Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86.677
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38897195

RESUMO

The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.

2.
Cell ; 186(10): 2160-2175.e17, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37137306

RESUMO

The serotonin transporter (SERT) removes synaptic serotonin and is the target of anti-depressant drugs. SERT adopts three conformations: outward-open, occluded, and inward-open. All known inhibitors target the outward-open state except ibogaine, which has unusual anti-depressant and substance-withdrawal effects, and stabilizes the inward-open conformation. Unfortunately, ibogaine's promiscuity and cardiotoxicity limit the understanding of inward-open state ligands. We docked over 200 million small molecules against the inward-open state of the SERT. Thirty-six top-ranking compounds were synthesized, and thirteen inhibited; further structure-based optimization led to the selection of two potent (low nanomolar) inhibitors. These stabilized an outward-closed state of the SERT with little activity against common off-targets. A cryo-EM structure of one of these bound to the SERT confirmed the predicted geometry. In mouse behavioral assays, both compounds had anxiolytic- and anti-depressant-like activity, with potencies up to 200-fold better than fluoxetine (Prozac), and one substantially reversed morphine withdrawal effects.


Assuntos
Ibogaína , Inibidores Seletivos de Recaptação de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Bibliotecas de Moléculas Pequenas , Animais , Camundongos , Fluoxetina/farmacologia , Ibogaína/química , Ibogaína/farmacologia , Conformação Molecular , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/ultraestrutura , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080200

RESUMO

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Genômica/métodos , Genoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38070510

RESUMO

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Assuntos
Eletroencefalografia , Parvalbuminas , Sono , Animais , Camundongos , Neurônios Colinérgicos/fisiologia , Lobo Frontal/metabolismo , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
5.
Cell ; 186(7): 1493-1511.e40, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001506

RESUMO

Understanding how genetic variants impact molecular phenotypes is a key goal of functional genomics, currently hindered by reliance on a single haploid reference genome. Here, we present the EN-TEx resource of 1,635 open-access datasets from four donors (∼30 tissues × âˆ¼15 assays). The datasets are mapped to matched, diploid genomes with long-read phasing and structural variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. Surprisingly, a deep-learning transformer model can predict the allele-specific activity based only on local nucleotide-sequence context, highlighting the importance of transcription-factor-binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing genome annotations reveals strong associations between allele-specific and GWAS loci. It also enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal functional genomics.


Assuntos
Epigenoma , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Cell ; 186(2): 327-345.e28, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36603581

RESUMO

Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.


Assuntos
Proteínas Intrinsicamente Desordenadas , RNA Polimerase II , Transcrição Gênica , Proteínas Intrinsicamente Desordenadas/metabolismo , RNA Polimerase II/metabolismo , Ativação Transcricional , Animais , Camundongos
7.
Cell ; 186(20): 4271-4288.e24, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37699390

RESUMO

Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.

8.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37883971

RESUMO

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Assuntos
Lisossomos , Transdução de Sinais , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Fenômenos Fisiológicos Celulares
9.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37137305

RESUMO

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Humanos , Diferenciação Celular , Sistemas CRISPR-Cas , Genoma , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Engenharia Genética , Análise de Célula Única
10.
Cell ; 186(23): 5165-5182.e33, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37852259

RESUMO

Schizophrenia (SCZ) is a highly heritable mental disorder with thousands of associated genetic variants located mostly in the noncoding space of the genome. Translating these associations into insights regarding the underlying pathomechanisms has been challenging because the causal variants, their mechanisms of action, and their target genes remain largely unknown. We implemented a massively parallel variant annotation pipeline (MVAP) to perform SCZ variant-to-function mapping at scale in disease-relevant neural cell types. This approach identified 620 functional variants (1.7%) that operate in a highly developmental context and neuronal-activity-dependent manner. Multimodal integration of epigenomic and CRISPRi screening data enabled us to link these functional variants to target genes, biological processes, and ultimately alterations of neuronal physiology. These results provide a multistage prioritization strategy to map functional single-nucleotide polymorphism (SNP)-to-gene-to-endophenotype relations and offer biological insights into the context-dependent molecular processes modulated by SCZ-associated genetic variation.


Assuntos
Esquizofrenia , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Animais , Camundongos , Sequenciamento de Nucleotídeos em Larga Escala
11.
Annu Rev Immunol ; 33: 677-713, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665077

RESUMO

Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.


Assuntos
Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Sobrevivência Celular/imunologia , Homeostase , Humanos , Memória Imunológica , Infecções/imunologia , Infecções/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos/citologia , Fenótipo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo
12.
Cell ; 185(21): 4023-4037.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174579

RESUMO

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.


Assuntos
Bacteriófagos , Vírus de RNA , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Filogenia , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Viroma
13.
Cell ; 185(24): 4634-4653.e22, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347254

RESUMO

Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of ∼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.


Assuntos
Sistemas CRISPR-Cas , Genes Essenciais , Humanos , Células HeLa , Técnicas de Inativação de Genes , Fenótipo
14.
Cell ; 184(22): 5653-5669.e25, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34672952

RESUMO

Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways critical for maintaining genomic integrity. To systematically map these pathways, we developed a high-throughput screening approach called Repair-seq that measures the effects of thousands of genetic perturbations on mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair products induced by two programmable nucleases (Cas9 and Cas12a) in the presence or absence of oligonucleotides for homology-directed repair (HDR) after knockdown of 476 genes involved in DSB repair or associated processes. The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways. Systematic interrogation of this data uncovered unexpected relationships among DSB repair genes and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. This work provides a foundation for mapping DNA repair pathways and for optimizing genome editing across diverse modalities.


Assuntos
Quebras de DNA de Cadeia Dupla , Genômica , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Análise por Conglomerados , Reparo do DNA/genética , Edição de Genes , Regulação da Expressão Gênica , Genoma Humano , Humanos , Fenótipo , RNA Guia de Cinetoplastídeos/metabolismo , Reprodutibilidade dos Testes
15.
Cell ; 184(20): 5247-5260.e19, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34534445

RESUMO

3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.


Assuntos
Regiões 3' não Traduzidas/genética , Evolução Biológica , Doença/genética , Estudo de Associação Genômica Ampla , Algoritmos , Alelos , Regulação da Expressão Gênica , Genes Reporter , Variação Genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polirribossomos/metabolismo , Locos de Características Quantitativas/genética , RNA/genética
16.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357446

RESUMO

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Assuntos
Proteínas de Escherichia coli/metabolismo , Imageamento Tridimensional , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Pressão Osmótica , Fosforilação , Proteólise , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico
17.
Cell ; 184(18): 4784-4818.e17, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450027

RESUMO

Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.


Assuntos
Predisposição Genética para Doença , Genética Populacional , Osteoartrite/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Osteoartrite/tratamento farmacológico , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Caracteres Sexuais , Transdução de Sinais/genética
18.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34879231

RESUMO

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , Sensação/genética , Transcrição Gênica , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes , Bulbo Olfatório/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética
19.
Cell ; 180(5): 1002-1017.e31, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109417

RESUMO

Genome-wide CRISPR screens enable systematic interrogation of gene function. However, guide RNA libraries are costly to synthesize, and their limited diversity compromises the sensitivity of CRISPR screens. Using the Streptococcus pyogenes CRISPR-Cas adaptation machinery, we developed CRISPR adaptation-mediated library manufacturing (CALM), which turns bacterial cells into "factories" for generating hundreds of thousands of crRNAs covering 95% of all targetable genomic sites. With an average gene targeted by more than 100 distinct crRNAs, these highly comprehensive CRISPRi libraries produced varying degrees of transcriptional repression critical for uncovering novel antibiotic resistance determinants. Furthermore, by iterating CRISPR adaptation, we rapidly generated dual-crRNA libraries representing more than 100,000 dual-gene perturbations. The polarized nature of spacer adaptation revealed the historical contingency in the stepwise acquisition of genetic perturbations leading to increasing antibiotic resistance. CALM circumvents the expense, labor, and time required for synthesis and cloning of gRNAs, allowing generation of CRISPRi libraries in wild-type bacteria refractory to routine genetic manipulation.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma Bacteriano/genética , Biblioteca Genômica , Staphylococcus aureus/genética , Escherichia coli/genética , Humanos , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes/genética
20.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916129

RESUMO

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Síndrome do Intestino Irritável/metabolismo , Metaboloma , Purinas/metabolismo , Transcriptoma/genética , Animais , Ácidos e Sais Biliares/metabolismo , Biópsia , Butiratos/metabolismo , Cromatografia Líquida , Estudos Transversais , Epigenômica , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Hipoxantina/metabolismo , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/microbiologia , Estudos Longitudinais , Masculino , Metaboloma/fisiologia , Camundongos , Estudos Observacionais como Assunto , Estudos Prospectivos , Software , Espectrometria de Massas em Tandem , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA