Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511329

RESUMO

Malaria is a devastating mosquito-borne parasitic disease that manifests when Plasmodium parasites replicate within red blood cells. During the development within the red blood cell, the parasite digests hemoglobin and crystalizes the otherwise toxic heme. The resulting hemozoin crystals limit imaging by STED nanoscopy owing to their high light-absorbing capacity, which leads to immediate cell destruction upon contact with the laser. Here, we establish CUBIC-P-based clearing of hemozoin crystals, enabling whole-cell STED nanoscopy of parasites within red blood cells. Hemozoin-cleared infected red blood cells could reliably be stained with antibodies, and hence proteins in the hemozoin-containing digestive vacuole membrane, as well as in secretory vesicles of gametocytes, could be imaged at high resolution. Thus, this process is a valuable tool to study and understand parasite biology and the potential molecular mechanisms mediating drug resistance. This article has an associated First Person interview with the first author of the paper.


Assuntos
Antimaláricos , Malária , Parasitos , Plasmodium , Humanos , Animais , Microscopia , Malária/parasitologia , Plasmodium/metabolismo , Eritrócitos , Plasmodium falciparum , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico
2.
Infect Immun ; 91(1): e0030422, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36622216

RESUMO

In the acidic lysosome-like digestive vacuole, Plasmodium parasites crystallize heme from hemoglobin into hemozoin, or malaria pigment. Upon release of progeny merozoites, the residual hemozoin is phagocytized by macrophages principally in the liver and spleen where the heme crystals can persist for months to years, as heme oxygenase does not readily degrade the crystal. Previous studies demonstrated hemozoin modulation of monocytes and macrophages. Hemozoin modulates immune function activity of monocytes/macrophages. Here, we used purified/washed hemozoin (W-Hz) isolated from murine Plasmodium berghei infections and intravenously (i.v.) injected it back into naive mice. We characterized the modulating effect of W-Hz on liver-stage replication. Purified washed hemozoin decreases P. berghei liver levels both at 1 week and 1 month after i.v. injection in a dose and time dependent fashion. The injected hemozoin fully protected in nine out of 10 mice given a 50 sporozoite inoculum, and in 10 out of 10 mice against 2,000 sporozoites when they were infected an hour or a day after hemozoin inoculation. DNase treatment at the hemozoin reversed the observed liver load reduction. The liver load reduction was similar in mature B- and T-cell-deficient RAG-1 knockout (KO) mice suggesting an innate immune protection mechanism. This work indicates a role for residual hemozoin in down modulation of Plasmodium liver stages.


Assuntos
Malária , Camundongos , Animais , Camundongos Endogâmicos BALB C , Plasmodium berghei/genética , Esporozoítos , Fígado , Heme/metabolismo , DNA/metabolismo
3.
Malar J ; 22(1): 125, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060041

RESUMO

BACKGROUND: Although pro-inflammatory cytokines are involved in the clearance of Plasmodium falciparum during the early stages of the infection, increased levels of these cytokines have been implicated in the pathogenesis of severe malaria. Amongst various parasite-derived inducers of inflammation, the malarial pigment haemozoin (Hz), which accumulates in monocytes, macrophages and other immune cells during infection, has been shown to significantly contribute to dysregulation of the normal inflammatory cascades. METHODS: The direct effect of Hz-loading on cytokine production by monocytes and the indirect effect of Hz on cytokine production by myeloid cells was investigated during acute malaria and convalescence using archived plasma samples from studies investigating P. falciparum malaria pathogenesis in Malawian subjects. Further, the possible inhibitory effect of IL-10 on Hz-loaded cells was examined, and the proportion of cytokine-producing T-cells and monocytes during acute malaria and in convalescence was characterized. RESULTS: Hz contributed towards an increase in the production of inflammatory cytokines, such as Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF) and Interleukin 2 (IL-2) by various cells. In contrast, the cytokine IL-10 was observed to have a dose-dependent suppressive effect on the production of TNF among other cytokines. Cerebral malaria (CM) was characterized by impaired monocyte functions, which normalized in convalescence. CM was also characterized by reduced levels of IFN-γ-producing T cell subsets, and reduced expression of immune recognition receptors HLA-DR and CD 86, which also normalized in convalescence. However, CM and other clinical malaria groups were characterized by significantly higher plasma levels of pro-inflammatory cytokines than healthy controls, implicating anti-inflammatory cytokines in balancing the immune response. CONCLUSIONS: Acute CM was characterized by elevated plasma levels of pro-inflammatory cytokines and chemokines but lower proportions of cytokine-producing T-cells and monocytes that normalize during convalescence. IL-10 is also shown to have the potential to indirectly prevent excessive inflammation. Cytokine production dysregulated by the accumulation of Hz appears to impair the balance of the immune response to malaria and exacerbates pathology.


Assuntos
Malária Cerebral , Malária Falciparum , Humanos , Interleucina-10 , Convalescença , Citocinas , Fator de Necrose Tumoral alfa , Interferon gama , Plasmodium falciparum , Macrófagos/metabolismo , Inflamação
4.
Exp Parasitol ; 255: 108653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951390

RESUMO

The common bed bug Cimex lectularius (Linnaeus 1758) is an ectoparasite that feeds preferably on human blood, being considered an important public health issue. Blood-feeding is a challenging process for hematophagous organisms, and one of the inherent risks with this kind of diet is the liberation of high doses of free heme after the digestion of hemoglobin. In order to deal with this potent cytotoxic agent, such organisms have acquired different defense mechanisms. Here, we use UV-visible spectrophotometry and infrared spectroscopy to show that C. lectularius crystalizes free heme to form the much less dangerous compound, hemozoin. According to our results, the peak of formation of hemozoin in the intestinal contents occurred 4-5 days after the blood meal, primarily in the posterior midgut. The quantification of the rate of conversion of heme to hemozoin revealed that at the end of digestion all the heme was in the form of hemozoin. Inhibition of the synthesis of hemozoin using the anti-malarial drug quinine led to an increase in both catalase activity in the intestinal epithelium and the mortality of the bed bugs, indicating that the insects were unable to cope with the oxidative stress generated by the overload of free heme. The data presented here show for the first time how C. lectularius deals with free heme, and how the process of formation of hemozoin is essential for the survival of these insects. Since resistance to insecticides is a common feature among field populations of bed bugs, there is an urgent need to develop alternative control methods. Thus, targeting the synthesis of hemozoin emerges as a possible novel strategy to fight bed bugs.


Assuntos
Percevejos-de-Cama , Ectoparasitoses , Hemeproteínas , Inseticidas , Animais , Humanos , Percevejos-de-Cama/fisiologia , Heme , Inseticidas/farmacologia
5.
Proc Natl Acad Sci U S A ; 117(28): 16546-16556, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601225

RESUMO

During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.


Assuntos
Heme/metabolismo , Lipocalinas/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Hemeproteínas/genética , Hemeproteínas/metabolismo , Humanos , Lipocalinas/química , Lipocalinas/genética , Malária/metabolismo , Camundongos , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
6.
J Biol Chem ; 296: 100123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33239360

RESUMO

Malaria is a pervasive disease that affects millions of lives each year in equatorial regions of the world. During the erythrocytic phase of the parasite life cycle, Plasmodium falciparum invades red blood cells, where it catabolizes hemoglobin and sequesters the released toxic heme as innocuous hemozoin crystals. Artemisinin (ART)-class drugs are activated in vivo by newly released heme, which creates a carbon-centered radical that markedly reduces parasite density. Radical damage to parasite lipids and proteins is perceived to be ARTs' dominant mechanism of action. By contrast, quinoline-class antimalarials inhibit the formation of hemozoin and in this way suppress heme detoxification. Here, we combine malaria parasite assays and scanning probe microscopy of growing ß-hematin crystals to elucidate an unexpected mechanism employed by two widely administered antimalarials, ART, and artesunate to subdue the erythrocytic phase of the parasite life cycle. We demonstrate that heme-drug adducts, produced after the radical activation of ARTs and largely believed to be benign bystanders, potently kills P. falciparum at low exogenous concentrations. We show that these adducts inhibit ß-hematin crystallization and heme detoxification, a pathway which complements the deleterious effect of radicals generated via parent drug activation. Our findings reveal an irreversible mechanism of heme-ART adduct inhibition of heme crystallization, unique among antimalarials and common crystal growth inhibitors, that opens new avenues for evaluating drug dosing regimens and understanding growing resistance of P. falciparum to ART.


Assuntos
Artemisininas/química , Artemisininas/farmacologia , Hemeproteínas/metabolismo , Plasmodium falciparum/patogenicidade , Cristalização , Hemina , Humanos , Malária/metabolismo , Microscopia de Força Atômica , Plasmodium falciparum/efeitos dos fármacos
7.
Exp Parasitol ; 243: 108384, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36154837

RESUMO

Protein-ligand (GOLD) docking of the NCI compounds into the ligand-binding site of Plasmodium falciparum adenosine deaminase (PfADA) identified three most active azo compounds containing 4-[(4-hydroxy-2-oxo-1H-quinolin-3-yl) moiety. These compounds showed IC50 of 3.7-15.4 µM against PfADA, as well as inhibited the growth of P. falciparum strains 3D7 (chloroquine (CQ)-sensitive) and K1 (CQ-resistant) with IC50 of 1.8-3.1 and 1.7-3.6 µM, respectively. The identified compounds have structures similar to the backbone structure (4-N-(7-chloroquinolin-4-yl)) in CQ, and NSC45545 could mimic CQ by inhibiting the bioformation of hemozoin in parasitic food vacuole. The amount of in situ hemozoin in the ring-stage parasite was determined using a combination of synchrotron transmission Fourier transform infrared microspectroscopy and Principal Component Analysis. Stretching of the C-O bond of hemozoin propionate group measured at 1220-1210 cm-1 in untreated intraerythrocytic P. falciparum strains 3D7 and K1 was disappeared following treatment with 1.85 and 1.74 µM NSC45545, similar to those treated with 0.02 and 0.13 µM CQ, respectively. These findings indicate a novel dual function of 4-[(4-hydroxy-2-oxo-1H-quinolin-3-yl) azo compounds in inhibiting both PfADA and in situ hemozoin biocrystallization. These lead compounds hold promise for further development of new antimalarial therapeutics that could delay the onset of parasitic drug resistance.


Assuntos
Inibidores de Adenosina Desaminase , Antimaláricos , Compostos Azo , Plasmodium falciparum , Adenosina Desaminase , Antimaláricos/farmacologia , Compostos Azo/farmacologia , Biomineralização , Cloroquina/farmacologia , Resistência a Medicamentos , Ligantes , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Adenosina Desaminase/farmacologia
8.
Proc Natl Acad Sci U S A ; 116(46): 22946-22952, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659055

RESUMO

The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cells with nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug's efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Cristalização , Eritrócitos/química , Eritrócitos/metabolismo , Heme/química , Heme/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Plasmodium falciparum/fisiologia
9.
Parasitol Res ; 121(1): 441-451, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34778907

RESUMO

A series of heterocyclic chloroquine hybrids containing either a ß-phenethylamine fragment or a 2-aminoindane moiety were synthesized and screened in vitro as inhibitors of ß-hematin formation and in vivo for their antimalarial activity against chloroquine-sensitive strains of Plasmodium berghei ANKA. Although these new compounds were not found to be more active than chloroquine in vivo, all new compounds significantly reduced heme crystallization with IC50 values < 1 µM. Compounds 12 and 13 were able to inhibit heme crystallization with IC50 values of 0.39 ± 0.09 and 0.48 ± 0.02 µM, respectively, and these values were comparable to that of chloroquine with an IC50 value of 0.18 ± 0.03. It was also determined that the physicochemical and pharmacokinetic properties were moderately favorable after in silico evaluation, derivatives 8 and 10 did not present hepatotoxicity, and the in vitro hemolytic activity against red blood cells was found to be low. Spectral (infrared, nuclear magnetic resonance, and elemental analysis) data for all final compounds were consistent with the proposed structures.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Humanos , Malária/tratamento farmacológico , Plasmodium berghei , Plasmodium falciparum
10.
BMC Biol ; 19(1): 159, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380472

RESUMO

BACKGROUND: Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite's survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. RESULTS: Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. CONCLUSIONS: We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway.


Assuntos
Malária Falciparum , Plasmodium falciparum , Eritrócitos , Heme , Hemeproteínas , Humanos , Fosfolipases , Fosfolipídeos
11.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335120

RESUMO

The rich source of heme within malarial parasites has been considered to underly the action specificity of artemisinin. We reasoned that increasing intraparasitic free heme levels might further sensitize the parasites to artemisinin. Various means, such as modulating heme synthesis, degradation, polymerization, or hemoglobin digestion, were tried to boost intracellular heme levels, and under several scenarios, free heme levels were significantly augmented. Interestingly, all results arrived at the same conclusion, i.e., elevating heme acted in a strongly negative way, impacting the antimalarial action of artemisinin, but exerted no effect on several other antimalarial drugs. Suppression of the elevated free heme level by introducing heme oxygenase expression effectively restored artemisinin potency. Consistently, zinc protoporphyrin IX/zinc mesoporphyrin, as analogues of heme, drastically increased free heme levels and, concomitantly, the EC50 values of artemisinin. We were unable to effectively mitigate free heme levels, possibly due to an unknown compensating heme uptake pathway, as evidenced by our observation of efficient uptake of a fluorescent heme homologue by the parasite. Our results thus indicate the existence of an effective and mutually compensating heme homeostasis network in the parasites, including an uncharacterized heme uptake pathway, to maintain a certain level of free heme and that augmentation of the free heme level negatively impacts the antimalarial action of artemisinin. Importance: It is commonly believed that heme is critical in activating the antimalarial action of artemisinins. In this work, we show that elevating free heme levels in the malarial parasites surprisingly negatively impacts the action of artemisinin. We tried to boost free heme levels with various means, such as by modulating heme synthesis, heme polymerization, hemoglobin degradation and using heme analogues. Whenever we saw elevation of free heme levels, reduction in artemisinin potency was also observed. The homeostasis of heme appears to be complex, as there exists an unidentified heme uptake pathway in the parasites, nullifying our attempts to effectively reduce intraparasitic free heme levels. Our results thus indicate that too much heme is not good for the antimalarial action of artemisinins. This research can help us better understand the biological properties of this mysterious drug.


Assuntos
Antimaláricos , Artemisininas , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Artemisininas/metabolismo , Artemisininas/farmacologia , Heme/metabolismo , Plasmodium falciparum
12.
Indian J Public Health ; 66(4): 522-523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37039188

RESUMO

The challenges in malaria diagnosis continue to threaten the malaria elimination goal in India and other malaria-endemic countries. A rapid diagnostic test (RDT) kit is widely used in resource-constrained areas where microscopy and molecular methods are not easily deployable. Considering the problems associated with the currently available RDT kit, such as histidine-rich protein 2 gene deletion and prolonged stability of the protein in the blood, it suggests that new potential biomarkers are urgently needed. Hemozoin (Hz) is an important biomarker for malaria diagnosis, which is the by-product of a detoxification mechanism in the malaria parasite. This article highlights the importance of "Hz" for point-of-care malaria diagnosis when India and other countries are moving toward the goal of malaria elimination.


Assuntos
Malária , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Sistemas Automatizados de Assistência Junto ao Leito , Antígenos de Protozoários/genética , Índia , Malária/diagnóstico , Biomarcadores
13.
Artigo em Inglês | MEDLINE | ID: mdl-33495226

RESUMO

Artemisinin (ART)-based antimalarial drugs are believed to exert lethal effects on malarial parasites by alkylating a variety of intracellular molecular targets. Recent work with live parasites has shown that one of the alkylated targets is free heme within the parasite digestive vacuole, which is liberated upon hemoglobin catabolism by the intraerythrocytic parasite, and that reduced levels of heme alkylation occur in artemisinin-resistant parasites. One implication of heme alkylation is that these drugs may inhibit parasite detoxification of free heme via inhibition of heme-to-hemozoin crystallization; however, previous reports that have investigated this hypothesis present conflicting data. By controlling reducing conditions and, hence, the availability of ferrous versus ferric forms of free heme, we modify a previously reported hemozoin inhibition assay to quantify the ability of ART-based drugs to target the heme detoxification pathway under reduced versus oxidizing conditions. Contrary to some previous reports, we find that artemisinins are potent inhibitors of hemozoin crystallization, with effective half-maximal concentrations approximately an order of magnitude lower than those for most quinoline-based antimalarial drugs. We also examine hemozoin and in vitro parasite growth inhibition for drug pairs found in the most commonly used ART-based combination therapies (ACTs). All ACTs examined inhibit hemozoin crystallization in an additive fashion, and all but one inhibit parasite growth in an additive fashion.


Assuntos
Antimaláricos , Artemisininas , Hemeproteínas , Preparações Farmacêuticas , Antimaláricos/farmacologia , Artemisininas/farmacologia , Heme , Plasmodium falciparum
14.
Bioorg Chem ; 115: 105215, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358799

RESUMO

Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.


Assuntos
Alcaloides/farmacologia , Antimaláricos/farmacologia , Pantoea/química , Plasmodium falciparum/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
15.
IEEE Trans Magn ; 57(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35813117

RESUMO

We have designed, developed and evaluated an innovative portable magneto-optical detector (MOD) in which a light beam with variable polarization passes through a fluid sample immersed in a variable magnetic field. The light intensity is measured downstream along the forward scattering direction. The field is turned on and off through the in-and-out motion of nearby permanent magnets. As a result, for sufficiently magnetically and optically anisotropic samples, the optical absorption is sensitive to changes in the light polarization. Both detection and characterization applications are therefore available. For instance, both the degree of malaria infection can be measured and hemozoin crystalline properties can be studied. We present experimental results for synthetic hemozoin, and describe them in terms of the basic physics and chemistry underlying the correlations of the directions of the external magnetic field and the light beam polarization. We connect this work to a commercialized product for malaria detection and compare it to other magneto-optical instruments and methods. We conduct tests of absorption parameters, the electric polarizability tensor, and we discuss the connection to magnetic and electric dipole moments.

16.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32307798

RESUMO

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , DNA Fúngico/efeitos dos fármacos , Hemeproteínas/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cresóis/química , Cresóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Hemeproteínas/metabolismo , Humanos , Metalocenos/química , Metalocenos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química
17.
Magn Reson Med ; 84(6): 3366-3378, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602953

RESUMO

PURPOSE: Malaria is a global health problem with the most malignant form caused by Plasmodium falciparum (P. falciparum). Parasite maturation in red blood cells (RBCs) is accompanied by changes including the formation of paramagnetic hemozoin (HZ) nanocrystals, and increased metabolism and variation in membrane lipid composition. Herein, MR relaxometry (MRR) was applied to investigate water exchange across RBCs' membrane and HZ formation in parasitized RBCs. METHODS: Transverse water protons relaxation rate constants (R2 = 1/T2 ) were measured for assessing HZ formation in P. falciparum-parasitized human RBCs. Moreover, water exchange lifetimes across the RBC membrane (τi ) were assessed by measuring longitudinal relaxation rate constants (R1 = 1/T1 ) at 21.5 MHz in the presence of a gadolinium complex dissolved in the suspension medium. RESULTS: τi increased after invasion of parasites (ring stage, mean τi / τi0 = 1.234 ± 0.022) and decreased during maturation to late trophozoite (mean τi / τi0 = 0.960 ± 0.075) and schizont stages (mean τi / τi0 = 1.019 ± 0.065). The HZ accumulation in advanced stages was revealed by T2 -shortening. The curves reporting R2 (1/T2 ) vs. magnetic field showed different slopes for non-parasitized RBCs (npRBCs) and parasitized RBCs (pRBCs), namely 0.003 ± 0.001 for npRBCs, 0.009 ± 0.002, 0.028 ± 0.004 and 0.055 ± 0.002 for pRBCs at ring-, early trophozoite-, and late trophozoite stage, respectively. Antimalarial molecules dihydroartemisinin and chloroquine elicited measurable changes in parasitized RBCs, namely dihydroartemisinin modified τi , whereas the interference of chloroquine with HZ formation was detectable by a significant T2 increase. CONCLUSIONS: MRR can be considered a useful tool for reporting on P. falciparum blood stages and for screening potential antimalarial molecules.


Assuntos
Antimaláricos , Malária Falciparum , Eritrócitos , Humanos , Plasmodium falciparum , Suspensões
18.
Cell Commun Signal ; 18(1): 157, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972437

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in China. The lack of an effective treatment for this disease results in a high recurrence rate in patients who undergo radical tumor resection, and the 5-year survival rate of these patients remains low. Our previous studies demonstrated that Plasmodium infection provides a potent antitumor effect by inducing innate and adaptive immunity in a murine Lewis lung carcinoma (LLC) model. METHODS: This study aimed to investigate the inhibitory effect of Plasmodium infection on hepatocellular carcinoma in mice, and various techniques for gene expression analysis were used to identify possible signal regulation mechanisms. RESULTS: We found that Plasmodium infection efficiently inhibited tumor progression and prolonged survival in tumor-bearing mice, which served as a murine implanted hepatoma model. The inhibition of tumor progression by Plasmodium infection was related to suppression of tumor angiogenesis within the tumor tissue and decreased infiltration of tumor-associated macrophages (TAMs). Further study demonstrated that matrix metalloprotease 9 (MMP-9) produced by TAMs contributed to tumor angiogenesis in the tumor tissue and that the parasite-induced reduction in MMP-9 expression in TAMs resulted in the suppression of tumor angiogenesis. A mechanistic study revealed that the Plasmodium-derived hemozoin (HZ) that accumulated in TAMs inhibited IGF-1 signaling through the PI3-K and MAPK signaling pathways and thereby decreased the expression of MMP-9 in TAMs. CONCLUSIONS: Our study suggests that this novel approach of inhibiting tumor angiogenesis by Plasmodium infection is of high importance for the development of new therapies for cancer patients. Video abstract.


Assuntos
Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/parasitologia , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/parasitologia , Malária/complicações , Neovascularização Patológica/patologia , Neovascularização Patológica/parasitologia , Macrófagos Associados a Tumor/patologia , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hemeproteínas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases , Metaloproteinase 9 da Matriz/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Receptor IGF Tipo 1/metabolismo , Análise de Sobrevida
19.
BMC Infect Dis ; 20(1): 65, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964363

RESUMO

BACKGROUND: The immune response during falciparum malaria mediates both harmful and protective effects on the host; however the participating molecules have not been fully defined. Interleukin (IL)-27 is a pleiotropic cytokine exerting both inflammatory and anti-inflammatory effects, but data on IL-27 in malaria patients are scarce. METHODS: Clinical data and blood samples were collected from adults in Mozambique with P. falciparum infection, with (n = 70) and without (n = 61) HIV-1 co-infection, from HIV-infected patients with similar symptoms without malaria (n = 58) and from healthy controls (n = 52). In vitro studies were performed in endothelial cells and PBMC using hemozoin crystals. Samples were analyzed using enzyme immunoassays and quantitative PCR. RESULTS: (i) IL-27 was markedly up-regulated in malaria patients compared with controls and HIV-infected patients without malaria, showing no relation to HIV co-infection. (ii) IL-27 was correlated with P. falciparum parasitemia and von Willebrand factor as a marker of endothelial activation, but not with disease severity. (iii) In vitro, IL-27 modulated the hemozoin-mediated cytokine response in endothelial cells and PBMC with enhancing effects on IL-6 and attenuating effects on IL-8. CONCLUSION: Our findings show that IL-27 is regulated during falciparum malaria, mediating both inflammatory and anti-inflammatory effects, potentially playing an immune-regulatory role during falciparum malaria.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/imunologia , Coinfecção/imunologia , HIV-1 , Interleucinas/sangue , Interleucinas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Coinfecção/sangue , Estudos Transversais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Feminino , Hemeproteínas/farmacologia , Humanos , Interleucinas/genética , Interleucinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Malária Falciparum/sangue , Masculino , Pessoa de Meia-Idade , Moçambique , Parasitemia/imunologia , Estudos Prospectivos , Adulto Jovem
20.
Bioorg Chem ; 104: 104243, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920360

RESUMO

A library of 33 polymethoxylated flavones (PMF) was evaluated for heme-binding affinity by biomimetic MS assay and in vitro antiplasmodial activity on two strains of P. falciparum. Stability of heme adducts was discussed using the dissociation voltage at 50% (DV50). No correlation was observed between the methoxylation pattern and the antiparasitic activity, either for the 3D7 chloroquine-sensitive or for the W2 chloroquine-resistant P. falciparum strains. However, in each PMF family an increased DV50 was observed for the derivatives methoxylated in position 5. Measurement of intra-erythrocytic hemozoin formation of selected derivatives was performed and hemozoin concentration was inversely correlated with heme-binding affinity. Kaempferol showed no influence on hemozoin formation, reinforcing the hypothesis that this compound may exert in vitro antiplasmodial activity mostly through other pathways. Pentamethoxyquercetin has simultaneously demonstrated a significant biological activity and a strong interaction with heme, suggesting that inhibition of hemozoin formation is totally or partially responsible for its antiparasitic effect.


Assuntos
Antimaláricos/farmacologia , Flavonoides/farmacologia , Heme/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavonoides/síntese química , Flavonoides/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA