Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Electrophoresis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687174

RESUMO

In recent decades, driven by the needs of industry and medicine, researchers have been investigating how to remove carefully from the main flow microscopic particles or clusters of them. Among all the approaches proposed, crossflow filtration is one of the most attractive as it provides a non-destructive, label-free and in-flow sorting method. In general, the separation performance shows capture and separation efficiencies ranging from 70% up to 100%. However, the maximum flow rate achievable (µL/min) is still orders of magnitude away from those suitable for clinical or industrial applications mainly due to the low stiffness of the materials typically used. In this work, we propose an innovative hydrodynamic-crossflow hybrid filter geometry, buried in a fused silica substrate by means of the femtosecond laser irradiation followed by chemical etching technique. The material high stiffness combined with the accuracy of our manufacturing technique allows the 3D fabrication of non-deformable channels with higher aspect ratio posts, while keeping the overall device dimensions compact. The filter performance has been validated through experiments with both Newtonian (water-based solution of microbeads) and non-Newtonian fluids (blood), achieving separation efficiencies of up to 94% and large particles recovery rates of 100%, even at very high flow rates (mL/h).

2.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833667

RESUMO

In this work, we present femtosecond laser cutting of microchannels in a nodeless antiresonant hollow-core fiber (ARHCF). Due to its ability to guide light in an air core combined with exceptional light-guiding properties, an ARHCF with a relatively non-complex structure has a high application potential for laser-based gas detection. To improve the gas flow into the fiber core, a series of 250 × 30 µm microchannels were reproducibly fabricated in the outer cladding of the ARHCF directly above the gap between the cladding capillaries using a femtosecond laser. The execution time of a single lateral cut for optimal process parameters was 7 min. It has been experimentally shown that the implementation of 25 microchannels introduces low transmission losses of 0.17 dB (<0.01 dB per single microchannel). The flexibility of the process in terms of the length of the performed microchannel was experimentally demonstrated, which confirms the usefulness of the proposed method. Furthermore, the performed experiments have indicated that the maximum bending radius for the ARHCF, with the processed 100 µm long microchannel that did not introduce its breaking, is 15 cm.

3.
J Lightwave Technol ; 38(19): 5286-5292, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939105

RESUMO

We proposed and fabricated a microwave-frequency photonic fiber grating (MPFG) by femtosecond laser micromachining on optical fibers. Illuminated by low coherent light source, the MPFG can be interrogated using proposed microwave photonic system to show the resonant peaks in microwave frequency domain. We studied the working principle and characteristics of this device. After that, we discussed the influence of fiber type, apodization and light source coherence lengths on this device. The device can also respond to ambient temperature change like fiber optic sensors.

4.
Sensors (Basel) ; 20(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344713

RESUMO

This work discusses sensing properties of a long-period grating (LPG) and microcavity in-line Mach-Zehnder interferometer (µIMZI) when both are induced in the same single-mode optical fiber. LPGs were either etched or nanocoated with aluminum oxide (Al2O3) to increase its refractive index (RI) sensitivity up to ≈2000 and 9000 nm/RIU, respectively. The µIMZI was machined using a femtosecond laser as a cylindrical cavity (d = 60 µm) in the center of the LPG. In transmission measurements for various RI in the cavity and around the LPG we observed two effects coming from the two independently working sensors. This dual operation had no significant impact on either of the devices in terms of their functional properties, especially in a lower RI range. Moreover, due to the properties of combined sensors two major effects can be distinguished-sensitivity to the RI of the volume and sensitivity to the RI at the surface. Considering also the negligible temperature sensitivity of the µIMZI, it makes the combination of LPG and µIMZI sensors a promising approach to limit cross-sensitivity or tackle simultaneous measurements of multiple effects with high efficiency and reliability.

5.
Proc Natl Acad Sci U S A ; 113(15): 3982-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26976565

RESUMO

The ability to acquire images under low-light conditions is critical for many applications. However, to date, strategies toward improving low-light imaging primarily focus on developing electronic image sensors. Inspired by natural scotopic visual systems, we adopt an all-optical method to significantly improve the overall photosensitivity of imaging systems. Such optical approach is independent of, and can effectively circumvent the physical and material limitations of, the electronics imagers used. We demonstrate an artificial eye inspired by superposition compound eyes and the retinal structure of elephantnose fish. The bioinspired photosensitivity enhancer (BPE) that we have developed enhances the image intensity without consuming power, which is achieved by three-dimensional, omnidirectionally aligned microphotocollectors with parabolic reflective sidewalls. Our work opens up a previously unidentified direction toward achieving high photosensitivity in imaging systems.


Assuntos
Olho Artificial , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Lentes , Visão Noturna , Animais , Biomimética/métodos , Desenho de Equipamento , Peixes/fisiologia , Luz
6.
Biomed Microdevices ; 19(4): 78, 2017 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28844120

RESUMO

Within this paper we analyzed the technical feasibility of a novel microstent for glaucoma therapy. For lowering of intraocular pressure, the flexible polyurethane (PUR) implant is designed to drain aqueous humour from the anterior chamber of the eye into subconjunctival, or alternatively suprachoroidal, space. The microstent includes a biodegradable, flow resisting polymer membrane serving as temporary flow resistance for the prevention of early postoperative hypotony. A biodegradable local drug delivery (LDD)-device was designed to prevent fibrous encapsulation. Biodegradable components were made of flexible, nonwoven membranes of Poly(4-hydroxybutyrate) (P(4HB)). Polymer samples and microstent prototypes were manufactured by means of dip coating, electrospinning and femtosecond-laser micromachining and characterized in vitro with regard to structural and fluid mechanical properties, degradation behavior and drug release. Bending stiffness of PUR-tubing (62.53 ± 7.57 mN mm2) is comparable to conventional glaucoma drainage devices in a tube-plate design. Microstent prototypes yield a flow resistance of 2.4 ± 0.6 mmHg/µl min-1 which is close to the aspired value corresponding to physiological pressure (15 mmHg) and aqueous humour flow (2 µl min-1) conditions inside the eye. Degradation of electrospun P(4HB) specimens was found to be almost completely finished after six months in vitro. Within this time frame, flow capacity of the microstent increases, which is beneficial to compensate potentially increasing flow resistance of fibrous tissue in vivo. Fast drug release of the LDD-device was found. One microstent prototype was implanted into a porcine eye ex vivo. Future preclinical studies will allow further information about Microstent performance.


Assuntos
Implantes Absorvíveis , Implantes de Medicamento , Glaucoma/terapia , Teste de Materiais , Poliésteres , Stents , Animais , Implantes de Medicamento/química , Implantes de Medicamento/farmacologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Poliésteres/química , Poliésteres/farmacologia , Suínos
7.
Micromachines (Basel) ; 13(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363828

RESUMO

We experimentally studied the inscription of fiber Bragg gratings by using femtosecond (fs) laser point-by-point (PbP) technology. The effects of the focusing geometry, grating order, laser energy and grating length on the spectral characteristics of the PbP FBG were investigated. After optimizing these parameters, a high-quality first-order PbP FBG with a reflectivity > 99.9% (i.e., Bragg resonance attenuation of 37.7 dB) and insertion loss (IL) of 0.03 dB was successfully created. Moreover, taking advantage of the excellent flexibility of the fs laser PbP technology, high-quality FBGs with various Bragg wavelengths ranging from 856 to 1902.6 nm were inscribed. Furthermore, wavelength-division-multiplexed (WDM) FBG arrays consisting of 10 FBGs were rapidly constructed. Additionally, a Fabry-Perot cavity was realized by using two high-quality FBGs, and its birefringence could be reduced from 3.04 × 10−5 to 1.77 × 10−6 by using a slit beam shaping-assisted femtosecond laser PbP technology. Therefore, such high-quality FBGs are promising to improve the performance of optical fiber sensors, lasers and communication devices.

8.
Micromachines (Basel) ; 13(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888962

RESUMO

Programmability in femtosecond-laser-written integrated circuits is commonly achieved with the implementation of thermal phase shifters. Recent work has shown how such phase shifters display significantly reduced power dissipation and thermal crosstalk with the implementation of thermal isolation structures. However, the aforementioned phase shifter technology is based on a single gold film, which poses severe limitations on integration density and circuit complexity due to intrinsic geometrical constraints. To increase the compactness, we propose two improvements to this technology. Firstly, we fabricated thermal phase shifters with a photolithography process based on two different metal films, namely (1) chromium for microheaters and (2) copper for contact pads and interconnections. Secondly, we developed a novel curved isolation trench design that, along with a state-of-the-art curvature radius, allows for a significant reduction in the optical length of integrated circuits. As a result, curved Cr-Cu phase shifters provide a compact footprint with low parasitic series resistance and no significant increase in power dissipation (∼38 mW) and thermal crosstalk (∼20%). These results pave the way toward the fabrication of femtosecond-laser-written photonic circuits with a steep increase in terms of layout complexity.

9.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080692

RESUMO

High-accuracy temperature measurement plays a vital role in biomedical, oceanographic, and photovoltaic industries. Here, a highly sensitive temperature sensor is proposed and demonstrated based on cascaded polymer-infiltrated Mach-Zehnder interferometers (MZIs), operating near the dispersion turning point. The MZI was constructed by splicing a half-pitch graded index fiber (GIF) and two sections of single-mode fiber and creating an inner air cavity based on femtosecond laser micromachining. The UV-curable polymer-infiltrated air cavity functioned as one of the interference arms of MZI, and the residual GIF core functioned as the other. Two MZIs with different cavity lengths and infiltrated with the UV-curable polymers, having the refractive indexes on the different sides of the turning point, were created. Moreover, the effects of the length and the bending way of transmission SMF between the first and the second MZI were studied. As a result, the cascaded MZI temperature sensor exhibits a greatly enhanced temperature sensitivity of -24.86 nm/°C based on wavelength differential detection. The aforementioned result makes it promising for high-accuracy temperature measurements in biomedical, oceanographic, and photovoltaic applications.

10.
Biosensors (Basel) ; 12(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735540

RESUMO

Blood glucose concentration is important for metabolic homeostasis in humans and animals. Many diabetic patients need to detect blood glucose daily which burdens community hospitals and family healthcare. Optical fiber sensors are widely used in biomedical detection because of their compact structure, fast response, high sensitivity, low cost, and ease of operation. In this work, we constructed a Fabry-Perot (FP) cavity biosensor for the fast detection of glucose concentration in serum. The femtosecond laser micromachining was applied to fabricate the FP cavity by printing the fiber-tip fixed-supported bridge at the end face of the optical fiber. An additional hemisphere was printed at the center of the outer surface of the bridge to avoid multi-beam interference. The results demonstrated that the proposed biosensor had high refractive index (RI) detection sensitivity, roughly 1039 nm/RIU at a wavelength of 1590 nm, and the detection sensitivity for glucose was around 0.185 nm/ (mg/mL) at a wavelength of 1590 nm. Due to its high sensitivity, compact structure, and fast response, the FP cavity biosensor has great potential to be applied in family healthcare for glucose concentration detection of diabetic patients.


Assuntos
Tecnologia de Fibra Óptica , Interferometria , Glicemia , Desenho de Equipamento , Humanos , Refratometria
11.
Micromachines (Basel) ; 12(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670373

RESUMO

Femtosecond laser micromachining (FLM) of fused silica allows for the realization of three-dimensional embedded optical elements and microchannels with micrometric feature size. The performances of these components are strongly affected by the machined surface quality and residual roughness. The polishing of 3D buried structures in glass was demonstrated using different thermal annealing processes, but precise control of the residual roughness obtained with this technique is still missing. In this work, we investigate how the FLM irradiation parameters affect surface roughness and we characterize the improvement of surface quality after thermal annealing. As a result, we achieved a strong roughness reduction, from an average value of 49 nm down to 19 nm. As a proof of concept, we studied the imaging performances of embedded mirrors before and after thermal polishing, showing the capacity to preserve a minimum feature size of the reflected image lower than µ5µm. These results allow for us to push forward the capabilities of this enabling fabrication technology, and they can be used as a starting point to improve the performances of more complex optical elements, such as hollow waveguides or micro-lenses.

12.
J Biophotonics ; 14(3): e202000396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295053

RESUMO

We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual-sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates.


Assuntos
Drosophila , Microfluídica , Animais , Lasers , Microscopia de Fluorescência , Microtecnologia
13.
ACS Appl Mater Interfaces ; 12(29): 33163-33172, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32496752

RESUMO

Hydrogen as an antioxidant gas has been widely used in the medical and biological fields for preventing cancer or treating inflammation. However, controlling the hydrogen concentration is crucial for practical use due to its explosive property when its volume concentration in air reaches the explosive limit (4%). In this work, a polymer-based microcantilever (µ-cantilever) hydrogen sensor located at the end of a fiber tip is proposed to detect the hydrogen concentration in medical and biological applications. The proposed sensor was developed using femtosecond laser-induced two-photon polymerization (TPP) to print the polymer µ-cantilever and magnetron sputtering to coat a palladium (Pd) film on the upper surface of the µ-cantilever. Such a device exhibits a high sensitivity, roughly -2 nm %-1 when the hydrogen concentration rises from 0% to 4.5% (v/v) and a short response time, around 13.5 s at 4% (v/v), making it suitable for medical and environmental applications. In addition to providing an ultracompact optical solution for fast and highly sensitive hydrogen measurement, the polymer µ-cantilever fiber sensor can be used for diverse medical and biological sensing applications by replacing Pd with other functional materials.


Assuntos
Hidrogênio/análise , Fibras Ópticas , Polímeros/química , Lasers , Paládio/química , Tamanho da Partícula , Propriedades de Superfície
14.
Micromachines (Basel) ; 11(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033194

RESUMO

We report on the application of femtosecond laser micromachining to the fabrication of complex glass microdevices, for high-order harmonic generation in gas. The three-dimensional capabilities and extreme flexibility of femtosecond laser micromachining allow us to achieve accurate control of gas density inside the micrometer interaction channel. This device gives a considerable increase in harmonics' generation efficiency if compared with traditional harmonic generation in gas jets. We propose different chip geometries that allow the control of the gas density and driving field intensity inside the interaction channel to achieve quasi phase-matching conditions in the harmonic generation process. We believe that these glass micro-devices will pave the way to future downscaling of high-order harmonic generation beamlines.

15.
ACS Appl Mater Interfaces ; 12(1): 1465-1473, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816228

RESUMO

On-chip optical modulator for high-speed information processing system has been widely investigated by many researchers, but the connection with the fiber system is difficult. The fiber-based optical modulator is a good solution to this problem. Fiber Bragg Grating has good potential to be used as an optical modulator because of its linear temperature response, narrow bandwidth, and compact structure. In this paper, a new fiber-integrated all-optical modulator has been realized based on a polymer nanofiber Bragg grating printed by a femtosecond laser. This device exhibits a fast temporal response of 176 ns and a good linear modulation of -45.43 pm/mW. Moreover, its stability has also been studied. This work first employs Bragg resonance to realize a fiber-integrated all-optical modulator and paves the way toward realization of multifunctional lab-in-fiber devices.

16.
Micromachines (Basel) ; 11(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291290

RESUMO

Micromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple wet processing steps and isotropic etching profiles, making them unsuitable to fabricate complex, multi-depth features. Here, we report a simpler approach, femtosecond laser material processing (FLMP), to fabricate a 3D reservoir micromodel featuring 4 different depths-35, 70, 140, and 280 µm, over a large surface area (20 mm × 15 mm) in a borosilicate glass substrate. The dependence of etch depth on major processing parameters of FLMP, i.e., average laser fluence (LFav), and computer numerically controlled (CNC) processing speed (PSCNC), was studied. A linear etch depth dependence on LFav was determined while a three-phase exponential decay dependence was obtained for PSCNC. The accuracy of the method was investigated by using the etch depth dependence on PSCNC relation as a model to predict input parameters required to machine the micromodel. This study shows the capability and robustness of FLMP to machine 3D multi-depth features that will be essential for the development, control, and fabrication of complex microfluidic geometries.

17.
Micromachines (Basel) ; 10(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146389

RESUMO

We have studied femtosecond ablation of soda-lime glass sample under thin water film, under KOH and NaCl aqueous solutions films and their influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the groove ablation using the infrared (IR) femtosecond laser. KOH aqueous solution film above the glass sample improved the ablation efficiency and led to the formation of the grooves with a higher aspect ratio when multi-scan glass cutting conditions were applied.

18.
Micromachines (Basel) ; 10(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683606

RESUMO

We present a new type of fiber Mach-Zehnder interferometer based on a fiber taper and a pair of inner air bubbles for highly sensitive ethanol concentration measurement. The experimental results show there is a nonlinear relationship between the wavelength shift of the dip located near 1485 nm and the ethanol concentration but in the concentration range from 0.3 to 0.7 it can be seen as a linear response with a sensitivity of 28 nm/vol.

19.
Micromachines (Basel) ; 9(8)2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30424321

RESUMO

Microinjection moulding combined with the use of removable inserts is one of the most promising manufacturing processes for microfluidic devices, such as lab-on-chip, that have the potential to revolutionize the healthcare and diagnosis systems. In this work, we have designed, fabricated and tested a compact and disposable plastic optical stretcher. To produce the mould inserts, two micro manufacturing technologies have been used. Micro electro discharge machining (µEDM) was used to reproduce the inverse of the capillary tube connection characterized by elevated aspect ratio. The high accuracy of femtosecond laser micromachining (FLM) was exploited to manufacture the insert with perfectly aligned microfluidic channels and fibre slots, facilitating the final composition of the optical manipulation device. The optical stretcher operation was tested using microbeads and red blood cells solutions. The prototype presented in this work demonstrates the feasibility of this approach, which should guarantee real mass production of ready-to-use lab-on-chip devices.

20.
Micromachines (Basel) ; 8(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30400518

RESUMO

We have introduced a new hybrid fabrication method for lab-on-a-chip devices through the combination of femtosecond laser micromachining and removable insert micro-injection molding. This method is particularly suited for the fast prototyping of new devices, while maintaining a competitive low cost. To demonstrate the effectiveness of our approach, we designed, fabricated, and tested a completely integrated flow cytometer coupled to a portable media device. The system operation was tested with fluorescent plastic micro-bead solutions ranging from 100 beads/µL to 500 beads/µL. We demonstrated that this hybrid lab-on-a-chip fabrication technology is suitable for producing low-cost and portable biological microsystems and for effectively bridging the gap between new device concepts and their mass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA