Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Prosthodont ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213171

RESUMO

PURPOSE: The mechanical and fatigue properties of zirconia specimens printed by vat photopolymerization (VPP) were evaluated and compared with those of zirconia specimens milled by computer numerical control (CNC). MATERIALS AND METHODS: Bar-shaped specimens were printed by stereolithography (SL) and digital light processing (DLP). CNC-milled specimens were used as control samples. The fracture toughness, hardness, and flexural strength properties of the zirconia specimens were evaluated via single edge V-notch beam tests, Vickers hardness tests, and 3-point bending tests. Dynamic fatigue tests were carried out in distilled water using a step-stress test. After static bending and dynamic step-stress testing, fractography analysis was performed. Statistical analysis was carried out to compare the fracture toughness, hardness, flexural strength, and fatigue cycle results of each group (α = 0.05). RESULTS: The fracture toughness values did not significantly differ among the groups (p > 0.05). The flexural strength was 894.10 MPa for SL, 831.46 MPa for DLP, and 1140.39 MPa for CNC. The flexural strength of CNC was greater than that of SL and DLP (p < 0.01). The mean fatigue cycles were 23498.07 for SL, 19858.60 for DLP, and 31566.80 for CNC. The mean fatigue failure strength was 643.13 MPa for SL, 530.63 MPa for DLP, and 903.75 MPa for CNC. The fatigue failure strength of CNC was greater than that of SL and DLP (p < 0.05). Fractography analysis revealed material defects at the fracture origin for each group. A partially fused structure of the incompletely debonded resin could be observed in SL, and a porous region of incompletely sintered zirconia grains could be observed in CNC. CONCLUSIONS: The fracture toughness and hardness of zirconia printed by VPP are comparable to those of zirconia milled by CNC. However, zirconia milled by CNC has superior static flexural strength and dynamic fatigue resistance. Further studies are needed to explore the clinical applications of VPP-printed zirconia.

2.
Clin Oral Investig ; 27(2): 787-796, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576566

RESUMO

OBJECTIVES: Photo- and dual-polymerized resin-based luting agent was evaluated for elastic moduli effects on ultra-thin lithium disilicate (LD) glass-ceramic strengthening, structural reliability, and stress distribution. MATERIALS AND METHODS: One hundred-sixty LD discs (IPS e.max CAD, Ivoclar/Vivadent) were produced in ultra-thin thicknesses (half with 0.3 mm and the other half with 0.5 mm). The ultra-thin ceramic disks were coated with two different cement types (Variolink Veneer - V and Panavia F 2.0 - P). Two positive control groups were tested following hydrofluoric (HF) acid etching (LDt3, LDt5) and two negative control groups were tested for untreated ceramic (LD 3, LD 5). Biaxial flexural strength (BFS), characteristic strength (σ0) and Weibull modulus (m) were the response variables (n = 20) at the ceramic/resin cement interface (z = 0). Finite element analysis (FEA) was used to calculate maximum principal stress. Data were analyzed using two-way ANOVA, and Tukey's test. Scanning electron microscopy (SEM) was used to analyze the failed specimens using fractography and surface morphology. RESULTS: The BFS of LD at either thickness was not affected by cement types, as also demonstrated by FEA. Structural reliability significantly improved in the positive control group (LDt5). CONCLUSION: The cementation of ultra-thin LD with a resin-cement of varying elastic moduli did not influence BFS. LD surface modification by HF acid-etching increased the reliability. CLINICAL RELEVANCE: Ultra-thin anterior veneer designs made from lithium disilicate have been widely proposed and the apparent success of LD ultra-thin veneers was not influenced by the cement choice in the current studies albeit the elastic moduli luting agents used were of similar values.


Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Resistência à Flexão , Módulo de Elasticidade , Reprodutibilidade dos Testes , Teste de Materiais , Propriedades de Superfície , Porcelana Dentária/química , Cerâmica/química , Cimentos Dentários , Ácido Fluorídrico/química
3.
J Prosthodont ; 32(5): 100-110, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36739572

RESUMO

PURPOSE: To perform qualitative analysis using scanning electron microscopy (SEM) of fracture surfaces for ceramic and polymeric dental materials broken via standardized flexural and crunch-the-crown (CTC) tests. MATERIALS AND METHODS: Zirconia, glass-ceramic, and polymeric (Trilor; TRI, Juvora; JUV, Pekkton; PEK) materials were loaded using crowns for CTC tests, discs (zirconia and glass-ceramics) for piston-on-3 ball tests, bars (polymer) for 3-point bend tests, and bars (zirconia, glass-ceramics) for 4-point bend tests. SEM was used to characterize the fracture surfaces and identify fracture surface features (e.g., origin, mist, hackle, and the direction of crack propagation [DCP]). Electron dispersive spectroscopy was used to identify the local chemistry. RESULTS: Fracture surface features were found to be less visually apparent for glass-ceramics than zirconia. For zirconia bars, fractures originated roughly midway between the corner and center for processing defects related to sintering. Fractures originated at the bottom corners of glass-ceramic bars (void or surface flaw) and PEK bars (surface flaw). TRI bar failures exposed glassy fibers. Fracture features were generally less discernable for discs compared to bars for zirconia and glass-ceramics. Ceramic crowns fractured into 2 to 3 pieces, with fractures originating at the occlusal surface and clear evidence for the DCP. Failures of TRI and JUV specimens (bars and crowns) were less catastrophic than for the ceramics, with exposed fibers (TRI) and surface cracks (JUV). PEK crown and bar fractures presented dimple (ductile) features formed due to microvoid coalescence followed by brittle crack propagation. CONCLUSIONS: The critical flaws responsible for failure initiation were a function of material composition and test configuration. Fractographic analysis can reveal problems associated with the manufacturing of materials, their handling, grinding and finishing/polishing procedures, the structural design and choice of material, and the quality of the final laboratory-delivered restoration.


Assuntos
Porcelana Dentária , Resistência à Flexão , Porcelana Dentária/química , Microscopia Eletrônica de Varredura , Teste de Materiais , Cerâmica/química , Coroas , Zircônio/química , Propriedades de Superfície , Falha de Restauração Dentária , Análise do Estresse Dentário
4.
J Eur Ceram Soc ; 42(5): 2441-2448, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36090520

RESUMO

Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, evidence of contact fatigue damage in ceramics raises considerable concern regarding its effect on the survival probability predicted for dental prostheses. To simulate intraoral conditions, Hertzian indentation loading with steel indenters was applied in this study to characterize the fatigue failure mechanisms of ceramic materials. Baria silicate glasses and glass-ceramics with different aspect ratios of crystals were selected because the glass and crystal phases have similar density, elastic modulus, and thermal expansion coefficients. Therefore, this system is a model ceramic for studying the effect of crystal geometry on contact cyclic fatigue failure. The subsequent flexural strength results show that the failure of materials with a low fracture toughness such as baria-silicate glass (0.7 MPa m1/2) and glass-ceramic with an aspect ratio of 3.6/1 (1.3 MPa m1/2) initiated from cone cracks developed during cyclic loading for 103 to 105 cycles. The mean strengths of baria-silicate glass and glass-ceramics with an aspect ratio of 3.6/1 decreased significantly as a result of the presence of a cone crack. Failures of baria-silicate glass-ceramics with an aspect ratio of 8.1/1 (Kc = 2.1 MPa m1/2) were initiated from surface flaws caused by either grinding or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8.1/1 after loading in air for 103 to 105 cycles. A reduction of approximately 50 % in fracture stress levels was found for specimens with an aspect ratio of 8.1/1 after loading for 105 cycles in deionized water. Thus, even though this glass-ceramic with an 8.1/1 crystal aspect ratio material is tougher than that with a 3.6/1 crystal aspect ratio, the fatigue damage induced by a large number of cycles is comparable. The mechanisms for cyclic fatigue crack propagation in baria-silicate glass-ceramics are similar to those observed under quasi-static loading conditions. An intergranular fracture path was observed in glass-ceramics with an aspect ratio of 3.6/1. For an aspect ratio of 8.1/1, a transgranular fracture mode was dominant.

5.
J Esthet Restor Dent ; 34(8): 1197-1205, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35560703

RESUMO

OBJECTIVE: This investigation evaluated the effect of two sintering modes of a translucent zirconia (Y-TZP) on its surface roughness, topography, phase-transformation (t → m), translucency and biaxial flexure fatigue strength. MATERIALS AND METHODS: To do so, 50 Y-TZP discs (Ø = 15 mm; thickness = 1.2 mm; IPS e.max ZirCAD LT) were prepared and divided into two groups: Standard mode (SM) and Fast mode (FM). Staircase fatigue testing was performed (piston-on-three balls set-up, ISO 6872:2015), as well as surface roughness, profilometry, scanning electron microscopy (SEM-FEG), energy dispersive X-ray spectroscopy (EDX), phase transformation (t → m) using X-ray diffraction analysis (XRD), translucency parameter analysis (TP and TP00 ) and fractography. RESULTS: The results showed no statistical significant differences for roughness parameters (p > 0.05, SM: Ra = 0.13 ± 0.02, Rz = 1.21 ± 0.26 and RSm = 24.91 ± 2.19; FM: Ra = 0.14 ± 0.03, Rz = 1.32 ± 0.25 and RSm = 24.68 ± 2.16) or flexural fatigue strength (SM: 512 (464-560) MPa; FM: 542 (472-611) MPa) between the groups. In addition, similarity in surface morphological features (SEM and profilometry), composition and phases (EDX and XRD) was observed between the firing protocols. Fractography showed that the failure origin occurred on the tensile side. Sintering mode did not affect the TP (F = 0.001, p = 0.97) and TP00 (F = 0.12, p = 0.72). CONCLUSIONS: Therefore, the fast-sintering mode is suggested as a viable alternative to the standard mode since it does not influence the evaluated surface morphology, microstructure, fatigue strength and translucency of a translucent monolithic zirconia. CLINICAL SIGNIFICANCE: The fast sintering mode is a viable alternative for zirconia without compromising its topography, microstructure, mechanical performance or translucency.


Assuntos
Cerâmica , Ítrio , Ítrio/química , Cerâmica/química , Teste de Materiais , Propriedades de Superfície , Zircônio/química , Materiais Dentários/química
6.
J Prosthodont ; 30(9): 776-782, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33320403

RESUMO

PURPOSE: To evaluate the effect of multiple firings on the optical and mechanical properties of two dental CAD/CAM glass-ceramics. MATERIALS AND METHODS: A total of 45 specimens of each lithium disilicate-LD (IPS E.max CAD, Ivoclar Vivadent) and zirconia lithium silicate-ZLS (Vita Suprinity, Vita Zahnfabrik) material were prepared in a disk shape. These specimens were divided into three groups according to two factors: "type of ceramic" (LD and ZLS) and "numbers of firings" (Control 2F-two firings, 5F-five firings and 7F-seven firings). The firing cycles were performed according to the manufacturer's recommendations. X-ray diffraction was additionally performed to determine crystalline phases in each group, spectrophotometry was used to determine color and translucency variation, and biaxial flexural strength (BFS) evaluated the mechanical behavior. The data were analyzed individually using two-way ANOVA tests and Tukey's test at α = 0.05. RESULTS: The crystalline phases did not present any change after multiple firings for either of the analyzed materials. Both commercial materials showed a significant difference regarding translucency at 7F (p = <0.01), and ZLS presented a difference in color higher than one (ΔE > 1) at 5F and 7F. Regardless of the number of firings, LD presented a higher BFS compared to ZLS (p = <0.001), and a significant increase in BFS comparing 2F and 7F (p = <0.024). CONCLUSION: The use of multiple firings can significantly alter the color, translucency, and mechanical strength of CAD/CAM ceramics.


Assuntos
Cerâmica , Silicatos , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície
7.
Sensors (Basel) ; 20(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781517

RESUMO

This article describes research that investigated the ability of a carbon nanotube (CNT) sensor to detect and monitor fatigue crack initiation and propagation in metal structures. The sensor consists of a nonwoven carrier fabric with a thin film of CNT that is bonded to the surface of a structure using an epoxy adhesive. The carrier fabric enables the sensor to be easily applied over large areas with complex geometries. Furthermore, the distributed nature of the sensor improves the probability of detecting crack initiation and enables monitoring of crack propagation over time. Piezoresistivity of the sensor enables strains to be monitored in real time and the sensor, which is designed to fragment as fatigue cracks propagate, directly measures crack growth through permanent changes in resistance. The following laboratory tests were conducted to evaluate the performance of the sensor: (1) continuous crack propagation monitoring, (2) potential false positive evaluation under near-threshold crack propagation conditions, and (3) crack re-initiation detection at a crack-stop hole, which is a commonly used technique to arrest fatigue cracks. Real-time sensor measurements and post-mortem fractography show that a distinguishable resistance change of the sensor occurs due to fatigue crack propagation that can be quantitatively related to crack length. The sensor does not show false positive responses when the crack does not propagate, which is a drawback of many other fatigue sensors. The sensor is also shown to be remarkably sensitive to detecting crack re-initiation.

8.
J Prosthodont ; 29(1): 34-41, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31702090

RESUMO

PURPOSE: To determine and compare the fracture toughness, flexural strength and flexural modulus of four new, commercially available CAD/CAM resin composite blocks and one new CAD/CAM lithium disilicate glass-ceramic block, tested under dry and aged conditions. MATERIALS AND METHODS: Three dispersed-fillers resin composite blocks, CERASMART, KZR-CAD-HR2, and CAMouflage NOW, one polymer-infiltrated ceramic network resin composite block, Enamic, along with Obsidian, a lithium disilicate glass-ceramic block, were characterized. Fracture toughness was determined through the notchless triangular prism specimen test, while flexural strength and flexural modulus were determined by three-point bend testing. Blocks were cut and ground to obtain (6 × 6 × 6 × 12) mm prisms and 10:1 span-to-thickness ratio bars (n = 25/group); half of the resin composite specimens were aged in 37°C distilled water for 30 days before testing. Fractured surfaces were characterized using a scanning electron microscope. Results were analyzed using Weibull statistics and two-way ANOVA, followed by Scheffé multiple means comparisons (α = 0.05). RESULTS: With regards to fracture toughness, KZR stood out among resin composites with a dry value of 1.37 MPa·m1/2 ; this was significantly affected by ageing, while the fracture toughness of the other dispersed-fillers resin composite blocks was not. Obsidian had the highest fracture toughness at 1.47 MPa·m1/2 . With regards to flexural strength, Obsidian > CERASMART = KZR > CAMouflage > Enamic. The flexural strength of the resin composites was lowered by ageing. Enamic was found to have the highest flexural modulus among the resin composites (33.02 GPa), but its value was significantly lower than that of Obsidian (76.46 GPa); flexural modulus was not affected by ageing. CONCLUSION: There was a significant difference in flexural strength between the materials, but not unanimously in flexural modulus and fracture toughness. The tested resin composite block materials had inferior flexural strength, flexural modulus and fracture toughness compared with the tested lithium disilicate glass-ceramic block (Obsidian). Enamic, the polymer infiltrated ceramic network material, had a significantly higher flexural modulus than the dispersed-fillers materials. Ageing had a deleterious impact on the flexural strength of all RCB, while its effect on the flexural modulus was insignificant. The selection of any restorative material requires a thorough analysis of its advantages and limitations to inform the clinical decision in a case-by-case approach.


Assuntos
Cerâmica , Resistência à Flexão , Resinas Compostas , Desenho Assistido por Computador , Materiais Dentários , Teste de Materiais , Propriedades de Superfície
9.
J Esthet Restor Dent ; 31(4): 299-303, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30912240

RESUMO

OBJECTIVE: This article presents a retrospective analysis of an anterior single crown that showed chipping of the veneering ceramic, the clinical stages of intraoral repair made in composite resin, and fractographic analysis of the causes of failure. CLINICAL CONSIDERATIONS: The ceramic chipping occurred in the incisal and labial surfaces of the crown, 1 year after installation. Clinical examination revealed the presence of occlusal interference, which was probably responsible for chipping. Vinyl-polysiloxane impression was made from the patient, and epoxy replica was produced. The replica was gold coated and inspected under the optical microscopy and scanning electron microscope (SEM) for descriptive fractography. Optical microscopy and SEM images showed that chipping initiated at the incisal edge, where it is possible to note an area of damage accumulation. At the labial surface, multiple arrest lines with their convex sides facing the incisal edge were observed. The fractured area was repaired intraorally with composite resin, and the patient's occlusion was checked and monitored. CONCLUSION: According to the fractographic analysis, occlusal interference was related to ceramic chipping in the incisal edge. Intraoral repair technique with composite resin was indicated for this moderate chipping. CLINICAL SIGNIFICANCE: Retrieval analysis of chipping ceramic delivers better understanding of the failure origin and could prevent future failures. Intraoral repair is a practical and conservative technique and may be performed in a single clinical session without requiring the removal of prosthesis.


Assuntos
Falha de Restauração Dentária , Facetas Dentárias , Cerâmica , Coroas , Porcelana Dentária , Humanos , Teste de Materiais , Estudos Retrospectivos , Propriedades de Superfície
10.
J Prosthodont ; 28(1): e243-e251, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28913890

RESUMO

PURPOSE: Resin composite blocks (RCB) are advocated as alternative to ceramic blocks (CB). Prior to use, adherence to these materials should characterized. This study aimed to test the null hypothesis (H0 ) that material and surface treatment combinations do not influence interfacial fracture toughness (KIC ) of a self-cured adhesive resin cement [RelyX Ultimate (RXU)] to RCB or CB, under nonaged and aged conditions. MATERIALS AND METHODS: Two RCB, Lava Ultimate (LU) and Enamic (EN), and one CB, IPS e.max Press (EMP) were used. Half-size [(6 × 6 × 6 × 6 mm)] specimens were prepared for EMP (n = 30), EN (n = 30), and LU (n = 60). RCB specimens were prepared by wet cutting/grinding, while CB specimens were pressed. Surfaces of EMP and EN were preconditioned with hydrofluoric acid (5%); surfaces of LU were sandblasted with either 27 µm alumina (LUS) or 30 µm silica-modified alumina Rocatec soft (LUR). All specimens were bonded with Scotchbond Universal adhesive and RXU. Additionally, twenty (4 × 4 × 4 × 8 mm) RXU specimens were prepared. All specimens were stored in water at 37°C and tested after 1 and 60 days. Interfacial KIC was determined with the notchless triangular prism specimen KIC test. Results were analyzed with two-way ANOVA and Scheffé multiple means comparisons (α = 0.05). Preconditioned and selected fractured surfaces were characterized with scanning electron microscopy. RESULTS: At 24 hours, LUS-RXU and LUR-RXU had significantly higher interfacial KIC than EN-RXU and EMP-RXU and were not different from KIC of RXU. Aging lead to a significant decrease in KIC of RXU and interfacial KIC of LUS-RXU, LUR-RXU, and EMP-RXU; interfacial KIC of EN-RXU was not affected. Based on the results, H0 was rejected. CONCLUSION: Under the conditions of this study, at 24 hours, interfacial KIC of LUS-RXU and LUR-RXU was superior to EMP-RXU and EN-RXU. Aging in water at 37°C did not affect interfacial KIC of EN-RXU but adversely affected KIC of RXU and the other interfacial KIC . CLINICAL IMPLICATIONS: The results suggest that RXU and its adherence to LU and EMP deteriorates upon exposure to water at 37°C. In making clinical decisions related to material selection, practitioners should consider in vitro results.


Assuntos
Cimentos Dentários/química , Porcelana Dentária , Falha de Restauração Dentária , Cimentos de Resina/química , Óxido de Alumínio/química , Análise de Variância , Cerâmica/química , Desenho Assistido por Computador , Coroas , Colagem Dentária/métodos , Planejamento de Prótese Dentária/métodos , Análise do Estresse Dentário , Cimentos de Ionômeros de Vidro/química , Humanos , Teste de Materiais , Dióxido de Silício , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo
11.
J Prosthodont ; 28(9): 982-987, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31603266

RESUMO

PURPOSE: To apply fracture mechanics methodology to determine the interfacial fracture toughness of the interfaces present in "CAD-on" crowns consisting of CAD/CAM milled lithium disilicate veneers glass-fused to CAD/CAM milled yttrium oxide stabilized tetragonal zirconia polycrystal framework. MATERIALS AND METHODS: The notchless triangular prism specimen fracture toughness test was used to determine interfacial fracture toughness. Four groups, each consisting of (6 × 6 × 6 × 12) mm prisms (n = 22), were produced. Half-size [(6 × 6 × 6 × 6) mm] specimens of IPS e.max CAD and IPS e.max ZirCAD were approximated under vibration with Crystal Connect fusing glass and sintered according to manufacturer's guidelines to obtain the following three interfaces: (1) e.max CAD/Crystal Connect/e.max CAD (Group I); (2) Zir CAD/Crystal Connect/Zir CAD (Group II); and (3) Zir CAD/Crystal Connect/e.max CAD (Group III). For Group IV (control, based on the "press-on" veneering technique), half-size [(6 × 6 × 6 × 6) mm] IPS e.max ZirCAD prisms were coated with ZirLiner and pressed with IPS e.max ZirPress ingots to obtain (6 × 6 × 6 × 12) mm prisms. All specimens were tested using a computer controlled material testing machine. Results were analyzed with one-way ANOVA, Scheffé multiple means comparisons (α = 0.05) and Weibull statistics. All fractured surfaces were characterized with a light microscope. Selected fractured surfaces were characterized under a scanning electron microscope. RESULTS: All experimental groups demonstrated a cohesive mode of failure in the fusing glass layer. The number and size of defects appeared to correlate with the variability of fracture toughness values. There were no significant differences between the fracture toughness of the "CAD-on" interfaces (p = 0.052). The results suggested that the fracture toughness of Crystal Connect limited the interfacial fracture toughness values. The "CAD-on" fracture toughness value (Group III) was significantly greater than that of the ZirPress "press-on" control (Group IV) (p < 0.001). CONCLUSION: The "CAD-on" process results in stronger bonding between veneer and framework, compared to conventional veneering. The clinical use of "CAD-on" crowns could therefore be advocated. The selection of any restorative material requires a thorough analysis of advantages, limitations and results from clinical studies to inform the clinical decision in a case-by-case approach.


Assuntos
Cerâmica , Falha de Restauração Dentária , Desenho Assistido por Computador , Coroas , Porcelana Dentária , Análise do Estresse Dentário , Teste de Materiais , Zircônio
12.
Eur J Oral Sci ; 124(5): 490-497, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27680671

RESUMO

This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections.


Assuntos
Coroas , Projeto do Implante Dentário-Pivô , Falha de Restauração Dentária , Dente Suporte , Implantes Dentários , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Reprodutibilidade dos Testes
13.
Philos Trans A Math Phys Eng Sci ; 373(2038)2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25713455

RESUMO

Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions.

14.
Microsc Microanal ; 21(6): 1475-1481, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514911

RESUMO

This work evaluates the use of light microscopes (LMs) as a tool for interlaminar fracture of polymer composite investigation with the aid of correlative fractography. Correlative fractography consists of an association of the extended depth of focus (EDF) method, based on reflected LM, with scanning electron microscopy (SEM) to evaluate interlaminar fractures. The use of these combined techniques is exemplified here for the mode I fracture of carbon-epoxy plain-weave reinforced composite. The EDF-LM is a digital image-processing method that consists of the extraction of in-focus pixels for each x-y coordinate in an image from a stack of Z-ordered digital pictures from an LM, resulting in a fully focused picture and a height elevation map for each stack. SEM is the most used tool for the identification of fracture mechanisms in a qualitative approach, with the combined advantages of a large focus depth and fine lateral resolution. However, LMs, with EDF software, may bypass the restriction on focus depth and present enough lateral resolution at low magnification. Finally, correlative fractography can provide the general comprehension of fracture processes, with the benefits of the association of different resolution scales and contrast modes.

15.
Clin Oral Investig ; 19(9): 2295-307, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25986462

RESUMO

OBJECTIVES: The aims of this study were set as follows: 1. To provide verifiable criteria to categorize the ceramic fractures into non-critical (i.e., amenable to polishing) or critical (i.e., in need of replacement) 2. To establish the corresponding survival rates for alumina and zirconia restorations 3. To establish the mechanism of fracture using fractography MATERIALS AND METHODS: Fifty-eight patients restored with 115 alumina-/zirconia-based crowns and 26 zirconia-based fixed dental prostheses (FDPs) were included. Ceramic fractures were classified into four types and further subclassified into "critical" or "non-critical." Kaplan-Meier survival estimates were calculated for "critical fractures only" and "all fractures." Intra-oral replicas were taken for fractographic analyses. RESULTS: Kaplan-Meier survival estimates for "critical fractures only" and "all fractures" were respectively: Alumina single crowns: 90.9 and 68.3 % after 9.5 years (mean 5.71 ± 2.6 years). Zirconia single crowns: 89.4 and 80.9 % after 6.3 years (mean 3.88 ± 1.2 years). Zirconia FDPs: 68.6 % (critical fractures) and 24.6 % (all fractures) after 7.2 and 4.6 years respectively (FDP mean observation time 3.02 ± 1.4 years). No core/framework fractures were detected. CONCLUSIONS: Survival estimates varied significantly depending on whether "all" fractures were considered as failures or only those deemed as "critical". For all restorations, fractographic analyses of failed veneering ceramics systematically demonstrated heavy occlusal wear at the failure origin. Therefore, the relief of local contact pressures on unsupported ceramic is recommended. Occlusal contacts on mesial or distal ridges should systematically be eliminated. CLINICAL RELEVANCE: A classification standard for ceramic fractures into four categories with subtypes "critical" and "non-critical" provides a differentiated view of the survival of ceramic restorations.


Assuntos
Óxido de Alumínio/química , Cerâmica/química , Coroas , Prótese Dentária , Falha de Restauração Dentária/classificação , Zircônio/química , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida
16.
J Prosthodont ; 24(7): 543-548, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25557262

RESUMO

PURPOSE: To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. MATERIALS AND METHODS: Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). RESULTS: Cemented CAD-on restorations demonstrated significantly higher (F = 72, p < 0.001) fracture load compared to fused CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. CONCLUSIONS: Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers.

17.
J Prosthodont ; 23(3): 232-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24118630

RESUMO

The congenitally missing maxillary lateral incisor is the most common agenesis in the anterior region. There are several treatment options for this anomaly, which causes severe deficiencies: orthodontic space closure, tooth-supported restoration, or single-tooth implant. Each of these solutions has a high degree of success if used in the correct situation. An implant-supported restoration with an interdisciplinary approach provides a predictable outcome. This article describes the treatment of a patient with agenesis of the maxillary left lateral incisor. After orthodontic space management, it was decided to restore the tooth with an all-ceramic crown cemented on a zirconia custom abutment, which fractured after only 6 weeks of service. Fractographic analysis revealed that the failure was due to over-reduction of the buccal wall to correct the labial emergence of the implant. Zirconia abutments should be designed with even wall thicknesses of at least 0.8 mm to avoid areas that may compromise functional success.


Assuntos
Anodontia/terapia , Coroas , Implantes Dentários para Um Único Dente , Prótese Dentária Fixada por Implante , Incisivo/anormalidades , Silicatos de Alumínio/química , Cerâmica/química , Desenho Assistido por Computador , Dente Suporte , Projeto do Implante Dentário-Pivô , Materiais Dentários/química , Porcelana Dentária/química , Falha de Restauração Dentária , Feminino , Seguimentos , Humanos , Maxila/patologia , Compostos de Potássio/química , Torque , Adulto Jovem , Zircônio/química
18.
Saudi Dent J ; 36(5): 770-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766294

RESUMO

Purpose: This study aimed to perform a thorough failure analysis of two fractured narrow dental implants after medium-term in vivo use. Materials and methods: The top parts of two fractured Narrow Dental Implant (NDI) fixtures were retrieved from two different locations at two different times from the same patient. The NDI-specimen-1 was 12-months in service while the NDI-specimen-2 was 17-months in service. In both cases, the top parts of the fractured NDI fixtures that were attached to prosthetic components were retrieved and subjected to thorough, non-destructive and destructive testing. Results: Light Microscopy (LM) and Scanning Electron Microscopy (SEM) revealed that both the retrieved fractured NDIs failed because of fatigue, characterized by beach and ratchet marks. Macroscopic examination revealed that fatigue cracks initiated at the internal thread surfaces of the implants and propagated around them until final fracture. Both samples fractured near the end of the retaining screw and followed the root of the internal thread. Optical and SEM analyses revealed a uniform distribution of irregularly shaped grains (diameter = 2 to 5 µm). X -ray Energy Dispersive Spectroscopy (EDS) analysis showed that the NDI-specimen-1 was made using Ti-14%Zr with a Vickers Hardens (HV) of 288 ± 5. Conclusion: Since the fracture occurred by a fatigue; thus, an increase in fatigue resistance will be beneficial for the longevity of NDI.

19.
J Mech Behav Biomed Mater ; 156: 106607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830315

RESUMO

OBJECTIVES: The aim of the study was to evaluate the influence of surface finishing in three polymer-based composits (composits) on the result of a 3-point bending test using quantitative and qualitative fractography as well as microstructural characteristics. MATERIALS AND METHODS: 270 rectangular specimens (n = 30) of three composits were prepared, stored and tested according to NIST No. 4877. Prior testing, the samples were subjected to three surface treatments: 1) no treatment, to preserve the oxygen inhibition layer, 2) with FEPA P1200 (ANSI equivalent grit 600) SiC paper abraded surface, and 3) polished surface. A three-point bending testing was employed, followed by quantitative (assessment of reason for failure and fracture pattern) and qualitative (fracture mirror measurements) fractography, 3D and 2D surface imaging, surface roughness, reliability and Fe-SEM analysis. The mirror radius that runs in the direction of constant stress was used to calculate the mirror constant (A) using Orr's equation. Uni- and multifactorial ANOVA, Tukey's post hoc test, and Weibull analysis was performed for statistical analysis. RESULTS: Surface finishing has less influence on the fracture pattern, reliability and mechanical parameters and has no influence on the mirror constant. The amount of inorganic filler has a direct impact on flexural strength and modulus, while the ranking of materials was independent of surface treatment. Failures initiated by volume defects were the most common failure mode (77.0%) with surface defects accounting for 14.9% (edge) and 7.7% (corner). Polishing resulted in lower peak-to valley height compared to no treatment, both 3-4 times lower compared to the 600 grit treatment. The increase in roughness within the analyzed range did not lead to an increase in surface-related failures. CONCLUSIONS: The clear dominance of volume defects in all examined materials as a cause of material fracture reduces the impact of roughness on the measured properties. This insight was only possible using qualitative and quantitative research fractography.


Assuntos
Teste de Materiais , Polímeros , Propriedades de Superfície , Polímeros/química , Testes Mecânicos , Estresse Mecânico , Materiais Dentários/química , Fenômenos Mecânicos
20.
Materials (Basel) ; 17(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39274814

RESUMO

This study aims to develop thermoplastic (TP) and thermoset (TS) based mixed matrix composite using design dependent physical compatibility. Using thermoplastic-based (PLA) skeletal lattices with diverse patterns (gyroid and grid) and different infill densities (10% and 20%) followed by infiltration of two different thermoset resin systems (epoxy and polyurethane-based) using a customized FDM 3D printer equipped with a resin dispensing unit, the optimised design and TP-TS material combination was established for best mechanical performance. Under uniaxial tensile stress, the failure modes of TP gyroid structures with polyurethane-based composites included 'fiber pull-out', interfacial debonding and fiber breakage, while epoxy based mixed matrix composites with all design variants demonstrated brittle failure. Higher elongation (higher area under curve) was observed in 20% infilled gyroid patterned composite with polyurethane matrix indicating the capability of operation in mechanical shock absorption application. Electron microscopy-based fractography analysis revealed that thermoset matrix properties governed the fracture modes for the thermoplastic phase. This work focused on the strategic optimisation of both toughness and stiffness of mixed matrix composite components for rapid fabrication of construction materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA