Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(8): 2068-2083.e11, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33861964

RESUMO

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.


Assuntos
Etnicidade/genética , Saúde da População , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Genômica , Humanos , Autorrelato
2.
Cell ; 177(3): 587-596.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002795

RESUMO

Severe obesity is a rapidly growing global health threat. Although often attributed to unhealthy lifestyle choices or environmental factors, obesity is known to be heritable and highly polygenic; the majority of inherited susceptibility is related to the cumulative effect of many common DNA variants. Here we derive and validate a new polygenic predictor comprised of 2.1 million common variants to quantify this susceptibility and test this predictor in more than 300,000 individuals ranging from middle age to birth. Among middle-aged adults, we observe a 13-kg gradient in weight and a 25-fold gradient in risk of severe obesity across polygenic score deciles. In a longitudinal birth cohort, we note minimal differences in birthweight across score deciles, but a significant gradient emerged in early childhood and reached 12 kg by 18 years of age. This new approach to quantify inherited susceptibility to obesity affords new opportunities for clinical prevention and mechanistic assessment.


Assuntos
Peso Corporal , Herança Multifatorial/genética , Obesidade/patologia , Adolescente , Índice de Massa Corporal , Criança , Bases de Dados Factuais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Índice de Gravidade de Doença
3.
Trends Genet ; 40(7): 587-600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38658256

RESUMO

Population-scale sequencing efforts have catalogued substantial genetic variation in humans such that variant discovery dramatically outpaces interpretation. We discuss how single-cell sequencing is poised to reveal genetic mechanisms at a rate that may soon approach that of variant discovery. The functional genomics toolkit is sufficiently modular to systematically profile almost any type of variation within increasingly diverse contexts and with molecularly comprehensive and unbiased readouts. As a result, we can construct deep phenotypic atlases of variant effects that span the entire regulatory cascade. The same conceptual approach to interpreting genetic variation should be applied to engineering therapeutic cell states. In this way, variant mechanism discovery and cell state engineering will become reciprocating and iterative processes towards genomic medicine.


Assuntos
Variação Genética , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Genômica/métodos , Genoma Humano/genética , Fenótipo
4.
Am J Hum Genet ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959883

RESUMO

Implementation of genomic medicine into healthcare requires a workforce educated through effective educational approaches. However, ascertaining the impact of genomics education activities or resources is limited by a lack of evaluation and inconsistent descriptions in the literature. We aim to support those developing genomics education to consider how best to capture evaluation data that demonstrate program outcomes and effectiveness within scope. Here, we present an evaluation framework that is adaptable to multiple settings for use by genomics educators with or without education or evaluation backgrounds. The framework was developed as part of a broader program supporting genomic research translation coordinated by the Australian Genomics consortium. We detail our mixed-methods approach involving an expert workshop, literature review and iterative expert input to reach consensus and synthesis of a new evaluation framework for genomics education. The resulting theory-informed and evidence-based framework encompasses evaluation across all stages of education program development, implementation and reporting, and acknowledges the critical role of stakeholders and the effects of external influences.

5.
Am J Hum Genet ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959884

RESUMO

A health workforce capable of implementing genomic medicine requires effective genomics education. Genomics education interventions developed for health professions over the last two decades, and their impact, are variably described in the literature. To inform an evaluation framework for genomics education, we undertook an exploratory scoping review of published needs assessments for, and/or evaluations of, genomics education interventions for health professionals from 2000 to 2023. We retrieved and screened 4,659 records across the two searches with 363 being selected for full-text review and consideration by an interdisciplinary working group. 104 articles were selected for inclusion in the review-60 needs assessments, 52 genomics education evaluations, and eight describing both. Included articles spanned all years and described education interventions in over 30 countries. Target audiences included medical specialists, nurses/midwives, and/or allied health professionals. Evaluation questions, outcomes, and measures were extracted, categorized, and tabulated to iteratively compare measures across stages of genomics education evaluation: planning (pre-implementation), development and delivery (implementation), and impact (immediate, intermediate, or long-term outcomes). They are presented here along with descriptions of study designs. We document the wide variability in evaluation approaches and terminology used to define measures and note that few articles considered downstream (long-term) outcomes of genomics education interventions. Alongside the evaluation framework for genomics education, results from this scoping review form part of a toolkit to help educators to undertake rigorous genomics evaluation that is fit for purpose and can contribute to the growing evidence base of the contribution of genomics education in implementation strategies for genomic medicine.

