Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int Microbiol ; 27(2): 571-580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37523041

RESUMO

Host gut microbiomes play an important role in animal health and resilience to conditions, such as malnutrition and starvation. These host-microbiome relationships are poorly understood in the marine mussel Perna canaliculus, which experiences significant variations in food quantity and quality in coastal areas. Prolonged starvation may be a contributory factor towards incidences of mass mortalities in farmed mussel populations, resulting in highly variable production costs and unreliable market supplies. Here, we examine the gut microbiota of P. canaliculus in response to starvation and subsequent re-feeding using high-throughput amplicon sequencing of the 16S rRNA gene. Mussels showed no change in bacterial species richness when subjected to a 14-day starvation, followed by re-feeding/recovery. However, beta bacteria diversity revealed significant shifts (PERMANOVA p-value < 0.001) in community structure in the starvation group and no differences in the subsequent recovery group (compared to the control group) once they were re-fed, highlighting their recovery capability and resilience. Phylum-level community profiles revealed an elevation in dominance of Proteobacteria (ANCOM-BC p-value <0.001) and Bacteroidota (ANCOM-BC p-value = 0.04) and lower relative abundance of Cyanobacteria (ANCOM-BC p-value = 0.01) in the starvation group compared to control and recovery groups. The most abundant genus-level shifts revealed relative increases of the heterotroph Halioglobus (p-value < 0.05) and lowered abundances of the autotroph Synechococcus CC9902 in the starvation group. Furthermore, a SparCC correlation network identified co-occurrence of a cluster of genera with elevated relative abundance in the starved mussels that were positively correlated with Synechococcus CC9902. The findings from this work provide the first insights into the effect of starvation on the resilience capacity of Perna canaliculus gut microbiota, which is of central importance to understanding the effect of food variation and limitation in farmed mussels.


Assuntos
Microbioma Gastrointestinal , Perna (Organismo) , Resiliência Psicológica , Animais , RNA Ribossômico 16S/genética , Bactérias/genética
2.
Mar Drugs ; 18(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114125

RESUMO

Greenshell™ mussel (GSM, Perna canaliculus) is New Zealand's most important aquaculture species. They are a good source of long chain-polyunsaturated fatty acids (n-3 LC PUFA). Beyond a traditional food product, GSMs are also sold as mussel powders and oil extract formats in the nutraceutical markets. In this study, a four-sequence, single dose, randomized crossover human trial with eight evaluable healthy male participants was undertaken to determine the bioavailability of the n-3 LC PUFA in four different GSM formats (oil, powder, food ingredient and half-shell unprocessed whole mussel) by measuring area under the curve (AUC) and maximal concentration (CMax). Blood samples were collected at baseline and up to 48 h after initiation of product consumption in each administration period. There were minor differences between the bioavailability of FA (fatty acid) between the different GSM formats. Eicosapentaenoic acid (EPA) peak concentrations and plasma exposures were significantly lower with GSM oil compared to GSM half-shell and GSM powder formats, which resulted in AUC0-48 for the intake of GSM half-shell mussel and GSM powder being significantly higher than that for GSM oil (p = 0.013, f= 4.84). This equated to a 20.6% and 24.3% increase in the amount of EPA present in the plasma after consumption of half-shell mussels and mussel powder respectively compared to GSM oil. GSM oil produced the shortest median time to maximal plasma n-3 LC PUFA concentration of all evaluated products demonstrated by a shorter maximum measured plasma concentration (TMax = 5 h). Docosahexaenoic acid (DHA) and n-3 LC PUFA plasma exposure parameters were statistically comparable across the four GSM products evaluated.


Assuntos
Bivalves/química , Lipídeos/farmacocinética , Administração Oral , Adulto , Animais , Disponibilidade Biológica , Estudos Cross-Over , Composição de Medicamentos , Humanos , Lipídeos/administração & dosagem , Lipídeos/química , Masculino , Adulto Jovem
3.
J Sci Food Agric ; 94(6): 1149-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24022835

RESUMO

BACKGROUND: Aquacultured green lipped mussel (Perna canaliculus) is the New Zealand export leader of seafood in terms of weight. Different treatments shrink mussel meat differently and affect the consumer perception of half-shelled mussels. In order to quantify this, digital images of half-shelled green lipped mussels subjected to two postharvest treatments (ultrahigh pressure (UHP) and heat treatment (HT)) and raw controls were taken. The ratio of the view area of the meat to that of the shell (labelled as 'visual condition index' (VCI)) was measured using image analysis. A polygonal region of interest was defined on the image to depict the boundary of the meat and to calculate the view area. RESULTS: Raw mussels had a VCI of 85%. HT mussels had a much reduced VCI of 41%, indicating shrinkage of the meat due to heat. UHP treatment used as a shucking method resulted in a VCI of 83%. Since VCI is one measure of quality for the consumer, this quantitative method can be used in the optimization of shucking treatment (HT or UHP). CONCLUSION: VCI can be used to optimize postharvest treatments to minimize meat shrinkage. This method can also be applied to other shellfish such as oysters and clams.


Assuntos
Análise de Alimentos/métodos , Manipulação de Alimentos/métodos , Temperatura Alta , Perna (Organismo) , Pressão , Frutos do Mar/análise , Animais , Aquicultura , Comportamento do Consumidor , Dieta , Humanos , Nova Zelândia , Frutos do Mar/normas
4.
Sci Total Environ ; : 177066, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447897

RESUMO

The decline in coastal shellfish populations, attributed to anthropogenic stressors such as harvesting via dredging, can deplete the seabed of vital biogenic habitat. This removal of shellfish significantly reduces habitat complexity, biodiversity, and the hard substrate required for the natural recovery of some key species. A common method for oyster restoration involves deploying oyster shell material to provide habitat and substrate for settling larval oysters. In contrast, hard substrate is not required for the mussel lifecycle and as a result the deployment of mussel shell for seabed restoration has received minimal attention, with the effects of reintroducing this material poorly understood. Deploying mussel shell material has the potential to aid in ecosystem recovery, including reviving seabed biodiversity, especially in areas that have been depleted of shellfish via damaging methods such as dredging. This study aimed to investigate the ecosystem effects of returning mussel shells onto two locations with differing soft sediment (sand and mud) in areas historically subjected to excessive dredging of mussel populations and sedimentation. Within 2 years 4 months the infaunal taxa richness was higher in the shell areas compared to the reference areas in both locations, while abundance of infauna was higher in only the sand location and infaunal diversity did not differ at either location. Epifaunal diversity was also higher in the shell area compared to the reference areas at both locations, while the abundance and richness did not differ. Few significant differences were seen in benthic biogeochemical variables between the reference and shell areas and those observed were likely the result of the addition of the shell material changing the sediment composition. These findings demonstrate that mussel shells are a restoration tool that can enhance epifaunal biodiversity and infaunal taxa richness in soft sediment ecosystems historically impacted by shellfish overharvesting and sedimentation.

5.
J Trace Elem Med Biol ; 74: 127071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116231

RESUMO

BACKGROUND: A period of seismic activity starting in 2010 coincided with a decline in commercial catches of wild seed mussels in a major aquaculture production region of New Zealand. Analyses of over 40 years of mussel seed catch data from in the Pelorus and Kenepuru Sounds, confirmed a marked decline since 2010 in catches of the preferred, green-lipped mussel (Perna canaliculus), the larvae of which is known to have low tolerance of heavy metals in seawater. METHODS: Heavy metal mean concentrations were measured throughout the Pelorus and Kenepuru Sounds. The concentrations ranged from < 0.60-3.24, < 16.94-74.35, < 1.47-4.00, 2.23-19.02, 1.86-3.29 and 0.12-0.52 µg L-1 for Cr, Fe, Cu, Zn, As, and Cd, respectively. Seawater from six locations in the Sounds, historically associated with high commercial catches of settling mussel larvae, was used for experimental rearing of green-lipped mussel larvae. RESULTS: No mussel embryos survived when incubated in these seawater samples. The mean concentrations of Cr, Fe, As, and Cd were significantly higher in the seawater from the Sounds than in the hatchery seawater. A higher concentration of one or a combination of these heavy metals could be the cause of the poor larval survival. These findings could be crucial for the sustainability of mussel farming in the area.


Assuntos
Metais Pesados , Perna (Organismo) , Poluentes Químicos da Água , Animais , Cádmio/análise , Monitoramento Ambiental , Larva , Metais Pesados/análise , Água do Mar , Poluentes Químicos da Água/análise
6.
Toxins (Basel) ; 14(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35622588

RESUMO

Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world's protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Animais , Peixes , Nova Zelândia , Frutos do Mar
7.
Front Nutr ; 9: 1000510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211508

RESUMO

Introduction: Pharmaceutical drugs are beneficial to inflammatory conditions but with side effects, which led to the search for alternative therapies. Perna canaliculus, the New Zealand green-lipped mussel, have shown promise in placebo-controlled trials for inflammatory conditions. Fucoidan, an extract from seaweed Undaria pinnatifida, has been found to have beneficial effects on joint pain and insulin resistance. However, green-lipped mussel and fucoidan have never been combined. Methods and analysis: A parallel, two-arm, double-blind, randomized, placebo-controlled trial will be conducted in New Zealand to determine whether a food product supplemented with green-lipped mussel and fucoidan improves joint pain and/or insulin resistance. Those who are ethnically Chinese, are aged over 30 years, have prediabetes and hip or knee joint pain will be eligible to participate. They will be randomized at 1:1 ratio to consume either dark chocolate supplemented with 1000 mg mussel powder and 1000 mg fucoidan or dark chocolate with no active substances daily for 100 days. The primary endpoints are change in insulin resistance and patient-reported joint pain. Secondary endpoints include anthropometry, fasting glucose and insulin, HbA1c, inflammatory markers, satiety, quality of life, physical function, pain intensity, and analgesic medication use. A sample size of 150 (75 per arm) will provide 90% power at an overall significance level of 5% (two-sided) to detect a standardized effect size of 0.625 on either of the two co-primary outcomes allowing for 10% loss. Ethics and dissemination: The study was approved by the Health and Disability Ethics Committee (number: 20/STH/153). Results will be made available to participants, funders, and other researchers. Discussion: This trial will provide data on the potential utility of a mussel-fucoidan supplement in reducing joint pain and/or insulin resistance, to inform the development of a supplemented food product suitable for the Chinese market. Clinical trial registration: https://trialsearch.who.int/Trial2.aspx?TrialID=ACTRN12621000413820, ANZCTR Registration: ACTRN12621000413820, on 15 April 2021.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA