Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 378, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427103

RESUMO

BACKGROUND: The Ganga River System (GRS) is a biodiversity hotspot, its ecological richness is shaped by a complex geological history. In this study, we examined the genetic diversity, spatial connectivity, and population structure of the Asian Silurid catfish, Wallago attu, across seven tributaries of the GRS. METHODS AND RESULTS: We employed three mitochondrial DNA (mtDNA) regions: cytochrome c oxidase subunit I (COXI), cytochrome b (Cyt b), and control region (CR). Our comprehensive dataset encompassed 2420 bp of mtDNA, derived from 176 W. attu individuals across 19 sampling sites within the seven rivers of GRS. Our findings revealed high gene diversity (Hd:0.99) within W. attu populations. Analysis of Molecular Variance (AMOVA) highlighted that maximum genetic variations were attributed within the populations, and the observed genetic differentiation among the seven populations of W. attu ranged from low to moderate. Network analysis uncovered the presence of three distinct genetic clades, showing no specific association with seven studied rivers. Bayesian skyline plots provided insights into the demographic history of W. attu, suggesting a recent population expansion estimated to have occurred approximately 0.04 million years ago (mya) during the Pleistocene epoch. CONCLUSIONS: These results significantly enhance our understanding of the genetic diversity and spatial connectivity of W. attu, serving as a vital foundation for developing informed conservation strategies and the sustainable management of this economically valuable resource within the Ganga River System.


Assuntos
Peixes-Gato , Rios , Humanos , Animais , DNA Mitocondrial/genética , Peixes-Gato/genética , Teorema de Bayes , Variação Genética/genética , Filogenia , Genética Populacional
2.
Environ Res ; 252(Pt 2): 118902, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609073

RESUMO

Anthropogenic influences significantly modify the hydrochemical properties and material flow in riverine ecosystems across Asia, potentially accounting for 40-50% of global emissions. Despite the pervasive impact on Asian rivers, there is a paucity of studies investigating their correlation with carbon dioxide (CO2) emissions. In this study, we computed the partial pressure of CO2 (pCO2) using the carbonate equilibria-based model (pCO2SYS) and examined its correlation with hydrochemical parameters from historical records at 91 stations spanning 2013-2021 in the Ganga River. The investigation unveiled substantial spatial heterogeneity in the pCO2 across the Ganga River. The pCO2 concentration varied from 1321.76 µatm, 1130.98 µatm, and 1174.33 µatm in the upper, middle, and lower stretch, respectively, with a mean of 1185.29 µatm. Interestingly, the upper stretch exhibited elevated mean pCO2 and FCO2 levels (fugacity of CO2: 3.63 gm2d-1) compared to the middle and lower stretch, underscoring the intricate interplay between hydrochemistry and CO2 dynamics. In the context of pCO2 fluctuations, nitrate concentrations in the upper segment and levels of biological oxygen demand (BOD) and dissolved oxygen (DO) in the middle and lower segments are emerging as crucial explanatory factors. Furthermore, regression tree (RT) and importance analyses pinpointed biochemical oxygen demand (BOD) as the paramount factor influencing pCO2 variations across the Ganga River (n = 91). A robust negative correlation between BOD and FCO2 was also observed. The distinct longitudinal patterns of both parameters may induce a negative correlation between BOD and pCO2. Therefore, comprehensive studies are necessitated to decipher the underlying mechanisms governing this relationship. The present insights are instrumental in comprehending the potential of CO2 emissions in the Ganga River and facilitating riverine restoration and management. Our findings underscore the significance of incorporating South Asian rivers in the evaluation of the global carbon budget.


Assuntos
Dióxido de Carbono , Monitoramento Ambiental , Rios , Rios/química , Dióxido de Carbono/análise , Nitratos/análise , Oxigênio/análise , Ásia , Ásia Meridional
3.
Environ Geochem Health ; 46(9): 336, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060460

RESUMO

Despite continuous efforts, eutrophication is still occurring in freshwater and phosphorus (P) is the most important nutrients that drive the eutrophication in rivers and streams. However, little information is available about the distribution of P fractions in river sediment. Here, the sequential extraction approach was used to evaluate the sediment P fractionation and its content in the anthropogenically damaged river Ganga, India. Different sedimentary P fractions viz. exchangeable (Ex-P), aluminum bound (Al-P), iron bound (Fe-P), calcium bound (Ca-P), and organically bound phosphorus (Org-P), were quantified. Significantly higher level of total P was recorded in pre-monsoon season (438.5 ± 95.8 mg/kg), than other [winter (345.7 ± 110.6 mg/kg), post-monsoon (319.2 ± 136.3 mg/kg), and monsoon (288.6 ± 77.3 mg/kg)] seasons. Different P fractions such as Ex-P, Al-P, Fe-P, Ca-P and Org-P varied from 2.88-12.8 mg/kg, 7.64-98.8 mg/kg, 32.2-179.2 mg/kg, 51.97-286.1 mg/kg and 9.3-143.7 mg/kg, respectively, which correspondingly represented 0.5-10.54%, 3.41-20.18%, 17.27-37.82%, 37.35-60.2%, 4.15-25.88% of the Total P with a rank order of P-fractions was Ca-P > Fe-P > Org-P > Al-P > Ex-P. Bio-available P contributes a considerable portion (37.9-46.0%) of total P which may increase the eutrophication to overlying water. Results demonstrate that inorganic P species control the P bio-availability in both time and space. However, an estimated phosphorus pollution index based on sediment total P content showed no ecological risk of phosphorus to Ganga River sediment.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Fósforo , Rios , Estações do Ano , Poluentes Químicos da Água , Índia , Fósforo/análise , Rios/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental/métodos , Fracionamento Químico , Eutrofização
4.
Environ Geochem Health ; 46(6): 196, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695954

RESUMO

We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.


Assuntos
Carpas , Exposição Dietética , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Rios/química , Medição de Risco , Sedimentos Geológicos/química , Carpas/metabolismo , Humanos , Monitoramento Ambiental/métodos
5.
Environ Monit Assess ; 196(4): 336, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430341

RESUMO

River nutrient enrichment is a significant issue, and researchers worldwide are concerned about phosphorus. The physicochemical characteristics and phosphorus (P) fractions of 36 sediment and water samples from the Ganga (Kanpur, Prayagraj, Varanasi) and Yamuna (Mathura, Agra, Prayagraj) rivers were examined. Among the physicochemical parameters, pH exceeded the permissible limit in Ganga and Yamuna River water and sediment samples. Electrical conductivity (EC) and alkalinity were within the permissible limits, whereas total nitrogen (TN) exceeded the limit in Yamuna water. The analysis of phosphorus fractions indicated the dominance of inorganic phosphorus (IP) (76% in Ganga and 96% in Yamuna) over organic phosphorus in both rivers, suggesting the mineralization and microbial degradation as major processes responsible for transforming OP to IP. The positive correlation of pH with IP, AP (apatite phosphorus), and NAIP (non-apatite inorganic phosphorus) explains the release of inorganic phosphorus under alkaline conditions. The correlation between total organic carbon (TOC), TN, and organic phosphorus (OP) indicated the organic load in the rivers from allochthonous and autochthonous sources. Phosphorus released from river sediments and the concentration of phosphate in overlying river water show a positive correlation, suggesting that river sediments may serve as phosphorus reservoirs. The average phosphorus pollution index (PPI) was above one in both rivers, with relatively higher PPI values observed in the Yamuna River, indicating the contamination of sediment with phosphorus, indicating the contamination of sediment with phosphorus. This study revealed variations in the P fractionation of the sediment in both rivers, primarily as a result of contributions from different P sources. This information will be useful for applying different mitigation techniques to lower the phosphorus load in both river systems.


Assuntos
Rios , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água/análise , Fósforo/análise , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Eutrofização , Índia , Sedimentos Geológicos/análise
6.
Environ Geochem Health ; 45(5): 1807-1818, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35674977

RESUMO

Exponential industrialization and anthropogenic activities have resulted in water contamination by various heavy metals in Kanpur city, India. Heavy metal pollution, an issue of great concern, is not only affecting river water, but contamination of groundwater is creating health issues and worries. In the present investigation, blood samples were collected from selected volunteers, water and sediment samples from four sites of river Ganga and drinking groundwater samples from 23 locations of Kanpur city. Heavy metals analysis in river water, sediment, and human blood, was done by inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) was used for groundwater samples. Human blood showed a high concentration of arsenic (As) (66.6 ± 0.00 and 76.9 ± 0.01 µg L-1 in males and female subjects, respectively) and thallium (Tl) (13.4 ± 0.004 and 16.6 ± 0.005 µg L-1 in males and female subjects, respectively) with higher concentrations in females than males. Other heavy metals (Nickle, Beryllium, Cadmium, Cobalt, Chromium, Lithium, Molybdenum, Lead) were not observed in any of the tested human blood samples. However, in groundwater sampling, iron (Fe), copper (Cu), and arsenic (As) were detected, one sample had the presence of chromium (Cr), and two samples showed lead (Pb) contamination. River water [Cu (32-125 µg L-1), Cr (19-725 µg L-1), Cd (1-59 µg L-1), Pb (37-163 µg L-1), As (32-153 µg L-1), Th (26.75 µg L-1)] showed a high level of the heavy metals, as compared to reference values of BIS, CPCB (2016a), WHO, EPA and USEPA. River sediment [Cu (4168-34,470 µg Kg-1), Cr (4040-145,650 µg Kg-1), Cd (326-5340 µg Kg-1), Pb (1840-19,350 µg Kg-1), As (103-188 µg Kg-1)] also showed high concentration when compared to reference values of USEPA and PASS. River site 4, with high Cr (725 µg L-1), also showed Cr levels (19.8 µg L-1) in the groundwater samples, indicating Cr contamination in groundwater while Pb was observed at groundwater samples close to two industrial sites. Drinking water might be the primary exposure pathway for As and Tl to enter the human body. The study recommends periodic monitoring of river water, sediment, groundwater, and human blood samples for contamination of heavy metals.


Assuntos
Arsênio , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Humanos , Feminino , Arsênio/análise , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Cromo/análise , Água/análise , Índia , Poluentes Químicos da Água/análise , Medição de Risco
7.
World J Microbiol Biotechnol ; 39(11): 294, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656255

RESUMO

A comparative analysis between water and sediment can provide better information to understand the dynamics of the inhabitant microbiome and their respective antibiotic resistance genes of a river. Therefore, the present investigation was carried to explore the limited information available on bacterial microbiome and their predictive antibiotic resistance genes (ARGs) from water and sediment of the Ganga River. The study utilized the NGS-based sequences previously submitted under the accession number (PRJNA847424 and PRJNA892876). Overall analysis revealed that twenty phyla and fifty-four genera were shared between the water and sediment of the Ganga River. Of them, nine phyla and nineteen genera were observed as significantly different (p-value < 0.05). Where the majority of the genera were associated with the sediment samples over the water that identify the sediment samples as more diverse for species richness. Similarly, seventy-six ARGs were shared between water and sediment samples. Of the ten abundant antibiotic resistance pathways, seven were relatively abundant in sediment samples as compared to the water. Vancomycin resistance genes were significantly more abundant among sediment samples, whereas ß-lactam resistance genes were equally distributed in water and sediment samples. The network analysis further revealed that five genera (Flavobacterium, Pseudomonas, Acinetobacter, Candidatus_divison CL5003, and Candidatus_division SWB02) showed a significantly positive correlation with six antibiotic resistance pathways (ß-lactam, vancomycin, multidrug resistance, tetracycline, aminoglycoside, and macrolide resistance pathways). The study comes out with several findings where sediment may be considered as a more atrocious habitat for evolving the resistance mechanisms against threatful antibiotics over the water samples of the Ganga River.


Assuntos
Antibacterianos , Água , Antibacterianos/farmacologia , Rios , Farmacorresistência Bacteriana/genética , Macrolídeos , Vancomicina , Índia
8.
Bull Environ Contam Toxicol ; 111(3): 40, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707629

RESUMO

Here, we quantified sediment phosphorus (P) release in relation to concentrations of dissolved oxygen (DO) and sulphate, and increase in temperature in a major river of India subjected to long-term human perturbations. We found a substantial increase in sediment P release, an ecosystem feedback, at higher concentrations of sulphate, more towards the lower end of DO concentrations. A 2°C warming increased sediment P release upto 25.21% and caused a drop in DO level by 16%. Our findings reconcile the observed sulphate-driven changes in sediment P release across systems, and provide first experimental evidence of warming-induced increases. Our results imply that aquatic ecosystems will undergo self-fertilizing effect as the planet warming interacts with other human perturbations. This has implications for eutrophication linkages and ecosystem functioning.


Assuntos
Ecossistema , Sulfatos , Humanos , Retroalimentação , Rios , Oxigênio , Água
9.
Environ Monit Assess ; 194(7): 469, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648296

RESUMO

Water quality of the Ganga River system is changing day by day due to multifold increase in population, especially near the banks of river Ganga, and associated exponential amplification of anthropogenic activities also played a remarkable role in it. The ecologically important lower and estuarine stretch of river Ganga comprising 7 different sampling stations, i.e., Jangipur, Berhampore, Balagarh, Tribeni, Godakhali, Diamond Harbour and Fraserganj, were selected for the study as the stretch is enriched with the vast number of floral and faunal diversity. The study was conducted for a period of 5 years, i.e., from 2016 to 2020. In the study, various analytical tools and techniques were used for the assessment of riverine water quality, i.e., for calculation of water quality index (WQI); The National Sanitation Foundation Water Quality Index (NSF-WQI) and the Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI) were used for the assessment. Along with WQI various statistical univariate as well as multivariate analytical tools like principal component analysis, correlation, ANOVA, and cluster analysis were also used to achieve the desired outputs. In the study, it has been observed that NSF-WQI varied from 61 to 2552, in which the higher value of NSF-WQI denoted the unsuitability of the water quality concerning the drinking water standards and vice versa. The CCME-WQI represented a similar trend as that of NSF-WQI, as it varied from 18 to 92 in which the lower value denoted degradation in the drinking water quality and vice versa. The study revealed that the Diamond Harbour-Fraserganj stretch is having an undesired level of water quality which were analyzed based on the drinking water guideline values of the Bureau of Indian Standards and that of NSF-WQI and CCME-WQI.


Assuntos
Água Potável , Qualidade da Água , Canadá , Diamante , Monitoramento Ambiental/métodos , Rios
10.
Mol Biol Rep ; 48(1): 315-322, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296067

RESUMO

The Ganges river dolphin, Platanista gangetica gangetica is one of the endangered cetaceans. Due to increasing anthropogenic activities, it has faced a significant reduction in distribution range since the late 1800s and has even gone extinct from most of the early localities. The investigation of complete mitogenome holds significant relevance for identifying evolutionary relationships and monitoring the endangered species. Herein, we report and characterize for the first time the 16,319 bp complete mitochondrial genome of P. g. gangetica. It comprises 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and one control region (CR). The genome composition was A + T biased (59.6%) and exhibited a positive AT-skew (0.104) and negative GC-skew (- 0.384). All the genes were encoded on the heavy strand, except eight tRNAs and the ND6 gene. In the CR, an 18 bp tandem repeat sequence was observed. Our Bayesian Inference (BI) and Maximum Likelihood (ML) based phylogenetic analysis indicated that studied river dolphins were polyphyletic and the placement of Platanista was to be more basal than other river dolphins (Lipotes, Inia and Pontoporia). The pairwise genetic distance of Platanista with other cetaceans was varied, with an overall close affinity with whales. The model-based BI and ML phylogenetic analysis indicated that Platanista clustering with Ziphiidae with high to moderate supportive values (PP/BP = 98/68). The results of this study provide insights important for the conservation genetics and further evolutionary studies of the freshwater river dolphins.


Assuntos
Cetáceos/genética , Golfinhos/genética , Espécies em Perigo de Extinção , Genoma Mitocondrial/genética , Animais , Golfinhos/classificação , Filogenia
11.
Environ Monit Assess ; 192(4): 221, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146574

RESUMO

The deterioration of water quality of river Ganga is a huge concern for Govt. of India. Apart from various pollution sources, the religious and ritualistic activities also have a good share in deteriorating Ganga water quality. Thus, the aim of the present study was to evaluate the changes in physico-chemical properties, microbial diversity and role of bacteriophages in controlling bacterial population of Ganga water during mass ritualistic bathing on the occasion of Maha-Kumbh in 2013. The BOD, COD, hardness, TDS and level of various ions significantly increased, while DO decreased in Ganga water during Maha-Kumbh. Ganga water was more affluent in trace elements than Yamuna and their levels further increased during Maha-Kumbh, which was correlated with decreased level of trace elements in the sediment. The bacterial diversity and evenness were increased and correlated with the number of devotees taking a dip at various events. Despite enormous increase in bacterial diversity during mass ritualistic bathing, the core bacterial species found in pre-Kumbh Ganga water were present in all the samples taken during Kumbh and post-Kumbh. In addition, the alteration in bacterial population during mass bathing was well under 2 log units which can be considered negligible. The study of bacteriophages at different bathing events revealed that Ganga was richer with the presence of bacteriophages in comparison with Yamuna against seven common bacteria found during the Maha-Kumbh. These bacteriophages have played a role in controlling bacterial growth and thus preventing putrefaction of Ganga water. Further, the abundance of trace elements in Ganga water might also be a reason for suppression of bacterial growth. Thus, the current study showed that Ganga has characteristic water quality in terms of physico-chemical property and microbial diversity that might have a role in the reported self-cleansing property of Ganga; however, the increased pollution load has surpassed its self-cleansing properties. Since water has been celebrated in all cultures, the outcome of the current study will not only be useful for the policy maker of cleaning and conservation of Ganga but also for restoration of other polluted rivers all over the world.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Qualidade da Água , Índia , Rios
12.
Environ Monit Assess ; 192(11): 742, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33128645

RESUMO

To assess the risk on human health, heavy metal contamination was analysed from surface water in the Upper Ganga river, India. Spatial and seasonal distribution of Fe, Mn, Zn, Cr and Pb was evaluated at eight sites during pre-monsoon and post-monsoon season of 2017. Average concentration of heavy metals was high, often exceeding the limits prescribed for surface water by Bureau of Indian Standard (BIS) and the World Health Organization (WHO). Based on heavy metal pollution index (HPI), 87% of the river stretch was classified as medium to highly polluted. Simultaneous assessment of the health risk employing chronic daily intake (CDI) and hazard quotient (HQ) indicates that exposure through ingestion and dermal pathways currently poses no serious threat to human health (CDI < 1, HQ < 1). For the two population groups analysed, HQIngestion values for Cr (adults 0.51, child 0.55) and Pb (adult 0.31, child 0.34) were significantly higher as compared with other heavy metals. HIIngestion varied from 0.85 to 1.64 for adult and 0.92 to 1.77 for child group, indicating health risk to both groups with child group being more risk prone from either of the exposure pathways. In addition, HI values revealed an increased risk to health for both groups during the post-monsoon season. Higher hazard index (HI) values (> 1) in the Upper Ganga river indicate an ever-increasing non-carcinogenic risk to the exposed population within the riverine landscape. The study highlights the impact of heavy metals in degrading the water quality of the Upper Ganga river and also advocates immediate attention towards reducing human health risk.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Monitoramento Ambiental , Humanos , Índia , Metais Pesados/análise , Medição de Risco , Rios , Água , Poluentes Químicos da Água/análise
13.
Environ Monit Assess ; 192(12): 744, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141352

RESUMO

In this study, cluster analysis (CA), principal component analysis (PCA) and correlation were applied to access the river water quality status and to understand spatiotemporal patterns in the Ganga River Basin, Uttara Pradesh. The study was carried out using data collected over 12 years (2005-2017) regarding 20 water quality parameters (WQPs) covering spatially from upstream to downstream Ankinghat to Chopan, respectively (20 stations under CWC Middle Ganga Basin). The temporal variations of river water quality were established using the Spearman non-parametric correlation coefficient test (Spearman R). The highest Spearman R (-0.866) was observed for temperature with the season and a very significant p value of (0.0000). The parameters EC, pH, TDS, T, Ca, Cl, HCO3, Mg, NO2 + NO3, SiO2 and DO had a significant correlation with the season (p < 0. 05). K-means clustering algorithm grouped the stations into four different clusters in dry and wet seasons. Based on these clusters, box and whisker plots were generated to study individual clusters in different seasons. The spatial patterns of river WQ on both seasons were examined. PCA was applied to screen out the most significant water quality parameters due to spatial and seasonal variations out of a large data set. It is a data reduction process and a more conventional way of speeding up any machine learning algorithms. A reduced number of three principal components (PCs) were drawn for 20 WQPs with an explained total variance of 75.84% and 80.57% is observed in the dry and wet season, respectively. The parameters DO, EC_ Gen, P-Tot, SO4 are the most dominating parameters with PC score more than 0.8 in the dry season; similarly, TDS, K, COD, Cl, Na, SiO2 in the wet season. The different components of water quality monitoring, such as spatiotemporal patterns, scrutinize the most relevant water quality parameters and monitoring stations are well addressed in this study and could be used for the better management of the Ganga River Basin.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental , Rios , Estações do Ano , Dióxido de Silício , Aprendizado de Máquina não Supervisionado , Poluentes Químicos da Água/análise
14.
Bull Environ Contam Toxicol ; 104(1): 41-48, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31786634

RESUMO

This study evaluated the relationships between metal pollution and carbon production at six sites along a 285 km length of the Ganga River. Metal contaminated sites did show a significant reduction in microbial biomass, substrate induced respiration, fluorescein diacetate hydrolytic assay (FDAase) and ß-D-glucosidase. Concordantly, despite a high concentration of total organic carbon at these sites, CO2 emission at the land-water interface remained low. We found a strong positive correlation between CO2 emission and TOC (r = 0.92; p < 0.001). However, this relationship weakens when the sum of total heavy metal (∑THM) exceed 400 µg g-1. Also, CO2 emission did show a positive correlation (r = 0.85; p < 0.001) with FDAase. The study shows that metal accumulation in riverbed sediment could potentially lead to better carbon sequestration on account of reduced microbial/enzyme activities. This carries significance for riverine carbon budget and modeling.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Biomassa , Índia , Microbiologia da Água
15.
Environ Res ; 178: 108712, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520829

RESUMO

Multiple human perturbations in the large rivers often cause habitat fragmentation creating patches of unpredictable structural and functional attributes. The resilience has been largely neglected in riverine studies, despite its pivotal importance in ecosystem recovery. We expect that a shift in sub-habitat conditions along a river transect subjected to frequent oxygen fluctuation and release of carbon, nutrients and other substances generate feedbacks to overstep the resilience and constrain ecosystem recovery. Because dissolved oxygen (DO) plays a regulatory role in ecosystem structure and functioning and feedbacks the denitrification and sediment-P release, we consider the mechanistic links among DOsw, denitrification and sediment-P release to identify resilience level and to construct a dynamic fit model to uncover the level of resilience and critical transitions in the river. We investigated 180 sites downstream two point sources and two tributaries, each with a 1.4 km river segment, covering 630 km length of the Ganga River. The dynamic fit model intersecting the DOsw at <1.5 mg L-1, sediment-P release >7.03 mg m-2 d-1 and denitrification rate >1.0 mg N m-2 hr-1 at 25 m reach downstream point sources indicated a threat to natural/self-recovery of the Ganga River. The non-metric multidimensional scaling (NMDS) and neighbor-joining analysis indicated that locations up to 700 m downstream Wazidpur drain have overstepped the ecosystem resilience. We found almost similar results downstream Assi drain and study confluences. Our explicit incorporation of DOsw, sediment-P release, and denitrification in an organized framework provides key insights to detect resilience and critical transitions in an anthropogenically impacted river ecosystem. Given the importance of the Ganga River for national water security and supply across several major states in India, research on the factors and status of resilience underpinning its recovery should be high on our national agenda.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água , Ecossistema , Sedimentos Geológicos , Humanos , Hipóxia , Índia , Água
16.
Ecotoxicol Environ Saf ; 171: 709-720, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658307

RESUMO

Dissolved oxygen (DO) plays a major role in sustaining aquatic communities; its concentration and regulatory determinants are considered a key node predicting eutrophy, ecosystem health, and biogeochemical feedbacks. Here we report the status of dissolved oxygen deficit (DOD; hypoxia), and its mechanistic links with sediment oxygen demand (SOD) in the Ganga River. We conducted two independent but interlinked studies during summer low flows of three consecutive years (2016-2018) considering: 1) a 518 km middle segment of the Ganga River between Kanpur upstream and Varanasi downstream; and 2) trajectory analyses downstream two point sources, one flushing industrial effluents (Wazidpur drain) and the other with urban sewage (Assi drain). The concentration of DO at sediment-water interface (DOsw) did appear < 2.0 mg L-1 (hypoxia) at Jjmu; and up to 600 m and 800 m downstream Assi and Wazidpur drain respectively. The DOD at sediment-water interface (DODsw) was highest at Jjmu and did not show a significant decrease up to 300 m downstream to point sources. The SOD which varied between 2.03 and 13.16 (main river stem); 4.39 and 16.81 (Wazidpur drain); and between 2.00 and 13.50 g O2 m-2 d-1 (Assi drain), was found to be a major contributor of DOD. Principal component analysis (PCA) and non-metric multi-dimensional scaling (NMDS) separated DO and alkaline phosphatase (AP) opposite to oxygen-consuming processes and sediment-P release. Using a dynamic fit model, we tested the dependence of sediment-P release on DOsw and DODsw. A large increase in the sediment-P release with increasing DODsw and decreasing DOsw indicated that the system may compromise its resilience in long-term future in terms of self-fertilization and P-eutrophy if the similar magnitude of anthropogenic pressure is continued. The study advances our understanding towards DOD associated habitat fragmentation, ecosystem resilience and niche opportunities useful for recovery and management of the Ganga River.


Assuntos
Sedimentos Geológicos/análise , Oxigênio/análise , Rios/química , Análise da Demanda Biológica de Oxigênio , Monitoramento Ambiental , Índia , Fósforo/análise , Esgotos
17.
J Environ Manage ; 238: 178-193, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851556

RESUMO

In lotic systems, the hydrologic forcing together with structural and functional complexities make it difficult to predict how the river ecosystem will respond to human perturbations. We conducted two sets of studies selecting two segments; a 518 km main river stem, and two point source trajectories at the Ganga River during summer low flow of three consecutive years (2016-2018). The objective was to test if the land-water interface (LWI) of the river serves as a stable testbed for predicting human control on water quality and ecosystem responses. Samples were collected from LWI and complementary locations (50 m reach) from 8 selected sites of the main stem and 15 equidistant locations downstream each point source. Concentrations of carbon, nutrients and heavy metals at LWI varied in concordance with their concentrations in river water and riverbed sediment. Also, the microbial biomass (C, N, and P), activities and extracellular enzymes at LWI showed synchrony with their respective counterparts in riverbed sediment. We found strong positive correlations (p < 0.05-0.001) between these variables at LWI and their counterparts in water/riverbed sediment along the main stem and point source downstream. Our study establishes the credential of LWI for more accurately predicting changes in ecosystem responses to human perturbations. The study will facilitate accurate upscaling intercomparability across varied environmental control on the headwater streams-to-estuaries continuum.


Assuntos
Ecossistema , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Rios , Água
18.
Environ Monit Assess ; 191(7): 414, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31168663

RESUMO

We investigated the distribution of different fractions of eight heavy metals (Zn, Cr, Cu, Pb, Cd, Ni, Fe, and Mn) in the bed sediment of the Ganga River. The study was conducted during summer low flow (March to June 2017) considering a 285-km middle stretch of the Ganga River between the Allahabad upstream and the Varanasi downstream. To assess the metal levels from a toxicological perspective, we tested the relationships between metals and sediment microbial/extracellular enzyme activities. Most of the metals showed a large fraction in residual form. However, Zn, Pb, and Cd showed about 20-30% share in the exchangeable form. The total metal concentration poorly reflected the toxicity but the exchangeable fractions did show strong negative correlations (r = - 0.83 to - 0.63; p < 0.01) with microbial/enzyme activities. Also, the nutrients and organic carbon showed strong positive correlations (r = 0.62 to 0.89; p < 0.001) with microbial/enzyme activity. The phosphate showed a strong negative correlation (r = -0.82; p < 0.001) with alkaline phosphatase. The principal component analysis (PCA) and the indices such as contamination factor (CF), enrichment factor (EF), pollution load index (PLI), geoaccumulation index (Igeo), and risk assessment code (RAC) revealed moderate to severe contamination with strong anthropogenic influence. As per the United States Environmental Protection Agency, the metal concentrations at many locations were in the highly toxic range. The study has relevance from a toxicological perspective and for the management of the Ganga River.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Fracionamento Químico/métodos , Índia , Medição de Risco , Rios/química , Estações do Ano
19.
Ecotoxicol Environ Saf ; 150: 104-115, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29272714

RESUMO

We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), ß-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (ERi) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO2) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Hidrolases/metabolismo , Metais Pesados/toxicidade , Rios/microbiologia , Poluentes Químicos da Água/toxicidade , Fosfatase Alcalina/metabolismo , Ecotoxicologia , Sedimentos Geológicos/química , Glucosidases/metabolismo , Índia , Metais Pesados/análise , Peptídeo Hidrolases/metabolismo , Rios/química , Poluentes Químicos da Água/análise
20.
Environ Monit Assess ; 189(9): 475, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28849425

RESUMO

To determine the possible contributions of point and non-point sources to carbon and nutrient loading in the Ganga River, we analyzed N, P, and organic carbon (OC) in the atmospheric deposits, surface runoff, and in the river along a 37-km stretch from 2013 to 2015. We also assessed the trophic status of the river as influenced by such sources of nutrient input. Although the river N, P, and productivity showed a declining trend with increasing discharge, runoff DOC and dissolved reactive phosphorus (DRP) increased by 88.05 and 122.7% between the Adpr and Rjht sites, indicating contributions from atmospheric deposition (AD) coupled with land use where agriculture appeared to be the major contributor. Point source input led to increased river concentrations of NO3-, NH4+, DRP, and DOC by 10.5, 115.9, 115.2, and 67.3%, respectively. Increases in N, P, and productivity along the gradient were significantly negatively correlated with river discharge (p < 0.001), while river DOC and dissolved silica showed positive relationships. The results revealed large differences in point and non-point sources of carbon and nutrient input into the Ganga River, although these variations were strongly influenced by the seasonality in surface runoff and river discharge. Despite these variations, N and P concentrations were sufficient to enhance phytoplankton growth along the study stretch. Allochthonous input together with enhanced autotrophy would accelerate heterotrophic growth, degrading the river more rapidly in the near future. This study suggests the need for large-scale inter-regional time series data on the point and non-point source partitioning and associated food web dynamics of this major river system.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Análise da Demanda Biológica de Oxigênio , Eutrofização , Índia , Fitoplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA