Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 37, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191282

RESUMO

BACKGROUND: Predicting the adaptability of forest tree populations under future climates requires a better knowledge of both the adaptive significance and evolvability of measurable key traits. Phenotypic plasticity, standing genetic variation and degree of phenotypic integration shape the actual and future population genetic structure, but empirical estimations in forest tree species are still extremely scarce. We analysed 11 maritime pine populations covering the distribution range of the species (119 families and 8 trees/family, ca. 1300 trees) in a common garden experiment planted at two sites with contrasting productivity. We used plant height as a surrogate of fitness and measured five traits (mean and plasticity of carbon isotope discrimination, specific leaf area, needle biomass, Phenology growth index) related to four different strategies (acquisitive economics, photosynthetic organ size, growth allocation and avoidance of water stress). RESULTS: Estimated values of additive genetic variation would allow adaptation of the populations to future environmental conditions. Overall phenotypic integration and selection gradients were higher at the high productivity site, while phenotypic integration within populations was higher at the low productivity site. Response to selection was related mainly to photosynthetic organ size and drought-avoidance mechanisms rather than to water use efficiency. Phenotypic plasticity of water use efficiency could be maladaptive, resulting from selection for height growth. CONCLUSIONS: Contrary to the expectations in a drought tolerant species, our study suggests that variation in traits related to photosynthetic organ size and acquisitive investment of resources drive phenotypic selection across and within maritime pine populations. Both genetic variation and evolvability of key adaptive traits were considerably high, including plasticity of water use efficiency. These characteristics would enable a relatively fast micro-evolution of populations in response to the ongoing climate changes. Moreover, differentiation among populations in the studied traits would increase under the expected more productive future Atlantic conditions.


Assuntos
Adaptação Fisiológica , Árvores , Humanos , Árvores/genética , Biomassa , Isótopos de Carbono , Mudança Climática
2.
J Evol Biol ; 37(5): 501-509, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38513113

RESUMO

The cost of reproduction is well studied in females but only recently have the costs of mating been investigated in males. Research suggests that males allocate resources between subsequent mating events, resulting in differential success across mating bouts. Selection should favor allocation strategies that match the likelihood of successive matings. The complexity of the system, however, suggests that one fixed strategy is unlikely to be universally favored and thus I predict that genetic variation for different allocation strategies will be segregating in natural populations. To test this, I measured several components of reproductive performance in eight inbred genotypes of Drosophila melanogaster across three sequential mating events. As predicted, there was genetic variation for how previous experience affected a male's reproductive performance for both the proportion of matings that produced offspring and the proportion of offspring sired (P1). Some genotypes had the highest success in their first matings and declined in successive matings while other genotypes did best in later matings. Mating experience had consistent effects across genotypes on fertility and induced refractoriness to remating. On average, virgin matings produced the highest fertility and third matings most effectively induced refractoriness. Genotype also had a significant effect on fertility. These results have important implications for understanding how selection may be acting on males when there is variation in the likelihood of multiple mating events and could affect the evolution of male allocation strategies in the face of perceived competitors.


Assuntos
Drosophila melanogaster , Variação Genética , Genótipo , Reprodução , Comportamento Sexual Animal , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Reprodução/genética , Fertilidade/genética
3.
Am J Bot ; 110(3): 1-12, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706269

RESUMO

PREMISE: In fleshy-fruited plants, fruit removal is widely used as a proxy for plant reproductive success. Nevertheless, this proxy may not accurately reflect the number of seeds dispersed, an assumed better proxy for total fitness (fruit removal × mean number of seeds dispersed per fruit). METHODS: We examined under what circumstances fruit removal can be reliable as a proxy for total fitness when assessing bird-mediated selection on fruit traits. In three populations of the Blue Passionflower (Passiflora caerulea), we used the number of fruits pecked per plant as a surrogate for fruit removal to estimate phenotypic selection on fruit and seed traits, and simulations of the effect of the fruit-seed number trade-off on the number of fruits removed. RESULTS: Fruit removal was a good indicator of fitness, accounting for 55 to 68% of the variability in total fitness, measured as total number of seeds removed. Moreover, multivariate selection analyses on fruit crop size, mean fruit diameter and mean seed number using fruit removal as a fitness proxy yielded similar selection regimes to those using total fitness. Simulations showed that producing more fruits, a lower number of seeds per fruit, and a higher variability in seed number can result in a negative relationship between fruit removal and total fitness. CONCLUSIONS: Our results suggest that fruit removal can be reliably used as a proxy for total fitness when (1) there is a weak fruit number-seed number trade-off, (2) fruit crop size and fruit removal correlate positively, and (3) seed number variability does not largely exceed fruit number variability.


Assuntos
Frutas , Dispersão de Sementes , Animais , Sementes , Aves
4.
Mol Ecol ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374153

RESUMO

Conspecific populations living in adjacent but contrasting microenvironments represent excellent systems for studying natural selection. These systems are valuable because gene flow is expected to force genetic homogeneity except at loci experiencing divergent selection. A history of reciprocal transplant and common garden studies in such systems, and a growing number of genomic studies, have contributed to understanding how selection operates in natural populations. While selection can vary across different fitness components and life stages, few studies have investigated how this ultimately affects allele frequencies and the maintenance of divergence between populations. Here, we study two sunflower ecotypes in distinct, adjacent habitats by combining demographic models with genome-wide sequence data to estimate fitness and allele frequency change at multiple life stages. This framework allows us to estimate that only local ecotypes are likely to experience positive population growth (λ > 1) and that the maintenance of divergent adaptation appears to be mediated via habitat- and life stage-specific selection. We identify genetic variation, significantly driven by loci in chromosomal inversions, associated with different life history strategies in neighbouring ecotypes that optimize different fitness components and may contribute to the maintenance of distinct ecotypes.

5.
Biol Lett ; 18(11): 20220323, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321430

RESUMO

Determining the effects of parasites on host reproduction is key to understanding how parasites affect the underpinnings of selection on hosts. Although infection is expected to be costly, reducing mean fitness, infection could also increase variation in fitness costs among hosts, both of which determine the potential for selection on hosts. To test these ideas, we used a phylogenetically informed meta-analysis of 118 studies to examine how changes in the mean and variance in the outcome of reproduction differed between parasitized and non-parasitized hosts. We found that parasites had severe negative effects on mean fitness, with parasitized hosts suffering reductions in fecundity, viability and mating success. Parasite infection also increased variance in reproduction, particularly fecundity and offspring viability. Surprisingly, parasites had similar effects on viability when either the male or female was parasitized. These results not only provide the first synthetic, comparative, and quantitative summary of the strong deleterious effects of parasites on host reproductive fitness, but also reveal a consistent role for parasites in shaping the opportunity for selection.


Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Feminino , Masculino , Reprodução , Simbiose , Aptidão Genética
6.
Proc Biol Sci ; 288(1948): 20203134, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849323

RESUMO

Investment in current reproduction can reduce future fitness by depleting resources needed for maintenance, particularly under environmental stress. These trade-offs influence life-history evolution. We tested whether climate change alters the future-fitness costs of current reproduction in a large-scale field experiment of Boechera stricta (Brassicaceae). Over 6 years, we simulated climate change along an elevational gradient in the Rocky Mountains through snow removal, which accelerates snowmelt and reduces soil water availability. Costs of reproduction were greatest in arid, lower elevations, where high initial reproductive effort depressed future fitness. At mid-elevations, initial reproduction augmented subsequent fitness in benign conditions, but pronounced costs emerged under snow removal. At high elevation, snow removal dampened costs of reproduction by prolonging the growing season. In most scenarios, failed reproduction in response to resource limitation depressed lifetime fecundity. Indeed, fruit abortion only benefited high-fitness individuals under benign conditions. We propose that climate change could shift life-history trade-offs in an environment-dependent fashion, possibly favouring early reproduction and short lifespans in stressful conditions.


Assuntos
Brassicaceae , Mudança Climática , Humanos , Reprodução , Estações do Ano , Neve
7.
Mol Ecol ; 30(12): 2846-2858, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33938082

RESUMO

Resources allocated to survival cannot be used to increase fecundity, but the extent to which this trade-off constrains adaptation depends on overall resource status. Adaptation to local environmental conditions may therefore entail the evolution of traits that increase the amount of resources available to individuals (their resource status or 'condition'). We examined the relative contribution of trade-offs and increased condition to adaptive evolution in a recombinant inbred line population of Arabidopsis thaliana planted at the native sites of the parental ecotypes in Italy and Sweden in 2 years. We estimated genetic correlations among fitness components based on genotypic means and explored their causes with QTL mapping. The local ecotype produced more seeds per fruit than did the non-local ecotype, reflected in stronger adaptive differentiation than was previously shown based on survival and fruit number only. Genetic correlations between survival and overall fecundity, and between number of fruits and number of seeds per fruit, were positive, and there was little evidence of a trade-off between seed size and number. Quantitative trait loci for these traits tended to map to the same regions of the genome and showed positive pleiotropic effects. The results indicate that adaptive differentiation between the two focal populations largely reflects the evolution of increased ability to acquire resources in the local environment, rather than shifts in the relative allocation to different life-history traits. Differentiation both in phenology and in tolerance to cold is likely to contribute to the advantage of the local genotype at the two sites.


Assuntos
Arabidopsis , Adaptação Fisiológica/genética , Arabidopsis/genética , Aptidão Genética , Humanos , Itália , Locos de Características Quantitativas , Suécia
8.
Am J Bot ; 107(11): 1518-1526, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33058187

RESUMO

PREMISE: Timing of germination can strongly influence plant fitness by affecting seedling survival and by having cascading effects on later life-history traits. In seasonal environments, the period favorable for seedling establishment and growth is limited, and timing of germination is likely to be under stabilizing selection because of conflicting selection through survival and fecundity. Moreover, optimal germination time may vary among genotypes because of inherent differences in later life-history traits. METHODS: To examine how germination time affects survival, fecundity, and the relative fitness of two genotypes differing in time to first flower, we conducted a field experiment in an Italian population of the winter annual Arabidopsis thaliana, in which seedling establishment occurs mainly in November. We transplanted seedlings of the local genotype and of a Swedish genotype monthly from August to December and monitored survival and fecundity. RESULTS: Only seedlings transplanted in November and December survived until reproduction, and fitness of the November cohort was 35 times higher than that of the December cohort, indicating strong stabilizing selection on timing of germination. There was no evidence of conflicting selection: seedling survival, adult survival, and fecundity were all highest in the November cohort. Moreover, the relative fitness of the two genotypes did not differ significantly between cohorts. CONCLUSIONS: The very narrow window of opportunity for seedling establishment was related to rapid seasonal changes in soil moisture and temperature, suggesting that rate of seasonal change is an important aspect to consider for understanding spatiotemporal variation in selection on phenological traits.


Assuntos
Arabidopsis , Germinação , Arabidopsis/genética , Genótipo , Plântula/genética , Sementes , Suécia
9.
Proc Biol Sci ; 285(1876)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643216

RESUMO

Batch cultures are frequently used in experimental evolution to study the dynamics of adaptation. Although they are generally considered to simply drive a growth rate increase, other fitness components can also be selected for. Indeed, recurrent batches form a seasonal environment where different phases repeat periodically and different traits can be under selection in the different seasons. Moreover, the system being closed, organisms may have a strong impact on the environment. Thus, the study of adaptation should take into account the environment and eco-evolutionary feedbacks. Using data from an experimental evolution on yeast Saccharomyces cerevisiae, we developed a mathematical model to understand which traits are under selection, and what is the impact of the environment for selection in a batch culture. We showed that two kinds of traits are under selection in seasonal environments: life-history traits, related to growth and mortality, but also transition traits, related to the ability to react to environmental changes. The impact of environmental conditions can be summarized by the length of the different seasons which weight selection on each trait: the longer a season is, the higher the selection on associated traits. Since phenotypes drive season length, eco-evolutionary feedbacks emerge. Our results show how evolution in successive batches can affect season lengths and strength of selection on different traits.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Técnicas de Cultura Celular por Lotes , Etanol/metabolismo , Etanol/toxicidade , Modelos Teóricos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estações do Ano , Seleção Genética
10.
New Phytol ; 215(2): 813-824, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28542815

RESUMO

Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations.


Assuntos
Gentianaceae/fisiologia , Polinização , Seleção Genética , Flores/fisiologia , Pennsylvania , Fenótipo , Pólen
11.
BMC Bioinformatics ; 17: 249, 2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27334112

RESUMO

BACKGROUND: Phenomics is a field in functional genomics that records variation in organismal phenotypes in the genetic, epigenetic or environmental context at a massive scale. For microbes, the key phenotype is the growth in population size because it contains information that is directly linked to fitness. Due to technical innovations and extensive automation our capacity to record complex and dynamic microbial growth data is rapidly outpacing our capacity to dissect and visualize this data and extract the fitness components it contains, hampering progress in all fields of microbiology. RESULTS: To automate visualization, analysis and exploration of complex and highly resolved microbial growth data as well as standardized extraction of the fitness components it contains, we developed the software PRECOG (PREsentation and Characterization Of Growth-data). PRECOG allows the user to quality control, interact with and evaluate microbial growth data with ease, speed and accuracy, also in cases of non-standard growth dynamics. Quality indices filter high- from low-quality growth experiments, reducing false positives. The pre-processing filters in PRECOG are computationally inexpensive and yet functionally comparable to more complex neural network procedures. We provide examples where data calibration, project design and feature extraction methodologies have a clear impact on the estimated growth traits, emphasising the need for proper standardization in data analysis. CONCLUSIONS: PRECOG is a tool that streamlines growth data pre-processing, phenotypic trait extraction, visualization, distribution and the creation of vast and informative phenomics databases.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Software , Leveduras/crescimento & desenvolvimento , Leveduras/genética , Bactérias/classificação , Bases de Dados Genéticas , Fenótipo , Leveduras/classificação
12.
J Evol Biol ; 29(12): 2545-2555, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27575521

RESUMO

In nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. Although both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations of Escherichia coli under complex (i.e. stressful combinations of pH, H2 O2 and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2 O2 and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, whereas the populations selected under constant stresses experienced trade-offs in the environments other than those in which they were selected, the fluctuation-selected populations could bypass the across-environment trade-offs almost entirely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Escherichia coli , Evolução Biológica , Cloreto de Sódio
13.
J Sports Sci ; 34(1): 35-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25854535

RESUMO

This study aims to evaluate the effectiveness of two school-based physical education (PE) programmes (exercise-based and games-based) compared with traditional PE, on health- and skill-related physical fitness components in children in Tirana, Albania. Participants were 378 first-grade (6.8 years) and 389 fourth-grade (9.8 years) children attending four randomly selected schools in Tirana. Twenty-four school classes within these schools were randomly selected (stratified by school and school grade) to participate as exercise group (EG), games group (GG) and control group (CG). Both EG and GG intervention programmes were taught by professional PE teachers using station/circuit teaching framework while CG referred to traditional PE school lessons by a general teacher. All programmes ran in parallel and lasted 5 months, having the same frequency (twice weekly) and duration (45 min). Heart rate (HR) monitoring showed that intensity during PE lessons was significantly higher in the intervention groups compared with control (P < 0.001). Both PE exercise- and games programmes significantly improved several health- and skill-related fitness indicators compared with traditional PE lessons (e.g. gross motor skill summary score: 9.4 (95% CI 7.9; 10.9) for exercise vs. control and 6.5 (95% CI 5.1; 8.1) for games vs. control, cardiorespiratory fitness: 2.0 ml O2 · min(-1) · kg(-1) (95% CI 1.5; 2.4) for exercise vs. control and 1.4 ml O2 · min(-1) · kg(-1) (95% CI 1.0; 1.8) for games vs. control). Furthermore, compared to games-based PE, exercise-based PE showed more positive changes in some gross motor coordination skills outcomes, coordination skills outcomes and cardiorespiratory fitness. The results from this study show that exercise- and games-based PE represents a useful strategy for improving health- and skill-related physical fitness in Albanian elementary school children. In addition, the study shows that exercise-based PE was more effective than games-based PE in improving gross motor function and cardiorespiratory fitness.


Assuntos
Nível de Saúde , Educação Física e Treinamento/métodos , Aptidão Física/fisiologia , Albânia , Fenômenos Fisiológicos Cardiovasculares , Criança , Exercício Físico , Teste de Esforço , Feminino , Jogos Recreativos , Frequência Cardíaca , Humanos , Masculino , Destreza Motora , Fenômenos Fisiológicos Respiratórios
14.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001870

RESUMO

In organisms with the XY sex-determination system, there is an imbalance in the inheritance and transmission of the X chromosome between males and females. Unlike an autosomal allele, an X-linked recessive allele in a female will have phenotypic effects on its male counterpart. Thus, genes located on the X chromosome are of particular interest to researchers in molecular evolution and genetics. Here we present a model for selection with two alleles of X-linkage to understand fitness components associated with genes on the X chromosome. We apply this model to the fitness analysis of an X-linked gene, OdsH (16D), in the fruit fly Drosophila melanogaster. The function of OdsH is involved in sperm production and the gene is rapidly evolving under positive selection. Using site-directed gene targeting, we generated functional and defective OdsH variants tagged with the eye-color marker gene white. We compare the allele frequency changes of the two OdsH variants, each directly competing against a wild-type OdsH allele in concurrent but separate experimental populations. After 20 generations, the two genetically modified OdsH variants displayed a 40% difference in allele frequencies, with the functional OdsH variant demonstrating an advantage over the defective variant. Using maximum likelihood estimation, we determined the fitness components associated with the OdsH alleles in males and females. Our analysis revealed functional aspects of the fitness determinants associated with OdsH, and that sex-specific fertility and viability consequences both contribute to selection on an X-linked gene.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de Homeodomínio , Animais , Feminino , Masculino , Alelos , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Frequência do Gene , Genes Ligados ao Cromossomo X , Aptidão Genética , Ligação Genética , Modelos Genéticos , Seleção Genética , Cromossomo X/genética , Proteínas de Homeodomínio/genética
15.
Front Physiol ; 13: 939042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213248

RESUMO

Objective: This review study aimed to assess the impact of neuromuscular training (NT) on athletes' physical fitness in sports. Methods: Three independent reviewers conducted a literature search in various databases: EBSCOHOST, PubMed, WOS, Mendeley, Scopus, ProQuest, Science Direct, additional references, and Google Scholar. The methodological quality was examined using Lubans' predetermined methods, and data that included trials were excluded. Results: This review included 18 well-conducted systematic studies from 144 relevant publications. These studies were reviewed and have been given a score of 6. Medium-risk studies were scored 3 or 4, while low-risk studies were scored 5 or 6. None of the studies had a high-risk bias. The NT intervention revealed that balance (n = 10) was the main characteristic of physical fitness that was evaluated, followed by agility (n = 6), muscular strength (n = 4), speed (n = 5), endurance and muscular power (n = 2). Subsequently, most studies used an intervention such as plyometric and strength training exercises to improve agility, balance, and muscular strength among athletes. Conclusion: This review implicated that (NT) focuses on exercises that enhance motor skills which aid athletes in moving their bodies according to their situational needs. The athletes' slower and faster directions influence their agility, muscular strength, and balance, essential for player performance. It is recommended for future research to investigate the effects of neuromuscular training (length of 12-weeks, frequency of 3 days per week and 90-min duration) on physical fitness components (coordination, reaction-time, flexibility, cardiovascular fitness, cardiorespiratory fitness and body composition) that are essential for all ages of male and female athletes in all sports.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35206215

RESUMO

The aim of the study was to determine the effects of proprioceptive training (PT) on balance, strength, agility and dribbling in adolescent soccer players. In this research, we included an experimental (n = 48) and a control (n = 48) group (CG) with 14 years old players. The experimental group (EG) participated in an 8 week PT program, with four 30 min sessions per week. The experimental program included 12 bosu ball exercises to improve balance, stability and strength which were grouped into two subprograms: the first not using the soccer ball, the second subprogram using the soccer ball. The subprograms were implemented alternately during 16 proprioceptive training sessions, on two types of firm and foam surfaces. Pre- and post-tests included the static balance [Balance Error Scoring System (BESS)], vertical, horizontal, and lateral jumping, and the completion of agility ("arrowhead") and dribbling ("short dribbling") tests. Regarding the total BESS score, the CG has demonstrated progress between the pre- and the post-test, with 0.780 ± 0.895, fewer errors, while the EG had 5.828 ± 1.017 fewer errors. The difference between the two groups was of 5.148 fewer errors for the EG who had practiced the proposed program of proprioceptive training. The highest difference registered between the pre- and the post-test was at the test "single-leg forward jump with the right leg", with a result of 1.083 ± 0.459 cm for the CG and of 3.916 ± 0. 761 cm for the EG. Through the analysis of average differences between the pre- and the post-tests, we observe that, regarding the "Agility right side test", the EG has progressed with 0.382 s in comparison with the CG; regarding the "Agility left side test", the EG has progressed with 0.233 s compared to the CG; regarding the "Agility right and left side test", the EG has progressed with 0.196 s compared to the CG; in the "Short dribbling test", the EG has progressed with 0.174 s compared to the CG. The highest progress was made at the "Agility right side test", of 0.402 s for the EG, while the CG registered 0.120 s. Most of the results in all tests for both experimental groups show an effect size ranging from small to medium. The progress made by the experimental group in all tests was statistically significant, while in the control group the progress was mostly statistically insignificant for p < 0.05. The results suggest that a PT program performed at about 14 years of age could be successfully implemented in the training regime of soccer players to improve components of fitness along with dribbling skills. The results of the study revealed that sports training on the foam surfaces determined a superior progress of the development of proprioception compared to the increased training on the firm surfaces.


Assuntos
Desempenho Atlético , Futebol , Incontinência Urinária , Adolescente , Exercício Físico , Teste de Esforço , Humanos , Masculino
17.
AoB Plants ; 14(3): plac011, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35669442

RESUMO

The colonization success of a species depends on the interplay between its phenotypic plasticity, adaptive potential and demographic history. Assessing their relative contributions during the different phases of a species range expansion is challenging, and requires large-scale experiments. Here, we investigated the relative contributions of plasticity, performance and demographic history to the worldwide expansion of the shepherd's purse, Capsella bursa-pastoris. We installed two large common gardens of the shepherd's purse, a young, self-fertilizing, allopolyploid weed with a worldwide distribution. One common garden was located in Europe, the other in Asia. We used accessions from three distinct genetic clusters (Middle East, Europe and Asia) that reflect the demographic history of the species. Several life-history traits were measured. To explain the phenotypic variation between and within genetic clusters, we analysed the effects of (i) the genetic clusters, (ii) the phenotypic plasticity and its association to fitness and (iii) the distance in terms of bioclimatic variables between the sampling site of an accession and the common garden, i.e. the environmental distance. Our experiment showed that (i) the performance of C. bursa-pastoris is closely related to its high phenotypic plasticity; (ii) within a common garden, genetic cluster was a main determinant of phenotypic differences; and (iii) at the scale of the experiment, the effect of environmental distance to the common garden could not be distinguished from that of genetic clusters. Phenotypic plasticity and demographic history both play important role at different stages of range expansion. The success of the worldwide expansion of C. bursa-pastoris was undoubtedly influenced by its strong phenotypic plasticity.

18.
Ecol Evol ; 11(12): 7685-7699, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188844

RESUMO

Host immune defenses are important components of host-parasite interactions that affect the outcome of infection and may have fitness consequences for hosts when increased allocation of resources to immune responses undermines other essential life processes. Research on host-parasite interactions in large free-ranging wild mammals is currently hampered by a lack of verified noninvasive assays. We successfully adapted existing assays to measure innate and adaptive immune responses produced by the gastrointestinal mucosa in spotted hyena (Crocuta crocuta) feces, including enzyme-linked immunosorbent assays (ELISAs), to quantify fecal immunoglobulins (total IgA, total IgG) and total fecal O-linked oligosaccharides (mucin). We investigated the effect of infection load by an energetically costly hookworm (Ancylostoma), parasite richness, host age, sex, year of sampling, and clan membership on immune responses and asked whether high investment in immune responses during early life affects longevity in individually known spotted hyenas in the Serengeti National Park, Tanzania. Fecal concentrations of IgA, IgG, and mucin increased with Ancylostoma egg load and were higher in juveniles than in adults. Females had higher mucin concentrations than males. Juvenile females had higher IgG concentrations than juvenile males, whereas adult females had lower IgG concentrations than adult males. High IgA concentrations during the first year of life were linked to reduced longevity after controlling for age at sampling and Ancylostoma egg load. Our study demonstrates that the use of noninvasive methods can increase knowledge on the complex relationship between gastrointestinal parasites and host local immune responses in wild large mammals and reveal fitness-relevant effects of these responses.

19.
Genetics ; 214(1): 3-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907300

RESUMO

Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.


Assuntos
Drosophila melanogaster/genética , Aptidão Genética , Animais , Evolução Biológica , Drosophila melanogaster/fisiologia , Ecologia , Fertilidade/genética , Estágios do Ciclo de Vida/genética , Longevidade , Seleção Genética
20.
Evolution ; 73(8): 1634-1646, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31127854

RESUMO

The cost of males should give asexual females an advantage when in competition with sexual females. In addition, high-fecundity asexual genotypes should have an advantage over low-fecundity clones, leading to reduction in clonal diversity over time. To evaluate fitness components in a natural population, we measured the annual reproductive rate of individual sexual and asexual female Potamopyrgus antipodarum, a New Zealand freshwater snail, in field enclosures that excluded competitors and predators. We used allozyme genotyping to assign the asexual females to particular clonal genotypes. We found that the most fecund asexual clones had similar or higher fecundity as the top 10% of sexual families, suggesting that fecundity selection, even without the cost of males, would lead to replacement of the sexual population by clones. Consequently, we expected that the clones with the highest fecundity would dominate the natural population. Counter to this prediction, we found that high annual reproductive rates did not correlate with the frequency of clones in the natural population. When we exposed the same clones to parasites in the laboratory, we found that resistance to infection was positively correlated with the frequency of clones in the population. The correlation between fecundity and parasite resistance was negative, suggesting a trade-off between these two traits. Our results thus suggest that parasite resistance is an important short-term predictor of the success of asexual P. antipodarum in this population.


Assuntos
Aptidão Genética , Interações Hospedeiro-Parasita , Caramujos/fisiologia , Caramujos/parasitologia , Trematódeos/fisiologia , Animais , Feminino , Fertilidade , Masculino , Nova Zelândia , Caramujos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA