Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cerebellum ; 23(2): 431-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995498

RESUMO

Each cerebellar hemisphere projects to the contralateral cerebral hemisphere. Previous research suggests a lateralization of cognitive functions in the cerebellum that mirrors the cerebral cortex, with attention/visuospatial functions represented in the left cerebellar hemisphere, and language functions in the right cerebellar hemisphere. Although there is good evidence supporting the role of the right cerebellum with language functions, the evidence supporting the notion that attention and visuospatial functions are left lateralized is less clear. Given that spatial neglect is one of the most common disorders arising from right cortical damage, we reasoned that damage to the left cerebellum would result in increased spatial neglect-like symptoms, without necessarily leading to an official diagnosis of spatial neglect. To examine this disconnection hypothesis, we analyzed neglect screening data (line bisection, cancellation, figure copying) from 20 patients with isolated unilateral cerebellar stroke. Results indicated that left cerebellar patients (n = 9) missed significantly more targets on the left side of cancellation tasks compared to a normative sample. No significant effects were observed for right cerebellar patients (n = 11). A lesion overlap analysis indicated that Crus II (78% overlap), and lobules VII and IX (66% overlap) were the regions most commonly damaged in left cerebellar patients. Our results are consistent with the notion that the left cerebellum may be important for attention and visuospatial functions. Given the poor prognosis typically associated with neglect, we suggest that screening for neglect symptoms, and visuospatial deficits more generally, may be important for tailoring rehabilitative efforts to help maximize recovery in cerebellar patients.


Assuntos
Transtornos da Percepção , Acidente Vascular Cerebral , Humanos , Percepção Espacial , Lateralidade Funcional , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Transtornos da Percepção/complicações , Transtornos da Percepção/patologia , Córtex Cerebral , Testes Neuropsicológicos
2.
Neuroimage ; 266: 119832, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572132

RESUMO

Selective attention mechanisms operate across large-scale cortical networks by amplifying behaviorally relevant sensory information while suppressing interference from distractors. Although it is known that fronto-parietal regions convey information about attentional priorities, it is unclear how such cortical communication is orchestrated. Based on its unique connectivity pattern with the cortex, we hypothesized that the pulvinar, a nucleus of the thalamus, may play a key role in coordinating and modulating remote cortical activity during selective attention. By using a visual task that orthogonally manipulated top-down selection and bottom-up competition during functional MRI, we investigated the modulations induced by task-relevant (spatial cue) and task-irrelevant but salient (distractor) stimuli on functional interactions between the pulvinar, occipito-temporal cortex, and frontoparietal areas involved in selective attention. Pulvinar activity and connectivity were distinctively modulated during the co-occurrence of the cue and salient distractor stimuli, as opposed to the presence of one of these factors alone. Causal modelling analysis further indicated that the pulvinar acted by weighting excitatory signals to cortical areas, predominantly in the presence of both the cue and the distractor. These results converge to support a pivotal role of the pulvinar in integrating top-down and bottom-up signals among distributed networks when confronted with conflicting visual stimuli, and thus contributing to shape priority maps for the guidance of attention.


Assuntos
Pulvinar , Humanos , Pulvinar/diagnóstico por imagem , Tálamo , Lobo Parietal , Lobo Frontal , Imageamento por Ressonância Magnética
3.
Neuroimage ; 186: 33-42, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367953

RESUMO

Listening requires selective neural processing of the incoming sound mixture, which in humans is borne out by a surprisingly clean representation of attended-only speech in auditory cortex. How this neural selectivity is achieved even at negative signal-to-noise ratios (SNR) remains unclear. We show that, under such conditions, a late cortical representation (i.e., neural tracking) of the ignored acoustic signal is key to successful separation of attended and distracting talkers (i.e., neural selectivity). We recorded and modeled the electroencephalographic response of 18 participants who attended to one of two simultaneously presented stories, while the SNR between the two talkers varied dynamically between +6 and -6 dB. The neural tracking showed an increasing early-to-late attention-biased selectivity. Importantly, acoustically dominant (i.e., louder) ignored talkers were tracked neurally by late involvement of fronto-parietal regions, which contributed to enhanced neural selectivity. This neural selectivity, by way of representing the ignored talker, poses a mechanistic neural account of attention under real-life acoustic conditions.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Eletroencefalografia/métodos , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Percepção da Fala/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Adulto Jovem
4.
Neuroimage ; 134: 475-485, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27103137

RESUMO

Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual MI-BCI performance.


Assuntos
Atenção/fisiologia , Interfaces Cérebro-Computador , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Imaginação/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Desempenho Psicomotor , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
5.
J Psychiatr Res ; 141: 339-345, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304038

RESUMO

Cognitive impairments account for significant morbidity in schizophrenia and are present at disease onset. Controlled processes are particularly susceptible and may contribute to pervasive selective attention deficits. The present study assessed fronto-parietal attention network (FPAN) functioning during cue presentation on a visual search task in first-episode schizophrenia spectrum patients (FE) and its relation to symptom burden and community functioning. Brain activity was recorded with magnetoencephalography from 38 FE and 38 healthy controls (HC) during blocks of pop-out and serial search target detection. Activity during cue presentation was compared between groups across bilateral FPAN regions (frontal eye fields (FEF), inferior frontal gyrus (IFG), midcingulate cortex (MCC), and intraparietal sulcus (IPS)). FE exhibited greater right hemisphere IFG activity despite worse performance relative to HC. Performance and FPAN activity were not correlated in HC. Among FE, however, stronger activity within right hemisphere FEF and IFG was associated with faster responses. Stronger right IPS and left IFG activity in patients was also associated with reduced negative symptoms and improved community functioning, respectively. Increased reliance on the FPAN for task completion suggests an inefficient cognitive control network and might reflect a compensation for impaired attentional deployment during target detection, a strategy employed by those with less severe illness. These findings represent a critical step towards identifying the neural substrates of negative symptoms and impaired neurocognition at disease onset.


Assuntos
Esquizofrenia , Mapeamento Encefálico , Sinais (Psicologia) , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal
6.
Neurosci Biobehav Rev ; 130: 314-325, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454915

RESUMO

Adults with non-central nervous system (CNS) cancers frequently report problems in attention, memory and executive function during or after chemotherapy, referred to as cancer-related cognitive dysfunction (CRCD). Despite numerous studies investigating CRCD, there is no consensus regarding the brain areas implicated. We sought to determine if there are brain areas that consistently show either hyper- or hypo-activation in people treated with chemotherapy for non-CNS cancer (Chemo+). Using activation likelihood estimation on brain coordinates from 14 fMRI studies yielding 25 contrasts from 375 Chemo+ and 429 chemotherapy-naive controls while they performed cognitive tasks, the meta-analysis yielded two significant clusters which are part of the frontoparietal attention network, both showing lower activation in Chemo+. One cluster peaked in the left superior parietal cortex, extending into precuneus, inferior parietal lobule, and angular gyrus. The other peaked in the right superior prefrontal areas, extending into inferior prefrontal cortex. We propose that these observed lower activations reflect a dysfunction in mobilizing and/or sustaining attention due to depletion of cognitive resources. This could explain higher level of mental fatigue reported by Chemo+ and why cancer survivors report problems in a wide variety of cognitive domains.


Assuntos
Mapeamento Encefálico , Encéfalo , Adulto , Encéfalo/diagnóstico por imagem , Função Executiva , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética
7.
Front Psychol ; 2: 241, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22007179

RESUMO

Visual attention can be shifted in space without moving the eyes. Amplitude decrease of rhythmical brain activity around 10 Hz (so called alpha activity) at contralateral posterior sites has been reported during covered shifts of visuospatial attention to one visual hemi-field. Alpha amplitude increase, on the other hand, can be found at ipsilateral visual cortex. There is some evidence suggesting an involvement of prefrontal brain areas during the control of attention-related anticipatory alpha amplitude asymmetry. This open question has been studied in detail using a multimodal approach combining transcranial magnetic stimulation (TMS) and multichannel electroencephalography (EEG) in healthy humans. Slow (1 Hz) repetitive TMS leading to reduced excitability of the stimulation site was delivered either to right frontal eye field (FEF) or a control site (vertex). Subsequently, participants had to perform a spatial cuing task in which covert shifts of attention were required to either the left or the right visual hemi-field. After stimulation at the vertex (control condition) a pattern of anticipatory, attention-related ipsilateral alpha increase/contralateral alpha decrease over posterior recording sites could be obtained. Additionally, there was pronounced coupling between (in particular right) FEF and posterior brain sites at EEG alpha frequency. When, however, right prefrontal cortex had been virtually lesioned preceding the task, these EEG correlates of visuospatial attention were attenuated. Notably, the effect of TMS at the right FEF on interregional fronto-parietal alpha coupling predicted the effect of TMS on response times. This suggests that visual attention processes associated with posterior EEG alpha activity are at least partly top-down controlled by the prefrontal cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA