Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239858

RESUMO

The ammonium transporter (AMT) family gene is an important transporter involved in ammonium uptake and transfer in plants and is mainly engaged in the uptake and transport of ammonium from the environment by roots and the reabsorption of ammonium in the aboveground parts. In this study, the expression pattern, functional identification, and genetic transformation of the PtrAMT1;6 gene, a member of the ammonium transporter protein family in P. trichocarpa, were investigated as follows: (1) Fluorescence quantitative PCR demonstrated that the PtrAMT1;6 gene was preferentially expressed in the leaves, with both dark-induced and light-inhibited expression patterns. (2) A functional restoration assay using the yeast ammonium transporter protein mutant strain indicated that the PtrAMT1;6 gene restored the ability of the mutant to transport ammonium with high affinity. (3) Arabidopsis was transformed with pCAMBIA-PtrAMT1;6P, and the transformed lines were stained with GUS, which showed that the rootstock junction, cotyledon petioles, and the leaf veins and pulp near the petioles of the transformed plants could be stained blue, indicating that the promoter of the PtrAMT1;6 gene had promoter activity. (4) The overexpression of the PtrAMT1;6 gene caused an imbalance in carbon and nitrogen metabolism and reduced nitrogen assimilation ability in '84K' poplar and ultimately reduced biomass. The above results suggest that PtrAMT1;6 may be involved in ammonia recycling during nitrogen metabolism in aboveground parts, and overexpression of PtrAMT1;6 may affect the process of carbon and nitrogen metabolism, as well as nitrogen assimilation in plants, resulting in stunted growth of overexpression plants.


Assuntos
Compostos de Amônio , Arabidopsis , Populus , Compostos de Amônio/metabolismo , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Transformação Genética , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563657

RESUMO

Plasmodiophora brassicae, an obligate intracellular pathogen, can hijack the host's carbohydrates for survival. When the host plant is infected by P. brassicae, a large amount of soluble sugar accumulates in the roots, especially glucose, which probably facilitates the development of this pathogen. Although a complete glycolytic and tricarboxylic acid cycle (TCA) cycle existed in P. brassicae, very little information about the hexose transport system has been reported. In this study, we screened 17 putative sugar transporters based on information about their typical domains. The structure of these transporters showed a lot of variation compared with that of other organisms, especially the number of transmembrane helices (TMHs). Phylogenetic analysis indicated that these sugar transporters were far from the evolutionary relationship of other organisms and were unique in P. brassicae. The hexose transport activity assay indicated that eight transporters transported glucose or fructose and could restore the growth of yeast strain EBY.VW4000, which was deficient in hexose transport. The expression level of these glucose transporters was significantly upregulated at the late inoculation time when resting spores and galls were developing and a large amount of energy was needed. Our study provides new insights into the mechanism of P. brassicae survival in host cells by hijacking and utilizing the carbohydrates of the host.


Assuntos
Plasmodioforídeos , Glucose/metabolismo , Hexoses/metabolismo , Filogenia , Doenças das Plantas , Plasmodioforídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo
3.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269756

RESUMO

Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Humanos , Fenótipo , Transgenes
4.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142347

RESUMO

Peptidases are very important to parasites, which have central roles in parasite biology and pathogenesis. In this study, by comparative genome analysis, genome-wide peptidase diversities among plant-parasitic nematodes are estimated. We find that genes encoding cysteine peptidases in family C13 (legumain) are significantly abundant in pine wood nematodes Bursaphelenchus genomes, compared to those in other plant-parasitic nematodes. By phylogenetic analysis, a clade of B. xylophilus-specific legumain is identified. RT-qPCR detection shows that these genes are highly expressed at early stage during the nematode infection process. Utilizing transgene technology, cDNAs of three species-specific legumain were introduced into the Arabidopsis γvpe mutant. Functional complementation assay shows that these B. xylophilus legumains can fully complement the activity of Arabidopsis γVPE to mediate plant cell death triggered by the fungal toxin FB1. Secretory activities of these legumains are experimentally validated. By comparative transcriptome analysis, genes involved in plant cell death mediated by legumains are identified, which enrich in GO terms related to ubiquitin protein transferase activity in category molecular function, and response to stimuli in category biological process. Our results suggest that B. xylophilu-specific legumains have potential as effectors to be involved in nematode-plant interaction and can be related to host cell death.


Assuntos
Arabidopsis , Micotoxinas , Parasitos , Pinus , Rabditídios , Tylenchida , Animais , Arabidopsis/genética , Cisteína/genética , Cisteína Endopeptidases , Peptídeo Hidrolases/genética , Filogenia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Plantas/parasitologia , Transferases/genética , Tylenchida/genética , Ubiquitinas/genética , Virulência , Xylophilus
5.
Anal Bioanal Chem ; 412(29): 8015-8022, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32926202

RESUMO

The Mu opioid receptor (MOR) has been the subject of intense research over the past decades, especially in the field of analgesic therapeutics. It is the primary target for both clinical and recreational opioids. Recently, camelid-derived nanobodies have received significant attention due to their applicability in stabilizing the crystal structure of activated MOR, via specific recognition of and binding to the active receptor conformation. In the present study, we developed and applied a novel bio-assay to monitor MOR activation, utilizing intracellular expression of one such nanobody, Nb39. The principle of functional complementation of a split nanoluciferase was used to assess recruitment of Nb39 to MOR, following activation by a set of five synthetic opioids. The obtained pharmacological parameters-negative logarithm of EC50 (pEC50, as a measure of potency) and maximal response provoked by a ligand (Emax, as a measure of efficacy; relative to hydromorphone)-were compared with those obtained using a G protein recruitment assay, in which a mini-Gi protein (engineered GTPase domain of Gαi subunit) is recruited to activated MOR. Similar EC50 but distinct Emax values were obtained with both bio-assays, with lower Emax values for the Nb-based bio-assay. Both bio-assays may assist to gain better insight into activation of the MOR. Graphical abstract.


Assuntos
Luciferases/metabolismo , Receptores Opioides mu/metabolismo , Anticorpos de Domínio Único , Analgésicos Opioides/farmacologia , Bioensaio , Células HEK293 , Humanos , Luciferases/química , Tamanho da Partícula , Receptores Opioides mu/agonistas
6.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443561

RESUMO

Ammonium transporter (AMT)-mediated acquisition of ammonium nitrogen from soils is essential for the nitrogen demand of plants, especially for those plants growing in flooded or acidic soils where ammonium is dominant. Recent advances show that AMTs additionally participate in many other physiological processes such as transporting ammonium from symbiotic fungi to plants, transporting ammonium from roots to shoots, transferring ammonium in leaves and reproductive organs, or facilitating resistance to plant diseases via ammonium transport. Besides being a transporter, several AMTs are required for the root development upon ammonium exposure. To avoid the adverse effects of inadequate or excessive intake of ammonium nitrogen on plant growth and development, activities of AMTs are fine-tuned not only at the transcriptional level by the participation of at least four transcription factors, but also at protein level by phosphorylation, pH, endocytosis, and heterotrimerization. Despite these progresses, it is worth noting that stronger growth inhibition, not facilitation, unfortunately occurs when AMT overexpression lines are exposed to optimal or slightly excessive ammonium. This implies that a long road remains towards overcoming potential limiting factors and achieving AMT-facilitated yield increase to accomplish the goal of persistent yield increase under the present high nitrogen input mode in agriculture.


Assuntos
Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Transporte de Íons , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
7.
Biochem Biophys Res Commun ; 517(4): 755-761, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402117

RESUMO

Ras proteins are highly conserved small GTPases in eukaryotes. GTP-bound Ras binds to effectors to trigger signaling cascades. In order to understand how extensive is the functional homology between the highly homologous proteins, S. cerevisiae Ras2 and C. albicans Ras1, we examined whether ScRas2 could functionally complement CaRas1 in activating hyphal morphogenesis as well as GPI anchor biosynthesis. We show that ScRas2 functionally complements CaRas1 in rescuing growth as well as activating hyphal growth, a process that involves plasma membrane localized Ras activating cAMP/PKA signaling via Cyr1. However, ScRas2 is unable to activate the GPI-N-acetylglucosaminyl transferase (GPI-GnT) which catalyzes the first step of GPI biosynthesis. That CaRas1 alone activates GPI-GnT and not ScRas2 suggests that this process is cAMP independent. Interestingly, CaRas1 transcriptionally activates CaGPI2, encoding a GPI-GnT subunit that has been shown to interact with CaRas1 physically. In turn, CaGPI2 downregulates CaGPI19, encoding another GPI-GnT subunit. This has direct consequences for expression of CaERG11, encoding the target of azole antifungals. This effect too is specific to CaRas1 and ScRas2 is unable to replicate it.


Assuntos
Candida albicans/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , AMP Cíclico/biossíntese , Ergosterol/biossíntese , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Proteínas ras/química
8.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052176

RESUMO

Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Saccharomyces cerevisiae/genética , Canais de Sódio/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Canais de Potássio/genética , Saccharomyces cerevisiae/metabolismo , Canais de Sódio/genética
9.
Plant Mol Biol ; 96(6): 607-625, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29582247

RESUMO

KEY MESSAGE: Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Mutação , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/classificação , Isoformas de Proteínas/genética , Homologia de Sequência de Aminoácidos , Triticum/microbiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-30249686

RESUMO

The echinocandin caspofungin inhibits the catalytic subunit Gsc1 of the enzymatic complex synthesizing 1,3-ß-glucan, an essential compound of the fungal wall. Studies with rodents showed that caspofungin is effective against Pneumocystis asci. However, its efficacy against asci of Pneumocystis jirovecii, the species infecting exclusively humans, remains controversial. The aim of this study was to assess the sensitivity to caspofungin of the P. jirovecii Gsc1 subunit, as well as of those of Pneumocystis carinii and Pneumocystis murina infecting, respectively, rats and mice. In the absence of an established in vitro culture method for Pneumocystis species, we used functional complementation of the Saccharomyces cerevisiae gsc1 deletant. In the fungal pathogen Candida albicans, mutations leading to amino acid substitutions in Gsc1 confer resistance to caspofungin. We introduced the corresponding mutations into the Pneumocystis gsc1 genes using site-directed mutagenesis. In spot dilution tests, the sensitivity to caspofungin of the complemented strains decreased with the number of mutations introduced, suggesting that the wild-type enzymes are sensitive. The MICs of caspofungin determined by Etest and YeastOne for strains complemented with Pneumocystis enzymes (respectively, 0.125 and 0.12 µg/ml) were identical to those upon complementation with the enzyme of C. albicans, for which caspofungin presents low MICs. However, they were lower than the MICs upon complementation with the enzyme of the resistant species Candida parapsilosis (0.19 and 0.25 µg/ml). Sensitivity levels of Gsc1 enzymes of the three Pneumocystis species were similar. Our results suggest that P. jirovecii is sensitive to caspofungin during infections, as are P. carinii and P. murina.


Assuntos
Antifúngicos/farmacologia , Caspofungina/farmacologia , Glucosiltransferases/genética , Pneumocystis carinii/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Glucosiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Infecções por Pneumocystis/tratamento farmacológico , Infecções por Pneumocystis/microbiologia , Pneumocystis carinii/efeitos dos fármacos , Subunidades Proteicas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
11.
Biochem J ; 473(2): 157-66, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537753

RESUMO

The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Escherichia coli/biossíntese , Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Tiamina Pirofosfato/biossíntese , Animais , Catálise , Camundongos
12.
Bull Entomol Res ; 107(5): 668-675, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28264734

RESUMO

Changes in environmental conditions influence the performance of organisms in every aspect of their life. Being capable of accurately sensing these changes allow organisms to better adapt. The detection of environmental conditions involves different sensory modalities. There are many studies on the morphology of different sensory structures but not so many studies showing their function. Here we studied the morphology of different sensory structures in the larva of a dipteran parasitoid. We occluded the putative sensory structures coupling the morphology with their function. First, we could develop a non-invasive method in which we occluded the putative sensorial structures annulling their function temporarily. Regarding their functionality, we found that larvae of Mallophora ruficauda require simultaneously of the sensilla found both in the antennae and those of the maxillary palps in order to orient to its host. When either both antennae or both maxillary palps were occluded, no orientation to the host was observed. We also found that these structures are not involved in the acceptance of the host because high and similar proportion of parasitized hosts was found in host acceptance experiments. We propose that other sensilla could be involved in host acceptance and discuss how the different sensilla in the antennae and maxillary palps complement each other to provide larvae with the information for locating its host.


Assuntos
Antenas de Artrópodes/fisiologia , Besouros/parasitologia , Dípteros/fisiologia , Interações Hospedeiro-Parasita , Animais , Antenas de Artrópodes/ultraestrutura , Dípteros/ultraestrutura , Larva/parasitologia , Larva/fisiologia , Larva/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 111(50): E5363-72, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25468967

RESUMO

Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.


Assuntos
Quimiocina CXCL12/química , Modelos Moleculares , Complexos Multiproteicos/química , Receptores CXCR4/química , Biofísica , Biologia Computacional/métodos , Dimerização , Células HEK293 , Humanos , Imunoprecipitação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Receptores CXCR4/genética
14.
Molecules ; 22(1)2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28045448

RESUMO

Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT (GbAACT, GenBank Accession No. KX904942) and MVK (GbMVK, GenBank Accession No. KX904944) were cloned from G. biloba. The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Ginkgo biloba/enzimologia , Lactonas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Acetatos/farmacologia , Vias Biossintéticas , Clonagem Molecular , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ginkgo biloba/química , Ginkgo biloba/genética , Ácido Mevalônico/metabolismo , Fases de Leitura Aberta , Especificidade de Órgãos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia
15.
Molecules ; 22(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023415

RESUMO

3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) is one of the rate-limiting enzymes in the mevalonate pathway as it catalyzes the condensation of acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA. In this study, A HMGS gene (designated as GbHMGS1) was cloned from Ginkgo biloba for the first time. GbHMGS1 contained a 1422-bp open-reading frame encoding 474 amino acids. Comparative and bioinformatics analysis revealed that GbHMGS1 was extensively homologous to HMGSs from other plant species. Phylogenetic analysis indicated that the GbHMGS1 belonged to the plant HMGS superfamily, sharing a common evolutionary ancestor with other HMGSs, and had a further relationship with other gymnosperm species. The yeast complement assay of GbHMGS1 in HMGS-deficient Saccharomyces cerevisiae strain YSC6274 demonstrated that GbHMGS1 gene encodes a functional HMGS enzyme. The recombinant protein of GbHMGS1 was successfully expressed in E. coli. The in vitro enzyme activity assay showed that the kcat and Km values of GbHMGS1 were 195.4 min-1 and 689 µM, respectively. GbHMGS1 was constitutively expressed in all tested tissues, including the roots, stems, leaves, female flowers, male flowers and fruits. The transcript accumulation for GbHMGS1 was highest in the leaves. Expression profiling analyses revealed that GbHMGS1 expression was induced by abiotic stresses (ultraviolet B and cold) and hormone treatments (salicylic acid, methyl jasmonate, and ethephon) in G. biloba, indicating that GbHMGS1 gene was involved in the response to environmental stresses and plant hormones.


Assuntos
Acil Coenzima A/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ginkgo biloba/efeitos dos fármacos , Ginkgo biloba/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico/genética , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Teste de Complementação Genética , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Moleculares , Filogenia , Conformação Proteica , Terpenos/metabolismo
16.
J Hepatol ; 65(2): 377-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151179

RESUMO

BACKGROUND & AIMS: Next generation sequencing approaches have tremendously improved the diagnosis of rare genetic diseases. It may however be faced with difficult clinical interpretation of variants. Inherited enzymatic diseases provide an invaluable possibility to evaluate the function of the defective enzyme in human cell biology. This is the case for respiratory complex III, which has 11 structural subunits and requires several assembly factors. An important role of complex III in liver function is suggested by its frequent impairment in human cases of genetic complex III defects. METHODS: We report the case of a child with complex III defect and acute liver dysfunction with lactic acidosis, hypoglycemia, and hyperammonemia. Mitochondrial activities were assessed in liver and fibroblasts using spectrophotometric assays. Genetic analysis was done by exome followed by Sanger sequencing. Functional complementation of defective fibroblasts was performed using lentiviral transduction followed by enzymatic analyses and expression assays. RESULTS: Homozygous, truncating, mutations in LYRM7 and MTO1, two genes encoding essential mitochondrial proteins were found. Functional complementation of the complex III defect in fibroblasts demonstrated the causal role of LYRM7 mutations. Comparison of the patient's clinical history to previously reported patients with complex III defect due to nuclear DNA mutations, some actually followed by us, showed striking similarities allowing us to propose common pathophysiology. CONCLUSIONS: Profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting leading to severe lactic acidosis, hypoglycemia, and hyperammonemia, potentially leading to irreversible brain damage. LAY SUMMARY: The diagnosis of rare genetic disease has been tremendously accelerated by the development of high throughput sequencing technology. In this paper we report the investigations that have led to identify LYRM7 mutations causing severe hepatic defect of respiratory complex III. Based on the comparison of the patient's phenotype with other cases of complex III defect, we propose that profound complex III defect in liver does not induce actual liver failure but impedes liver adaptation to prolonged fasting.


Assuntos
Jejum , Adaptação Fisiológica , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Fígado , Proteínas Mitocondriais , Respiração
17.
BMC Microbiol ; 16(1): 278, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871246

RESUMO

BACKGROUND: The basidiomycetous yeast Xanthophyllomyces dendrorhous has been described as a potential biofactory for terpenoid-derived compounds due to its ability to synthesize astaxanthin. Functional knowledge of the genes involved in terpenoid synthesis would create opportunities to enhance carotenoid production. A thiolase enzyme catalyzes the first step in terpenoid synthesis. RESULTS: Two potential thiolase-encoding genes were found in the yeast genome; bioinformatically, one was identified as an acetyl-CoA C-acetyltransferase (ERG10), and the other was identified as a 3-ketoacyl Co-A thiolase (POT1). Heterologous complementation assays in Saccharomyces cerevisiae showed that the ERG10 gene from X. dendrorhous could complement the lack of the endogenous ERG10 gene in S. cerevisiae, thereby allowing cellular growth and sterol synthesis. X. dendrorhous heterozygous mutants for each gene were created, and a homozygous POT1 mutant was also obtained. This mutant exhibited changes in pigment composition and higher ERG10 transcript levels than the wild type strain. CONCLUSIONS: The results support the notion that the ERG10 gene in X. dendrorhous is a functional acetyl-CoA C-acetyltransferase essential for the synthesis of mevalonate in yeast. The POT1 gene would encode a functional 3-ketoacyl Co-A thiolase that is non-essential for cell growth, but its mutation indirectly affects pigment production.


Assuntos
Acetil-CoA C-Aciltransferase/genética , Basidiomycota/enzimologia , Basidiomycota/genética , Carotenoides/biossíntese , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Sequência de Bases , Basidiomycota/metabolismo , Vias Biossintéticas , DNA Fúngico/genética , Genes Fúngicos , Engenharia Metabólica/métodos , Mutação , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteróis/biossíntese , Terpenos/metabolismo , Xantofilas/metabolismo
18.
J Eukaryot Microbiol ; 63(4): 536-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26785404

RESUMO

Diatoms are unicellular photoautotrophic algae, which can be found in any aquatic habitat. The main storage carbohydrate of diatoms is chrysolaminarin, a nonlinear ß-glucan, consisting of a linear 1,3-ß-chain with 1,6-ß-branches, which is stored in cytoplasmic vacuoles. The metabolic pathways of chrysolaminarin synthesis in diatoms are poorly investigated, therefore we studied two potential 1,6-ß-transglycosylases (TGS) of the diatom Phaeodactylum tricornutum which are similar to yeast Kre6 proteins and which potentially are involved in the branching of 1,3-ß-glucan chains by adding d-glucose as 1,6-side chains. We genetically fused the full-length diatom TGS proteins to GFP and expressed these constructs in P. tricornutum, demonstrating that the enzymes are apparently located in the vacuoles, which indicates that branching of chrysolaminarin may occur in these organelles. Furthermore, we demonstrated the functionality of the diatom enzymes by expressing TGS1 and 2 proteins in yeast, which resulted in a partial complementation of growth deficiencies of a transglycosylase-deficient ∆kre6 yeast strain.


Assuntos
Diatomáceas/enzimologia , Glicosiltransferases/metabolismo , beta-Glucanas/química , beta-Glucanas/metabolismo , Glicosiltransferases/genética , Proteínas de Fluorescência Verde , Microscopia de Fluorescência , Mutação , Filogenia , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/química , Vacúolos/enzimologia , Vacúolos/ultraestrutura , beta-Glucanas/isolamento & purificação
19.
J Plant Res ; 129(4): 737-748, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26943161

RESUMO

Ammonium is the primarily nitrogen source for plant growth, but the molecular basis of ammonium acquisition in fruit species remains poorly understood. In this study, we report on the characterization of two new ammonium transporters (AMT) in the perennial tree Pyrus betulaefolia. In silico analyses and yeast complementation assays revealed that both PbAMT1;3 and PbAMT1;5 can be classified in the AMT1 sub-family. The specific expression of PbAMT1;3 in roots and of PbAMT1;5 in leaves indicates that they have diverse functions in ammonium uptake or transport in P. betulaefolia. Their expression was strongly influenced by ammonium availability. In addition, the transcript level of PbAMT1;5 was significantly affected by the diurnal cycle and senescence hormones. They conferred the ability to uptake nitrogen to the yeast strain 31019b; however, the (15)NH4 (+) uptake kinetics of PbAMT1;3 were different from those of PbAMT1;5. Indeed, PbAMT1;3 had a higher affinity for (15)NH4 (+), and pH changes were associated with this substrates' transport in yeast. The present study provides basic gene features and transcriptional information for the two new members of the AMT1 sub-family in P. betulaefolia and will aid in decoding the precise roles of AMTs in P. betulaefolia physiology.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Pyrus/genética , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cinética , Nitrogênio/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fotoperíodo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pyrus/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transcrição Gênica/efeitos dos fármacos
20.
Biotechnol Lett ; 38(1): 71-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26334936

RESUMO

OBJECTIVES: Farnesyl diphosphate synthase is a critical enzyme in the isoprenoids biosynthesis pathway responsible for ergosterol and secondary metabolites biosynthesis in fungi. RESULTS: Characterization of fds from Penicillium brevicompactum (Pbfds) was performed using TAIL-PCR and RT-PCR followed by complementation tests in Saccharomyces cerevisiae and determination of its expression profile by semi-quantitative RT-PCR. Promoter analysis suggests some binding sites for transcription factors some of which are involved in fungal growth and response to environmental stress. The Pbfds ORF encodes a cytosolic 39.7 kDa protein with a high conservation among Eurotiomycetes and the highest identity (96 %) with Pen. chrysogenum. Homology-based structural modeling suggests that the PbFDS is formed by the arrangement of 15 core helices around a large central cavity where the catalytic reaction takes place. Superimposition of the predicted 3D structure of the enzyme on its ortholog in human reveals the same folding pattern in the counterparts. CONCLUSION: The Pbfds expression may be stimulated in response to the environmental stresses and fungal growth and encodes the PBFDS--a cytosolic enzyme which with a key role in ergosterol and secondary metabolites biosynthesis.


Assuntos
Clonagem Molecular/métodos , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Penicillium/enzimologia , Sítios de Ligação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Geraniltranstransferase/química , Modelos Moleculares , Penicillium/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA