactive oxygen species (ROS) produced from the oxygenation of reactive Fe(II) species significantly affect the transformation of metalloids such as Sb at anoxic-oxic redox interfaces. However, the main ROS involved in Sb(III) oxidation and Fe (oxyhydr)oxides formation during co-oxidation of Sb(III) and Fe(II) are still poorly understood. Herein, this study comprehensively investigated the Sb(III) oxidation and immobilization process and mechanism during Fe(II) oxygenation. The results indicated that Sb(III) was oxidized to Sb(V) by the ROS produced in the aqueous and solid phases and then immobilized by formed Fe (oxyhydr)oxides via adsorption and coprecipitation. In addition, chemical analysis and extended X-ray absorption fine structure (EXAFS) characterization demonstrated that Sb(V) could be incorporated into the lattice structure of Fe (oxyhydr)oxides via isomorphous substitution, which greatly inhibited the formation of lepidocrocite (γ-FeOOH) and decreased its crystallinity. Notably, goethite (α-FeOOH) formation was favored at pH 6 due to the greater amount of incorporated Sb(V). Moreover, singlet oxygen (1O2) was identified as the dominant ROS responsible for Sb(III) oxidation, followed by surface-adsorbed ·OHads, ·OH, and Fe(IV). Our findings highlight the overlooked roles of 1O2 and Fe (oxyhydr)oxide formation in Sb(III) oxidation and immobilization during Fe(II) oxygenation and shed light on understanding the geochemical cycling of Sb coupled with Fe in redox-fluctuating environments.
Assuntos
Oxirredução , Oxigênio Singlete , Oxigênio Singlete/química , Antimônio/química , Ferro/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxidos/química , Oxigênio/químicaRESUMO
A lack of knowledge about antimony (Sb) isotope fractionation mechanisms in key geochemical processes has limited its environmental applications as a tracer. Naturally widespread iron (Fe) (oxyhydr)oxides play a key role in Sb migration due to strong adsorption, but the behavior and mechanisms of Sb isotopic fractionation on Fe (oxyhydr)oxides are still unclear. Here, we investigate the adsorption mechanisms of Sb on ferrihydrite (Fh), goethite (Goe), and hematite (Hem) using extended X-ray absorption fine structure (EXAFS) and show that inner-sphere complexation of Sb species with Fe (oxyhydr)oxides occurs independent of pH and surface coverage. Lighter Sb isotopes are preferentially enriched on Fe (oxyhydr)oxides due to isotopic equilibrium fractionation, with neither surface coverage nor pH influencing the degree of fractionation (Δ123Sbaqueous-adsorbed). Limited Fe atoms are present in the second shell of Hem and Goe, resulting in weaker surface complexes and leading to greater Sb isotopic fractionation than with Fh (Δ123Sbaqueous-adsorbed of 0.49 ± 0.004, 1.12 ± 0.006, and 1.14 ± 0.05 for Fh, Hem, and Goe, respectively). These results improve the understanding of the mechanism of Sb adsorption by Fe (oxyhydr)oxides and further clarify the Sb isotope fractionation mechanism, providing an essential basis for future application of Sb isotopes in source and process tracing.
Assuntos
Antimônio , Óxidos , Óxidos/química , Adsorção , Antimônio/química , Raios X , Compostos Férricos , Isótopos , ÁguaRESUMO
Reprocessing magnetite-rich copper (Cu) tailings prompted a concern about arsenic (As) risks in seepage water and revegetated plants at Ernest Henry Cu Mine (EHM) in North Queensland, Australia, due to the closely coupled relationship between iron (Fe) minerals and As mobility. The magnetite removal alone significantly decreased the content of crystalline Fe minerals and the maximum arsenate (As(V)) sorption capacity of the resultant tailings. A glasshouse experiment with native grass Red Flinders (Iseilema Vaginiflorum) was conducted with the reprocessed (low magnetite (LM)) and original (high magnetite (HM)) tailings, which were amended with 5% sugarcane residue (SR) as a basal treatment in combination with 0, 1 and 5% pine-biochar (BC). The organic matter treatments and plant growth stimulated the formation of secondary Fe minerals. The amount of extractable amorphous Fe in the amended and revegetated HM tailings was significantly higher than those in the LM. Arsenic forms in the specifically sorbed and the sorbed by amorphous Fe oxides were significantly increased by the SR amendment in the LM tailings, but which were decreased in the HM, compared to the unamended tailings. Soluble As levels in the porewater of the LM under revegetation were significantly higher (300-1150 µg As L-1) than those (up to 45-90 µg As L-1) in HM tailings in the same treatment, which led to the higher As concentrations in the plants grown in the LM tailings. In particular, root As concentration (62-146 mg kg-1) in the LM tailings was almost a magnitude higher than those (8-17 mg kg-1) in the HM. The present results confirmed the initial expectation that the recovery of magnetite from the Cu tailings significantly elevated the risk of As solubility in the tailings by decreasing As sorption capacity and increasing soluble As levels. Thus, it would be beneficial to retain high contents of magnetite in the top layer (e.g., root zone) of the Cu tailings for managing As risk and revegetation in the future.
Assuntos
Arsênio/análise , Arsênio/farmacocinética , Óxido Ferroso-Férrico/isolamento & purificação , Mineração , Poaceae/metabolismo , Poluentes Químicos da Água/análise , Arseniatos/análise , Arseniatos/química , Arsênio/química , Cobre , Ferro/química , Minerais/química , Poaceae/crescimento & desenvolvimento , Queensland , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacocinéticaRESUMO
The association of soil organic matter (SOM) with iron (Fe) oxyhydroxides, particularly ferrihydrite, plays a pivotal role in the biogeochemical cycling of carbon (C) in both terrestrial and aquatic environment. The aging of ferrihydrite to more crystalline phases can impact the stability of associated organic C, a process potentially influenced by aluminum (Al) substitution due to its abundance. However, the molecular mechanisms governing the temporal and spatial distribution of SOM during the aging process of Al-substituted Fe oxyhydroxides remain unclear. This study aims to bridge this knowledge gap through a comprehensive approach, utilizing batch experiments, solid characterization techniques, and atomic force microscopy (AFM) based peak-force quantitative nanomechanical mapping (PF-QNM). Batch experiments revealed that humic acid (HA) was released into the aqueous phase during aging, with Al inhibiting this release. Various solid characterization methods collectively suggested that Al hindered the crystalline transformation of ferrihydrite and significantly preserved HA on the surface of newly formed hematite, rather than it being occluded within the interior of the new minerals. Results from 3-Dimensional fluorescence spectroscopy (3D-EEM) and Fourier-transform infrared spectroscopy (FTIR) indicated that the structure of HA remained constant, with the carboxyl-rich and hydroxyl-rich portions of HA fixed at the mineral interface during the aging period. Furthermore, we developed AFM-based PF-QNM to both quantify and visualize the interactions between Fe oxyhydroxides and HA, demonstrating variations in HA affinity among different Fe oxyhydroxides and highlighting the influence of the Al substitution rate.
RESUMO
In 2015, >50 million cubic meters of Fe mining tailings were released into the Doce River basin from the Fundão dam, raising the question of its consequences on the affected ecosystems. This study aimed to establish a mineralogical-(geo)chemical association of potentially toxic elements (PTEs) from Fe mining tailings from the Fundão dam, collected seven days after the failure, through a multidisciplinary approach combining assessment of the risk to human health, environmental geochemistry, and mineralogy. Thus, eleven tailings samples were collected with the support of the Brazilian Military Police Fire Department. Granulometry, magnetic measurements, optical microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and sequential chemical extraction of PTEs analyses were performed. Contamination indexes, assessment of risk to human health, and Pearson correlation were calculated using the results of sequential chemical extraction of PTEs. The predominance of goethite in Fe oxyhydroxide concentrates from the mud indicates that the major source of hematite may not be from tailings, but from pre-existing soils and sediments, and/or preferential dissolution of hematite in deep flooded zones of the tailings column of the Fundão dam. Moreover, the high correlation of most carcinogenic PTEs with their crystallographic variables indicates that goethite is the primary source of contaminants. Goethites from Fe mining tailings showed high specific surface area and Al-substitution, and due to their greater stability and reactivity, the impacts on PTE sorption phenomena and bioavailability may be maintained for long periods. However, their lower dissolution rate, and the consequent release of heavy metals would promote greater resilience for affected ecosystems, preventing significant PTE inputs under periodic reduction conditions. More specific studies, involving the crystallographic characteristics of Fe oxyhydroxides should be developed since they may provide another critical component of this set of complex and dynamic variables that interfere with the bioavailability of metals in ecosystems.
Assuntos
Compostos Férricos , Compostos de Ferro , Metais Pesados , Minerais , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais Pesados/análise , Brasil , Rios/químicaRESUMO
Amorphous ferrihydrite (Fh) is abundant in aquatic environments and sediments, and often coprecipitates with dissolved organic matter (DOM) to form mineral-organic aggregates. The Fe(II)-catalyzed transformation of Fh to crystalline Fe (oxyhydr)oxides (e.g., goethite) can result in the changes of uranium (U) species, but the effects of DOM molecules on the sequestration and stability of U during Fe (oxyhydr)oxides transformation are poorly understood. In this study, the associations of DOM molecules with U during the coprecipitation of DOM with Fh were evaluated, and the effects of DOM molecules on the kinetics of U release during Fe (oxyhydr)oxides transformation were investigated using a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), X-ray photoelectron spectroscopy (XPS), and kinetic experiments. FT-ICR-MS results indicated that, in addition to phenolic and polyphenolic compounds with higher O/C ratios, portions of phenolic compounds with lower O/C ratios and aliphatic compounds were also contributed to UO22+ binding when Fh coprecipitated with DOM. In comparison, phenolic and polyphenolic compounds with higher O/C ratios and condensed aromatics were preferentially retained on Fe (oxyhydr)oxides during the transformation. XPS results further suggested that the coprecipitated DOM molecules facilitated the reduction of U(VI) to U(IV) during the transformation, possibly through providing electrons or acting as electron shuttles. The kinetic experiment results indicated that the transformation processes accelerated U release from Fe (oxyhydr)oxides, but the coprecipitated DOM molecules slowed down U release. Our results contribute to understanding the behaviors of U and predicting the sequestration of U in the environment.
Assuntos
Óxidos , Urânio , Urânio/química , Matéria Orgânica Dissolvida , Oxirredução , Compostos Férricos/química , FenóisRESUMO
Arsenic (As) from mine wastewater is a significant source for acidic paddy soil pollution, and its mobility can be influenced by alternating redox conditions. However, mechanistic and quantitative insights into the biogeochemical cycles of exogenous As in paddy soil are still lacking. Herein, the variations of As species in paddy soil spiking with As(III) or As(V) were investigated in the process of 40 d of flooding followed 20 d of drainage. During flooding process, available As was immobilized in paddy soil spiking As(III) and the immobilized As was activated in paddy soil spiking As(V) owing to deprotonation. The contributions of Fe oxyhydroxides and humic substances (HS) to As immobilization in paddy soil spiking As(III) were 80.16% and 18.64%, respectively. Whereas the contributions of Fe oxyhydroxides and HS to As activation in paddy soil spiking As(V) were 47.9% and 52.1%, respectively. After entering drainage, available As was mainly immobilized by Fe oxyhydroxides and HS and adsorbed As(III) was oxidized. The contribution of Fe oxyhydroxides to As fixation in paddy soil spiking As(III) and As(V) was 88.82% and 90.26%, respectively, and of HS to As fixation in paddy soil spiking As(III) and As(V) was 11.12% and 8.95%, respectively. Based on the model fitting results, the activation of Fe oxyhydroxides and HS bound As followed with available As(V) reduction were key processes during flooding. This may be because the dispersion of soil particles and release of soil colloids activated the adsorbed As. Immobilization of available As(III) by amorphous Fe oxyhydroxides followed with adsorbed As(III) oxidation were key processes during drainage. This may be ascribe to the occurrence of coprecipitation and As(III) oxidation mediated by reactive oxygen species from Fe(II) oxidation. The results are beneficial for a deeper understanding of As species transformation at the interface of paddy soil-water as well as an estimation pathway for the impacts of key biogeochemical cycles on exogenous As species under a redox-alternating condition.
Assuntos
Arsênio , Oryza , Poluentes do Solo , Substâncias Húmicas , Arsênio/química , Solo/química , Ferro/química , Poluentes do Solo/análise , Oxirredução , Oryza/metabolismoRESUMO
The dynamic reactions of uranium (U) with iron (Fe) minerals change its behaviors in soil environment, however, how the coexisted constituents in soil affect U sequestration and release on Fe minerals during the transformation remains unclear. Herein, coupled effects of lead (Pb) and dissolved organic matter (DOM) on U speciation and release kinetics during the catalytic transformations of ferrihydrite (Fh) by Fe(II) were investigated. Our results revealed that the coexistence of Pb and DOM significantly reduced U release and increased the immobilization of U during Fh transformation, which were attributed to the enhanced inhibition of Fh transformation, the declined release of DOM and the increased U(VI) reduction. Specifically, the presence of Pb increased the coprecipitation of condensed aromatics, polyphenols and phenols, and these molecules were preferentially maintained by Fe (oxyhydr)oxides. The sequestrated polyphenols and phenols could further facilitate U(VI) reduction to U(IV). Additionally, a higher Pb content in coprecipitates caused a slower U release, especially when DOM was present. Compared with Pb, the concentrations of the released U were significantly lower during the transformation. Our results contribute to predicting U sequestration and remediating U-contaminated soils.
Assuntos
Urânio , Chumbo , Oxirredução , Compostos Férricos , Minerais , Solo , FenóisRESUMO
Fe (oxyhydr)oxides are the main components that accumulate heavy metals (HMs) in the acid mine drainage (AMD) sediments, but how the aging pH and time of AMD solution affects the Fe mineralogy and HMs speciation remains ambiguous. Herein, we determined the impacts of aging pH and time on the Fe mineralogy and chemical fractions of HMs in the sediments from Dabaoshan mining area using mineral characterizations, chemical extraction, and AMD solution incubation. For the natural AMD sediments, jarosite and goethite are the major Fe (oxyhydr)oxides in sample S1 with solution pH 2.68, while schwertmannite is dominant in sample S2 with solution pH 6.78, co-existing minor ferrihydrite. With increasing the AMD solution pH, the total contents of HMs (expect for As) and the reducible fraction of HMs (expect for Pb) in the sediments both increase. The HMs of Mn, Zn, Ni, and Cd are mainly associated with Fe (oxyhydr)oxides, while Pb possibly exists as Pb-bearing minerals (e.g., PbSO4) in the sediments. The oxidizable fraction of all HMs is negligible in both sediments. When the AMD solution of S1 was aged at different pHs, schwertmannite is dominant initially at all pHs, with a higher crystallinity being at a lower pH. With increasing aging time, the pre-formed schwertmannite transforms to goethite and jarosite at pH ≤ 3, while it keeps stable at pH 5 and 7 due to the accumulation of more HMs. These new insights are essential to assess the mobility and availability of HMs in the AMD-affected areas.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Ácidos , Monitoramento Ambiental , Sedimentos Geológicos/química , Chumbo , Metais Pesados/análise , Óxidos , Poluentes Químicos da Água/análiseRESUMO
Arsenic is a potentially toxic element (PTE) that is widely present in groundwater, with concentrations often exceeding the WHO drinking water guideline value (10.0 µg/L), entailing a prominent risk to human health due to long-term exposure. We investigated its origin in groundwater in a study area located north of Rome (Italy) in a volcanic-sedimentary aquifer. Some possible mineralogical sources and main mechanisms governing As mobilization from a representative volcanic tuff have been investigated via laboratory experiments, such as selective sequential extraction and dissolution tests mimicking different release conditions. Arsenic in groundwater ranges from 0.2 to 50.6 µg/L. It does not exhibit a defined spatial distribution, and it shows positive correlations with other PTEs typical of a volcanic environment, such as F, U, and V. Various potential As-bearing phases, such as zeolites, iron oxyhydroxides, calcite, and pyrite are present in the tuff samples. Arsenic in the rocks shows concentrations in the range of 17-41 mg/kg and is mostly associated with a minor fraction of the rock constituted by FeOOH, in particular, low crystalline, containing up to 70% of total As. Secondary fractions include specifically adsorbed As, As-coprecipitated or bound to calcite and linked to sulfides. Results show that As in groundwater mainly originates from water-rock interaction processes. The release of As into groundwater most likely occurs through desorption phenomena in the presence of specific exchangers and, although locally, via the reductive dissolution of Fe oxy-hydroxides.
RESUMO
The interactions between dissolved organic matter (DOM) molecules and minerals play significant roles in affecting the fate of carbon and contaminants in soil environment. However, the mechanisms controlling the variations of DOM molecules distribution during the transformation of Fe (oxyhydr)oxides, and the effects of these variations on contaminant behaviors are still largely unknown. In this study, the dynamic variations of DOM properties and distributions, and the kinetics of uranium adsorption on and desorption from Fe (oxyhydr)oxides during the transformation were investigated, employing a combination of Orbitrap mass spectrometry (MS), high-resolution transmission electron microscopy (HR-TEM), and kinetic experiments. Orbitrap MS results indicated that aliphatic molecules and phenolic and polyphenolic molecules with lower O/C values were preferentially released to solution. HR-TEM results indicated that the coprecipitated DOM molecules by ferrihydrite were mainly released to solution rather than sorbed on the newly formed lepidocrocite or goethite during the transformation. Furthermore, the stirred-flow experiment results suggested that soil DOM significantly reduced the adsorption of uranium on, and accelerated the release of uranium from Fe (oxyhydr)oxides, which was ascribed to the changed distribution of DOM molecules and the structure and composition of Fe (oxyhydr)oxides. Our results contribute to predicting contaminant behaviors in soils.
Assuntos
Ferro , Urânio , Adsorção , Matéria Orgânica Dissolvida , Compostos Férricos , Cinética , Minerais , Oxirredução , Óxidos/química , SoloRESUMO
Arsenic (As) adsorbed on Fe oxyhydroxides (adsorbent) is widely occurring in many environmental settings such as in acid mine drainage systems or in the hydrometallurgical operations to form Fe-As coprecipitates. However, the influence of the reaction media and the drying treatment on the microstructure of the directly formed adsorbents at various pHs was still not fully understood. In this work, As adsorption behaviors on various forms of Fe oxyhydroxides were systematically investigated by using XRD, FTIR, Raman, XANES, and HRTEM. The results revealed that at weak acidic pH, more As could adsorbed on the suspension adsorbent formed in sulfate and chloride media than that in nitrate media, possibly due to the microstructure alteration of the adsorbent in the presence of sulfate and chloride. Besides, the increasing crystallinity of the Fe oxyhydroxides and the aggregation effect after drying were the major reasons why less As could be hold by the dried adsorbents than that of the corresponding suspension adsorbents. These findings could shed more light on the nature of the Fe oxyhydroxides which may be helpful for more precisely predicting the fate of some toxic metal(loid)s in the environment.
Assuntos
Arsênio , Adsorção , Arsênio/análise , Mineração , NitratosRESUMO
Iron-containing spontaneously precipitated ochreous sediments serve as natural scavengers of various migrating elements and in this way contribute to removal and immobilization of potentially hazardous elements especially from mine drainage outflows. On the other hand, presence of filamentous fungi in their surroundings triggers biotransformation and contributes to the mobility of these elements. Three groups of samples of spontaneously precipitated ochreous sediments from an abandoned antimony mine in Poproc, Slovakia were studied: as-collected, sterilized at 95 °C for 30 min, and exposed to incubation with filamentous fungus Aspergillus niger which is frequently found in soils. Employing chemical analyses have determined the content of Fe, As, Sb, and Zn in the samples as well as their mobilization among the non-dissolved residue, culture medium of the fungus and/or its biomass. Significant degree of biovolatilization of antimony was unveiled. Speciation of iron was performed by 57Fe Mössbauer spectroscopy performed in a wide temperature range 300-4.2 K and external magnetic field of 6 T. Hyperfine interactions between 57Fe nuclei and their electronic shells have revealed superparamagnetic behavior characteristic for small particles. Their blocking temperatures of 46, 53, and 40 K, respectively, indicate a dependence of the size of the particles upon the sample treatment. While sterilization has supported their growth, incubation with fungus has changed their chemical environment and removed mainly bigger particles.
Assuntos
Antimônio , Poluentes do Solo , Antimônio/análise , Fungos , Ferro , Eslováquia , Poluentes do Solo/análiseRESUMO
Aeration of wetland soils containing iron (Fe) sulfides can cause strong acidification due to the generation of large amounts of sulfuric acid and formation of Fe oxyhydroxy sulfate phases such as jarosite. Remediation by re-establishment of anoxic conditions promotes jarosite transformation to Fe oxyhydroxides and/or Fe sulfides, but the driving conditions and mechanisms are largely unresolved. We investigated a sandy, jarosite-containing soil (initial pH = 3.0, Eh ~600 mV) in a laboratory incubation experiment under submerged conditions, either with or without wheat straw addition. Additionally, a model soil composed of synthesized jarosite mixed with quartz sand was used. Eh and pH values were monitored weekly. Solution concentrations of total dissolved organic carbon, Fe, S, and K as well as proportions of Fe2+ and SO42- were analysed at the end of the experiment. Sequential Fe extraction, X-ray diffraction, and Mössbauer spectroscopy were used to characterize the mineral composition of the soils. Only when straw was added to natural and artificial sulfuric soils, the pH increased up to 6.5, and Eh decreased to approx. 0 mV. The release of Fe (mainly Fe2+), K, and S (mainly SO42-) into the soil solution indicated redox- and pH-induced dissolution of jarosite. Mineralogical analyses confirmed jarosite losses in both soils. While lepidocrocite formed in the natural sulfuric soil, goethite was formed in the artificial sulfuric soil. Both soils showed also increases in non-sulfidized, probably organically associated Fe2+/Fe3+, but no (re-)formation of Fe sulfides. Unlike Fe sulfides, the formed Fe oxyhydroxides are not prone to support re-acidification in the case of future aeration. Thus, inducing moderately reductive conditions by controlled supply of organic matter could be a promising way for remediation of soils and sediments acidified by oxidation of sulfuric materials.
RESUMO
In wetlands, stream riverbanks represent a large redox reactive front. At their surface, ferric deposits promote their capacity to trap nutrients and metals. Given that rare earth elements (REE) are now considered as emerging pollutants, it seems that the riverbank interface is a strategic area between wetlands and streams in terms of controlling the environmental dissemination of REE. Therefore, the evolutions of the REE distribution and cerium (Ce) anomaly (Ce/Ce*, i.e. depleted or enriched Ce concentration compared to the other REE) were studied at various locations on a riverbank. The positive Ce anomaly is related to a high Fe content, a low organic carbon/iron ratio ((OC)/Fe) and newly formed Fe oxyhydroxides independently of their interactions with organic matter. Micro-X ray fluorescence (µ-XRF) mapping confirms Ce accumulation with ferric deposits. The Ce speciation exhibits a mix of Ce(III) and Ce(IV) in the ferric deposits, almost 20% of Ce occurred as Ce(IV) due to oxidation by newly formed Fe oxyhydroxides, while the subsurface horizons only display Ce(III). These results provide evidence that the Ce anomaly variation observed in stream water between low and high flow periods is partly due to the erosion of ferric deposits exhibiting a positive Ce anomaly. Therefore, the Ce anomaly can be considered as a fingerprint of the release of Fe colloids in the rivers and streams connected to the wetland.
RESUMO
The present study aimed to characterize key physico-chemical and mineralogical attributes of magnetite iron (Fe) ore tailings to identify potential constraints limiting in situ soil formation and direct phytostabilization. Tailings of different age, together with undisturbed local native soils, were sampled from a magnetite mine in Western Australia. Tailings were extremely alkaline (pHâ¯>â¯9.0), with a lack of water stable aggregate and organic matter, and contained abundant primary minerals including mica (e.g., biotite), with low specific surface area (N2-BET around 1.2â¯m2â¯g-1). These conditions remained relatively unchanged after four years' aging under field conditions. Chemical extraction and spectroscopic analysis [e.g., X-ray diffraction (XRD) and synchrotron-based Fe K edge X-ray absorption fine structure spectroscopy (XAFS) analysis] revealed that the aging process decreased biotite-like minerals, but increased hematite and magnetite in the tailings. However, the aged tailings lacked goethite, a compound abundant in natural soils. Examination using backscattered-scanning electron microscope - energy dispersive X-ray spectrometry (BSE-SEM-EDS) revealed that aged tailings contained discrete sharp edged Fe-bearing minerals that did not physically integrate with other minerals (e.g., Si/Al bearing minerals). In contrast, Fe minerals in native soils appeared randomly distributed and closely amassed with Si/Al rich phyllosilicates, with highly eroded edges. The lack of labile organic matter and the persistence of alkaline-saline conditions may have significantly hindered the bioweathering of Fe-minerals and the biogenic formation of secondary Fe-minerals in tailings. However, there is signature that a native pioneer plant, Maireana brevifolia can facilitate the bioweathering of Fe-bearing minerals in tailings. We propose that eco-engineering inputs like organic carbon accumulation, together with the introduction of functional microbes and pioneer plants, should be adopted to accelerate bioweathering of Fe-bearing minerals as a priority for initiating in situ soil formation in the Fe ore tailings.
RESUMO
Fe oxyhydroxides in riverbanks and their high binding capacity can be used to hypothesize that riverbanks may act as a "biogeochemical filter" between wetlands and rivers and may constitute a major mechanism in the trapping and flux regulation of chemical elements. Until now, the properties of Fe minerals have been very poorly described in riverbanks. The goals of the present work are to identify Fe speciation in riverbanks where ferric deposits are observed and to determine their impact on the metal behavior (As, Co, Cu, Ni, Pb, Zn, etc.). At the surface, Fe speciation is mainly composed of small poorly crystalline Fe phases, i.e. ferrihydrite (~30%), Fe-OM associations (~40%) as well as crystalline Fe phases, i.e. goethite (~35%). At the subsurface, the Fe distribution is dominated by goethite (~35%) and Fe-mica (~35%), the proportion of which increases at the expense of ferrihydrite and the Fe-OM associations. At the riverbank surface, ferrihydrite and the Fe-OM associations are therefore the main Fe hosting phases in response to (i) the fast Fe(II) oxidation induced by the presence of O2 and (ii) the high amount of OM favoring the formation of nano-phases bound to OM (Fe monomers, polymers and nanoparticles) and preventing mineralogical transformation (ferrihydrite into goethite). During the high-water level period (high flow), a strong erosion of the riverbank transfers these ferric deposits into the river. However, the physicochemical parameters of the river (pHâ¯6.6-7.6 and continuous oxic conditions) do not promote the dissolution of Fe oxyhydroxides and OM. Ferric deposits and the associated trace metals are therefore maintained as colloids/particles and are exported to the outlet. All of the results presented here demonstrate that the ferric deposits trap metals on a seasonal basis and are therefore a key factor in the mobilization of metals during riverbank erosion by river flow.
RESUMO
Abiotic oxidation of Fe(II) is an important pathway in the formation of Fe (oxyhydr)oxides. However, how can As(III) affect the oxidation rate of Fe(II) and the speciation of Fe (oxyhydr)oxides, and what's the extent of the newly formed Fe (oxyhydr)oxides on the removal of aqueous arsenic are still poorly understood. Oxidation of Fe(II) under neutral pH conditions was therefore investigated under different molar ratios of As:Fe. Our results suggest that co-existence of aqueous As(III) significantly slows down the oxidation rate of Fe(II). Speciation of Fe (oxyhydr)oxides is dependent on pH and As:Fe ratios. At pH 6.0, formation of lepidocrocite and goethite is apparently inhibited at low As:Fe ratios, and ferric arsenate is favored at high As:Fe ratios. At pH 7.0, lepidocrocite gradually degenerates with the increasing As:Fe ratios. At pH 8.0, arsenite significantly inhibits the development of magnetite and favors a formation of lepidocrocite. XPS analysis further reveals that more than half of As(III) is oxidized to As(V) at pH 6.0 and 7.0, whereas at pH 8.0, the rapid oxidation of Fe(II) as well as the rapid formation of Fe (oxyhydr)oxides facilitate a rapid removal of dissolved As(III) before its further oxidation to As(V).
Assuntos
Arsênio/química , Compostos de Ferro/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Geogenic arsenic (As) can accumulate and reach high concentrations in rice grains, thus representing a potential threat to human health. Ecuador is one of the main consumers of rice in South America. However, there is no information available about the concentrations of As in rice agrosystems, although some water bodies are known to contain high levels of the element. We carried out extensive sampling of water, soil, rice plants and commercial rice (obtained from local markets). Water samples were analysed to determine physico-chemical properties and concentrations of dissolved arsenic. Soil samples were analysed to determine total organic C, texture, total Fe and amorphous Fe oxyhydroxides (FeOx), total arsenic (tAs) and the bioavailable fraction (AsMe). The different plant parts were analysed separately to determine total (tAs), inorganic (iAs) and organic arsenic (oAs). Low concentrations of arsenic were found in samples of water (generally <10µgl-1) and soil (4.48±3mgkg-1). The tAs in the rice grains was within the usual range (0.042-0.125mgkg-1 dry weight, d.w.) and was significantly lower than in leaves (0.123-0.286mgkg-1 d.w.) and stems (0.091-0.201mgkg-1 d.w.). The FeOx and tAs and also AsMe in flood water were negatively correlated with tAs in the plants. However, the concentrations of As in stems and leaves were linearly correlated with tAs in the soil and flood water. The relationship between tAs and arsenic in the grain fitted a logarithmic function, as did that between tAs in the grain and the stem. The findings seem to indicate that high concentrations of arsenic in the environment (soil or water) or in the rice stem do not necessarily imply accumulation of the element in the grain. The iAs form was dominant (>80%) in all parts of the rice plants.