6.
Am J Hum Genet ; 110(12): 2029-2041, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006881

RESUMO

Digital solutions are needed to support rapid increases in the application of genetic/genomic tests (GTs) in diverse clinical settings and patient populations. We developed GUÍA, a bilingual digital application that facilitates disclosure of GT results. The NYCKidSeq randomized controlled trial enrolled diverse children with neurologic, cardiac, and immunologic conditions who underwent GTs. The trial evaluated GUÍA's impact on understanding the GT results by randomizing families to results disclosure genetic counseling with GUÍA (intervention) or standard of care (SOC). Parents/legal guardians (participants) completed surveys at baseline, post-results disclosure, and 6 months later. Survey measures assessed the primary study outcomes of participants' perceived understanding of and confidence in explaining their child's GT results and the secondary outcome of objective understanding. The analysis included 551 diverse participants, 270 in the GUÍA arm and 281 in SOC. Participants in the GUÍA arm had significantly higher perceived understanding post-results (OR = 2.8, CI[1.004, 7.617], p = 0.049) and maintained higher objective understanding over time (OR = 1.1, CI[1.004, 1.127], p = 0.038) compared to SOC. There was no impact on perceived confidence. Hispanic/Latino(a) individuals in the GUÍA arm maintained higher perceived understanding (OR = 3.9, CI[1.603, 9.254], p = 0.003), confidence (OR = 2.7, CI[1.021, 7.277], p = 0.046), and objective understanding (OR = 1.1, CI[1.009, 1.212], p = 0.032) compared to SOC. This trial demonstrates that GUÍA positively impacts understanding of GT results in diverse parents of children with suspected genetic conditions and builds a case for utilizing GUÍA to deliver complex results. Continued development and evaluation of digital applications in diverse populations are critical for equitably scaling GT offerings in specialty clinics.


Assuntos
Revelação , Aconselhamento Genético , Criança , Humanos , Testes Genéticos , Pais , Genômica
7.
Annu Rev Genomics Hum Genet ; 23: 549-567, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35175786

RESUMO

Applications of genomics to population screening are expanding in the United States and internationally. Many of these programs are being implemented in the context of healthcare systems, mostly in a clinical research setting, but there are some emerging examples of clinical models. This review examines these genomic population screening programs to identify common features and differences in screened conditions, genomic technology employed, approach to results disclosure, health outcomes, financial models, and sustainability. The diversity of approaches provides opportunities to learn and better understand the optimal approach to implementation based on the contextual setting.


Assuntos
Genômica , Medicina de Precisão , Humanos , Estados Unidos
8.
Annu Rev Genomics Hum Genet ; 23: 173-192, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35363504

RESUMO

Actionability is an important concept in medicine that does not have a well-accepted standard definition, nor is there a general consensus on how to establish it. Medical actionability is often conflated with clinical utility, a related but distinct concept. This lack of clarity contributes to practice variation and inconsistent coverage decisions in genomic medicine, leading to the potential for systematic bias in the use of evidence-based interventions. We clarify how medical actionability and clinical utility are distinct and then discuss the spectrum of actionability, including benefits for the person, the family, and society. We also describe applications across the life course, including prediction, diagnosis, and treatment. Current challenges in assessing the medical actionability of identified genomic variants include gaps in the evidence, limited contexts with practice guidelines, and subjective aspects of medical actionability. A standardized and authoritative assessment of medical actionability is critical to implementing genomic medicine in a fashion that improves population health outcomes and reduces health disparities.


Assuntos
Genoma Humano , Genômica , Humanos
9.
Annu Rev Genomics Hum Genet ; 23: 613-625, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35363547

RESUMO

Since the completion of the Human Genome Project, considerable progress has been made in translating knowledge about the genetic basis of disease risk and treatment response into clinical services and public health interventions that have greater precision. It is anticipated that more precision approaches to early detection, prevention, and treatment will be developed and will enhance equity in healthcare and outcomes among disparity populations. Reduced access to genomic medicine research, clinical services, and public health interventions has the potential to exacerbate disparities in genomic medicine. The purpose of this article is to describe these challenges to equity in genomic medicine and identify opportunities and future directions for addressing these issues. Efforts are needed to enhance access to genomic medicine research, clinical services, and public health interventions, and additional research that examines the clinical utility of precision medicine among disparity populations should be prioritized to ensure equity in genomic medicine.


Assuntos
Medicina Genômica , Medicina de Precisão , Atenção à Saúde , Genômica , Humanos
10.
Annu Rev Genomics Hum Genet ; 23: 449-473, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35537468

RESUMO

Pharmacogenomic testing can be an effective tool to enhance medication safety and efficacy. Pharmacogenomically actionable medications are widely used, and approximately 90-95% of individuals have an actionable genotype for at least one pharmacogene. For pharmacogenomic testing to have the greatest impact on medication safety and clinical care, genetic information should be made available at the time of prescribing (preemptive testing). However, the use of preemptive pharmacogenomic testing is associated with some logistical concerns, such as consistent reimbursement, processes for reporting preemptive results over an individual's lifetime, and result portability. Lessons can be learned from institutions that have implemented preemptive pharmacogenomic testing. In this review, we discuss the rationale and best practices for implementing pharmacogenomics preemptively.


Assuntos
Farmacogenética , Medicina de Precisão , Genótipo , Humanos , Farmacogenética/métodos , Medicina de Precisão/métodos
11.
Am J Hum Genet ; 109(7): 1308-1316, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700724

RESUMO

Many rare monogenic diseases are known to be caused by deleterious variants in thousands of genes, however the same variants can also be found in people without the associated clinical phenotypes. The penetrance of these monogenic variants is generally unknown in the wider population, as they are typically identified in small clinical cohorts of affected individuals and families with highly penetrant variants. Here, we investigated the phenotypic effect of rare, potentially deleterious variants in genes and loci where similar variants are known to cause monogenic developmental disorders (DDs) in a large population cohort. We used UK Biobank to investigate phenotypes associated with rare protein-truncating and missense variants in 599 monoallelic DDG2P genes by using whole-exome-sequencing data from ∼200,000 individuals and rare copy-number variants overlapping known DD loci by using SNP-array data from ∼500,000 individuals. We found that individuals with these likely deleterious variants had a mild DD-related phenotype, including lower fluid intelligence, slower reaction times, lower numeric memory scores, and longer pairs matching times compared to the rest of the UK Biobank cohort. They were also shorter, had a higher BMI, and had significant socioeconomic disadvantages: they were less likely to be employed or be able to work and had a lower income and higher deprivation index. Our findings suggest that many genes routinely tested within pediatric genetics have deleterious variants with intermediate penetrance that may cause lifelong sub-clinical phenotypes in the general adult population.


Assuntos
Deficiências do Desenvolvimento , Mutação de Sentido Incorreto , Criança , Deficiências do Desenvolvimento/genética , Humanos , Penetrância , Fenótipo , Sequenciamento do Exoma
12.
Crit Rev Clin Lab Sci ; 61(2): 140-163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37815417

RESUMO

The integration of artificial intelligence technologies has propelled the progress of clinical and genomic medicine in recent years. The significant increase in computing power has facilitated the ability of artificial intelligence models to analyze and extract features from extensive medical data and images, thereby contributing to the advancement of intelligent diagnostic tools. Artificial intelligence (AI) models have been utilized in the field of personalized medicine to integrate clinical data and genomic information of patients. This integration allows for the identification of customized treatment recommendations, ultimately leading to enhanced patient outcomes. Notwithstanding the notable advancements, the application of artificial intelligence (AI) in the field of medicine is impeded by various obstacles such as the limited availability of clinical and genomic data, the diversity of datasets, ethical implications, and the inconclusive interpretation of AI models' results. In this review, a comprehensive evaluation of multiple machine learning algorithms utilized in the fields of clinical and genomic medicine is conducted. Furthermore, we present an overview of the implementation of artificial intelligence (AI) in the fields of clinical medicine, drug discovery, and genomic medicine. Finally, a number of constraints pertaining to the implementation of artificial intelligence within the healthcare industry are examined.


Assuntos
Inteligência Artificial , Medicina Genômica , Humanos , Aprendizado de Máquina , Algoritmos , Atenção à Saúde
13.
Cancer Sci ; 115(3): 954-962, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273803

RESUMO

In Japan, comprehensive genomic profiling (CGP) tests have been reimbursed under the national health care system for solid cancer patients who have finished standard treatment. More than 50,000 patients have taken the test since June 2019. We performed a nation-wide questionnaire survey between March 2021 and July 2022. Questionnaires were sent to 80 designated Cancer Genomic Medicine Hospitals. Of the 933 responses received, 370 (39.7%) were web based and 563 (60.3%) were paper based. Most patients (784, 84%) first learned about CGP tests from healthcare professionals, and 775 (83.1%) gave informed consent to their treating physician. At the time of informed consent, they were most worried about test results not leading to novel treatment (536, 57.4%). On a scale of 0-10, 702 respondents (75.2%) felt that the explanations of the test result were easy to understand (7 or higher). Ninety-one patients (9.8%) started their recommended treatment. Many patients could not receive recommended treatment because no approved drugs or clinical trials were available (102/177, 57.6%). Ninety-eight patients (10.5%) did not wish their findings to be disclosed. Overall satisfaction with the CGP test process was high, with 602 respondents (64.5%) giving a score of 7-10. The major reason for choosing 0-6 was that the CGP test result did not lead to new treatment (217/277, 78.3%). In conclusion, satisfaction with the CGP test process was high. Patients and family members need better access to information. More patients need to be treated with genomically matched therapy.


Assuntos
Medicina Genômica , Neoplasias , Humanos , Japão , Neoplasias/genética , Neoplasias/terapia , Programas Nacionais de Saúde , Inquéritos e Questionários
14.
Annu Rev Genomics Hum Genet ; 22: 1-24, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-33792358

RESUMO

Genomic information is poised to play an increasing role in clinical care, extending beyond highly penetrant genetic conditions to less penetrant genotypes and common disorders. But with this shift, the question of clinical utility becomes a major challenge. A collaborative effort is necessary to determine the information needed to evaluate different uses of genomic information and then acquire that information. Another challenge must also be addressed if that process is to provide equitable benefits: the lack of diversity of genomic data. Current genomic knowledge comes primarily from populations of European descent, which poses the risk that most of the human population will be shortchanged when health benefits of genomics emerge. These two challenges have defined my career as a geneticist and have taught me that solutions must start with dialogue across disciplinary and social divides.


Assuntos
Genômica , Medicina de Precisão , Humanos , Grupos Populacionais
15.
Genet Med ; : 101177, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38855852

RESUMO

PURPOSE: Critically ill infants from marginalized populations disproportionately receive care in neonatal intensive care units (NICUs) that lack access to state-of-the-art genomic care, leading to inequitable outcomes. We sought provider perspectives to inform our implementation study (VIGOR) providing rapid genomic sequencing within these settings. METHODS: We conducted semi-structured focus groups with neonatal and genetics providers at five NICUs at safety-net hospitals, informed by the Promoting Action on Research Implementation in Health Services framework, which incorporates evidence, context, and facilitation domains. We iteratively developed codes and themes until thematic saturation was reached. RESULTS: Regarding evidence, providers felt that genetic testing benefits infants and families. Regarding context, the major barriers identified to genomic care were genetic testing cost, lack of genetics expertise for disclosure and follow-up, and navigating the complexity of selecting and ordering genetic tests. Providers had negative feelings about the current status quo and inequity in genomic care across NICUs. Regarding facilitation, providers felt that a virtual support model like VIGOR would address major barriers and foster family-centered care and collaboration. CONCLUSION: NICU providers at safety-net hospitals believe that access to state-of-the-art genomic care is critical for optimizing infant outcomes, yet substantial barriers exist that the VIGOR study may address.

16.
Genet Med ; 26(6): 101102, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38431799

RESUMO

PURPOSE: Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS: The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS: We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION: To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.


Assuntos
Sequenciamento do Exoma , Testes Genéticos , Populações Vulneráveis , Humanos , Feminino , Masculino , Testes Genéticos/métodos , Adulto , Pessoa de Meia-Idade , Área Carente de Assistência Médica , Exoma/genética , Acessibilidade aos Serviços de Saúde , Adolescente , Genômica/métodos , Adulto Jovem , Idoso
17.
Mol Syst Biol ; 19(8): e11407, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37232043

RESUMO

How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.


Assuntos
Aprendizado de Máquina , Doenças Raras , Humanos , Doenças Raras/genética , Medição de Risco , Causalidade
18.
Brain ; 146(12): 5098-5109, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516995

RESUMO

Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% 'solved' and ∼13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Doenças Neuromusculares , Doenças do Sistema Nervoso Periférico , Humanos , Doenças Neuromusculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , DNA
19.
Int J Clin Oncol ; 29(2): 89-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112833

RESUMO

BACKGROUND: Precision medicine has transformed cancer treatment by focusing on personalized approaches based on genomic abnormalities. However, comprehensive genomic profiling (CGP) and access to targeted therapies are limited in Japan. This study investigates the BELIEVE trial, which aims to improve drug accessibility for patients with actionable genetic abnormalities through off-label drug administration. METHODS: The BELIEVE trial is a platform trial with a single master protocol, conducted under the Clinical Trials Act and the patient-proposed health services (PPHS) scheme. Eligible patients with solid tumors exhibiting actionable alterations were enrolled, and CGP tests covered by national health insurance were employed. Treatment selection, study drugs from collaborating pharmaceutical companies, and treatment schedules adhered to predefined protocols. Primary and secondary endpoints were evaluated, and statistical analysis was conducted based on patient response rates. RESULTS: The BELIEVE trial offered treatment opportunities for patients with relapse/refractory disease who lacked standard therapies or clinical trial options. This study addresses unmet medical needs and contributes to the establishment of precision medicine systems. Similar trials like NCI-MATCH and TAPUR are being conducted globally. The BELIEVE trial provides a platform for off-label drug administration, collects essential clinical data, and contributes to drug approval applications. CONCLUSION: The BELIEVE trial provides hope for patients with actionable genetic abnormalities by facilitating access to targeted therapies through off-label drug administration. It establishes a regulatory framework and promotes collaboration between industry and academia by expanding organ-specific and cross-organ biomarker-based treatments.


Assuntos
Neoplasias , Uso Off-Label , Humanos , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas , Genômica/métodos , Atenção à Saúde
20.
Cancer Sci ; 114(4): 1710-1717, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601953

RESUMO

Comprehensive cancer genome profiling (CGP) has been nationally reimbursed in Japan since June 2019. Less than 10% of the patients have been reported to undergo recommended treatment. Todai OncoPanel (TOP) is a dual DNA-RNA panel as well as a paired tumor-normal matched test. Two hundred patients underwent TOP as part of Advanced Medical Care B with approval from the Ministry of Health, Labour and Welfare between September 2018 and December 2019. Tests were carried out in patients with cancers without standard treatment or when patients had already undergone standard treatment. Data from DNA and RNA panels were analyzed in 198 and 191 patients, respectively. The percentage of patients who were given therapeutic or diagnostic recommendations was 61% (120/198). One hundred and four samples (53%) harbored gene alterations that were detected with the DNA panel and had potential treatment implications, and 14 samples (7%) had a high tumor mutational burden. Twenty-two samples (11.1%) harbored 30 fusion transcripts or MET exon 14 skipping that were detected by the RNA panel. Of those 30 transcripts, 6 had treatment implications and 4 had diagnostic implications. Thirteen patients (7%) were found to have pathogenic or likely pathogenic germline variants and genetic counseling was recommended. Overall, 12 patients (6%) received recommended treatment. In summary, patients benefited from both TOP DNA and RNA panels while following the same indication as the approved CGP tests. (UMIN000033647).


Assuntos
Genômica , Neoplasias , Humanos , Japão , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA