RESUMO
The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.
Assuntos
Dictyostelium , Mycobacterium marinum , Mycobacterium , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Congelamento , Microscopia EletrônicaRESUMO
BACKGROUND AND AIMS: Byblis liniflora (Byblidaceae) is a carnivorous plant that has developed sticky fly paper traps with two types of glandular trichomes producing digestive enzymes and sticky mucilage. This study aimed to analyze the ultrastructure of these glandular leaf trichomes based on rapid freeze fixation and conventional chemical fixation in the attempt to understand their functional contribution to the carnivorous performance of the plants. METHODS: The Byblis cells were studied in TEM, SEM and STEM using cryo techniques for fixation and substitution in addition to conventional chemical fixation. KEY RESULTS: We show in detail the architecture of both the digestive glands and the mucilage glands with their relevant sets of organelles. Both mitochondria and plastids have a conspicuous plasticity, with branches and constrictions, and they associate to form clusters. The glandular cells appear to be transfer cells with cell wall ingrowths. Digestive glands occur in different states of development. Their cuticle forms discontinuities which are unique among glands of carnivorous plants. They look like cuticular holes -- the cuticle separates from the cell wall in only one spot and then ruptures. Cuticular discontinuities thus differ from cuticular gaps and cuticular pores so far described in carnivorous plants. We therefore propose for them the term cuticular holes. CONCLUSIONS: Application of cryo-techniques made it possible to show the true structure of the cell wall and the relationship between cell wall ingrowths and organelles, as well as the morphology and structure of organelles and their associations.
RESUMO
Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.
Assuntos
Citoesqueleto de Actina , Arabidopsis , Cloroplastos , Luz , Cloroplastos/fisiologia , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Adiantum/fisiologia , Adiantum/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Actinas/metabolismo , MovimentoRESUMO
BACKGROUND: The development of nanoscale secondary ion mass spectrometry (NanoSIMS) has revolutionized the study of biological tissues by enabling, e.g., the visualization and quantification of metabolic processes at subcellular length scales. However, the associated sample preparation methods all result in some degree of tissue morphology distortion and loss of soluble compounds. To overcome these limitations an entirely cryogenic sample preparation and imaging workflow is required. RESULTS: Here, we report the development of a CryoNanoSIMS instrument that can perform isotope imaging of both positive and negative secondary ions from flat block-face surfaces of vitrified biological tissues with a mass- and image resolution comparable to that of a conventional NanoSIMS. This capability is illustrated with nitrogen isotope as well as trace element mapping of freshwater hydrozoan Green Hydra tissue following uptake of 15N-enriched ammonium. CONCLUSION: With a cryo-workflow that includes vitrification by high pressure freezing, cryo-planing of the sample surface, and cryo-SEM imaging, the CryoNanoSIMS enables correlative ultrastructure and isotopic or elemental imaging of biological tissues in their most pristine post-mortem state. This opens new horizons in the study of fundamental processes at the tissue- and (sub)cellular level. TEASER: CryoNanoSIMS: subcellular mapping of chemical and isotopic compositions of biological tissues in their most pristine post-mortem state.
Assuntos
Microscopia Crioeletrônica , Microscopia Eletrônica de VarreduraRESUMO
Programmed cell death (PCD) in lateral root caps (LRCs) is crucial for maintaining root cap functionality. Endoplasmic reticulum (ER) bodies play important roles in plant immunity and PCD. However, the distribution of ER bodies and their communication with vacuoles in the LRC remain elusive. In this study, we investigated the ultrastructure of LRC cells of wild-type and transgenic Arabidopsis lines using an auto-acquisition transmission electron microscope (TEM) system and high-pressure freezing. Gigapixel-scale high-resolution TEM imaging of the transverse and longitudinal sections of roots followed by three-dimensional imaging identified sausage-shaped structures budding from the ER. These were subsequently identified as ER bodies using GFPh transgenic lines expressing green fluorescent protein (GFP) fused with an ER retention signal (HDEL). Immunogold labeling using an anti-GFP antibody detected GFP signals in the ER bodies and vacuoles. The fusion of ER bodies with vacuoles in LRC cells was identified using correlative light and electron microscopy. Imaging of the root tips of a GFPh transgenic line with a PYK10 promoter revealed the localization of PYK10, a member of the ß-glucosidase family with an ER retention signal, in the ER bodies in the inner layer along with a fusion of ER bodies with vacuoles in the middle layer and collapse of vacuoles in the outer layer of the LRC. These findings suggest that ER bodies in LRC directly transport ß-glucosidases to the vacuoles, and that a subsequent vacuolar collapse triggered by an unknown mechanism releases protective substances to the growing root tip to protect it from the invaders.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Vacúolos/metabolismo , Retículo Endoplasmático/metabolismo , Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/metabolismoRESUMO
Self-pressurised rapid freezing (SPRF) has been proposed as a simple alternative to traditional high-pressure freezing (HPF) protocols for vitrification of biological samples in electron microscopy and cryopreservation applications. Both methods exploit the circumstance that the melting point of ice reaches a minimum when subjected to pressure of around 210 MPa, however, in SPRF its precise quantity depends on sample properties and hence, is generally unknown. In particular, cryoprotective agents (CPAs) are expected to be a factor; though eschewed by many SPRF experiments, vitrification of larger samples notably cannot be envisaged without them. Thus, in this study, we address the question of how CPA concentration affects pressure inside sealed capillaries, and how to design SPRF experiments accordingly. By embedding a fibre-optic probe in samples and performing Raman spectroscopy after freezing, we first present a direct assessment of pressure build-up during SPRF, enabled by the large pressure sensitivity of the Raman shift of hexagonal ice. Choosing dimethyl sulphoxide (DMSO) as a model CPA, this approach allows us to demonstrate that average pressure drops to zero when DMSO concentrations of 15 wt% are exceeded. Since a trade-off between pressure and DMSO concentration represents an impasse with regard to vitrification of larger samples, we introduce a sample architecture with two chambers, separated by a partition that allows for equilibration of pressure but not DMSO concentrations. We show that pressure and concentration in the fibre-facing chamber can be tuned independently, and present differential scanning calorimetry (DSC) data supporting the improved vitrification performance of two-chamber designs. Lay version of abstract for 'Self-pressurised rapid freezing at arbitrary cryoprotectant concentrations' Anyone is familiar with pipes bursting in winter because the volume of ice is greater than that of liquid water. Less well known is the fact that inside a thick-walled container, sealed and devoid of air bubbles, this pressure build-up will allow a fraction of water to remain unfrozen if the sample is also cooled sufficiently rapidly far below the freezing point. This phenomenon has already been harnessed for specimen preparation in microscopy, where low temperatures are useful to immobilise the sample, but harmful if ice formation occurs. However, specimen preparation cannot always rely on this pressure-based effect alone, but sometimes requires addition of chemicals to inhibit ice formation. Not enough is known directly about how these chemicals affect pressure build-up: Indeed, rapid cooling below the freezing point is only possible for small sample volumes, typically placed inside sealed capillaries, so that space is generally insufficient to accommodate a pressure sensor. By means of a compact sensor, based on an optical fibre, laser and spectrometer, we present the first direct assessment of pressure inside sealed capillaries. We show that addition of chemicals reduces pressure build-up and present a two-chambered capillary to circumvent the resulting trade-off. Also, we present evidence showing that the two-chambered capillary design can avoid ice formation more readily than a single-chambered one.
RESUMO
Electron microscopy (EM) volume reconstruction is a powerful tool for investigating the fundamental structure of brain circuits, but the full potential of this technique is limited by the difficulty of integrating molecular information. High quality ultrastructural preservation is necessary for EM reconstruction, and intact, highly contrasted cell membranes are essential for following small neuronal processes through serial sections. Unfortunately, the antibody labeling methods used to identify most endogenous molecules result in compromised morphology, especially of membranes. Cryofixation can produce superior morphological preservation and has the additional advantage of allowing indefinite storage of valuable samples. We have developed a method based on cryofixation that allows sensitive immunolabeling of endogenous molecules, preserves excellent ultrastructure, and is compatible with high-contrast staining for serial EM reconstruction.
Assuntos
Encéfalo , Criopreservação , Microscopia Imunoeletrônica , Congelamento , Criopreservação/métodos , Hidratação , Substituição ao Congelamento/métodosRESUMO
Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/metabolismo , Sinapses/metabolismo , Junção Neuromuscular/metabolismo , Criopreservação/métodos , Microscopia Eletrônica , Proteínas de Drosophila/metabolismoRESUMO
Megapinosomes are endocytic organelles found in human macrophage colony-stimulating factor (M-CSF) monocyte-derived M macrophages. They are large (several microns) and have a complex internal structure that is connected with the cytosol and consists of interconnected knots and concave bridges with sizes in the range of 100 nm. We called this structure trabecular meshwork. The luminal part of the megapinosome can be connected with luminal tubules and cisterns that form the megapinosome complex. The structures are especially well visible in scanning electron tomography when macrophages are prepared by high-pressure freezing and freeze substitution. Our research received a new impulse after studying the literature on hematopoietic cells, where very similar, most likely homologous, structures have been published in peritoneal macrophages as well as in megakaryocytes and blood platelets. In platelets, they serve as membrane storage that is used for structural changes of platelets during activation.
Assuntos
Endocitose , Macrófagos , Megacariócitos , Humanos , Malha TrabecularRESUMO
Cryo-electron tomography (cryo-ET) provides a promising approach to study intact structures of macromolecules in situ, but the efficient preparation of high-quality cryosections represents a bottleneck. Although cryo-focused ion beam (cryo-FIB) milling has emerged for large and flat cryo-lamella preparation, its application to tissue specimens remains challenging. Here, we report an integrated workflow, VHUT-cryo-FIB, for efficiently preparing frozen hydrated tissue lamella that can be readily used in subsequent cryo-ET studies. The workflow includes vibratome slicing, high-pressure freezing, ultramicrotome cryo-trimming and cryo-FIB milling. Two strategies were developed for loading cryo-lamella via a side-entry cryo-holder or an FEI AutoGrid. The workflow was validated by using various tissue specimens, including rat skeletal muscle, rat liver and spinach leaf specimens, and in situ structures of ribosomes were obtained at nanometer resolution from the spinach and liver samples.
Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Congelamento , Íons , Substâncias MacromolecularesRESUMO
Structural changes of two patient-derived glioblastoma cell lines after Zika virus infection were investigated using scanning transmission electron tomography on high-pressure-frozen, freeze-substituted samples. In Zika-virus-infected cells, Golgi structures were barely visible under an electron microscope, and viral factories appeared. The cytosol outside of the viral factories resembled the cytosol of uninfected cells. The viral factories contained largely deranged endoplasmic reticulum (ER), filled with many so-called replication organelles consisting of a luminal vesicle surrounded by the ER membrane. Viral capsids were observed in the vicinity of the replication organelles (cell line #12537 GB) or in ER cisternae at large distance from the replication organelles (cell line #15747 GB). Near the replication organelles, we observed many about 100-nm-long filaments that may represent viral ribonucleoprotein complexes (RNPs), which consist of the RNA genome and N protein oligomers. In addition, we compared Zika-virus-infected cells with cells infected with a phlebovirus (sandfly fever Turkey virus). Zika virions are formed in the ER, whereas phlebovirus virions are assembled in the Golgi apparatus. Our findings will help to understand the replication cycle in the virus factories and the building of the replication organelles in glioblastoma cells.
Assuntos
Retículo Endoplasmático/metabolismo , Glioblastoma/metabolismo , Glioblastoma/virologia , Organelas/metabolismo , Ribonucleoproteínas/metabolismo , Zika virus/metabolismo , Tomografia com Microscopia Eletrônica , Humanos , Células Tumorais Cultivadas , Replicação ViralRESUMO
AIMS: The objective of this study was to elucidate the early white matter changes in CADASIL small vessel disease. METHODS: We used high-pressure freezing and freeze substitution (HPF/FS) in combination with high-resolution electron microscopy (EM), immunohistochemistry and confocal microscopy of brain specimens from control and CADASIL (TgNotch3R169C ) mice aged 4-15 months to study white matter lesions in the corpus callosum. RESULTS: We first optimised the HPF/FS protocol in which samples were chemically prefixed, frozen in a sample carrier filled with 20% polyvinylpyrrolidone and freeze-substituted in a cocktail of tannic acid, osmium tetroxide and uranyl acetate dissolved in acetone. EM analysis showed that CADASIL mice exhibit significant splitting of myelin layers and enlargement of the inner tongue of small calibre axons from the age of 6 months, then vesiculation of the inner tongue and myelin sheath thinning at 15 months of age. Immunohistochemistry revealed an increased number of oligodendrocyte precursor cells, although only in older mice, but no reduction in the number of mature oligodendrocytes at any age. The number of Iba1 positive microglial cells was increased in older but not in younger CADASIL mice, but the number of activated microglial cells (Iba1 and CD68 positive) was unchanged at any age. CONCLUSION: We conclude that early WM lesions in CADASIL affect first and foremost the myelin sheath and the inner tongue, suggestive of a primary myelin injury. We propose that those defects are consistent with a hypoxic/ischaemic mechanism.
Assuntos
CADASIL/patologia , Corpo Caloso/ultraestrutura , Substituição ao Congelamento , Bainha de Mielina/ultraestrutura , Animais , Corpo Caloso/patologia , Substituição ao Congelamento/métodos , Camundongos , Bainha de Mielina/patologia , Substância Branca/patologiaRESUMO
The desire to study macromolecular complexes within their cellular context requires the ability to produce thin samples suitable for cryo-TEM (cryo-transmission electron microscope) investigations. In this paper, we discuss two similar approaches, which were developed independently in Utrecht (the Netherlands) and Albany (USA). The methods are particularly suitable for both tissue samples and cell suspensions prepared by a high-pressure freezer (HPF). The workflows are explained with particular attention to potential pitfalls, while underlying principles are highlighted ('why to do so'). Although both workflows function with a high success rate, full execution requires considerable experience and remains demanding. In addition, throughput is low. We hope to encourage other research groups worldwide to take on the challenge of improving the HPF- cryo-FIB-SEM - cryo-TEM workflow. We discuss a number of suggestions to this end. LAY DESCRIPTION: Life is ultimately dictated by the interaction of molecules in our bodies. Highly complex equipment is being used and further developed to study these interactions. The present paper describes methods to prepare small, very thin lamellae (area of 5×5 µm2 , thickness 50-300 nm) of a cell to be studied in a cryo-transmission electron microscope (cryo-TEM). Special care must be taken to preserve the natural state of molecules in their natural environment. In the case of cryo-TEM, the samples must be frozen and kept frozen to be compatible with the vacuum conditions in the microscope. The frozen condition imposes technical challenges which are addressed. Two approaches to obtain the thin lamellae are described. Both make use of a focused ion beam (FIB) microscope. The FIB allows removal of material with nanometre precision by focusing a beam of ionised atoms (gallium ions) onto the sample. Careful control of the FIB allows cutting out of the required thin lamellae. In both strategies, the thin lamellae remain attached to the original sample, and the ensemble of sample with section and sample holder is transported from the FIB microscope to the TEM while being kept frozen.
Assuntos
Gálio/química , Íons/química , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica , Congelamento , Fluxo de TrabalhoRESUMO
The membrane domain of eukaryotic HMG-CoA reductase (HMGR) has the conserved capacity to induce endoplasmic reticulum (ER) proliferation and membrane association into Organized Smooth Endoplasmic Reticulum (OSER) structures. These formations develop in response to overexpression of particular proteins, but also occur naturally in cells of the three eukaryotic kingdoms. Here, we characterize OSER structures induced by the membrane domain of Arabidopsis HMGR (1S domain). Immunochemical confocal and electron microscopy studies demonstrate that the 1S:GFP chimera co-localizes with high levels of endogenous HMGR in several ER compartments, such as the ER network, the nuclear envelope, the outer and internal membranes of HMGR vesicles and the OSER structures, which we name ER-HMGR domains. After high-pressure freezing, ER-HMGR domains show typical crystalloid, whorled and lamellar ultrastructural patterns, but with wide heterogeneous luminal spaces, indicating that the native OSER is looser and more flexible than previously reported. The formation of ER-HMGR domains is reversible. OSER structures grow by incorporation of ER membranes on their periphery and progressive compaction to the inside. The ER-HMGR domains are highly dynamic in their formation versus their disassembly, their variable spherical-ovoid shape, their fluctuating borders and their rapid intracellular movement, indicating that they are not mere ER membrane aggregates, but active components of the eukaryotic cell.
Assuntos
Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/ultraestrutura , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Arabidopsis , Proteínas de Arabidopsis/química , Retículo Endoplasmático/metabolismo , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/química , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Domínios ProteicosRESUMO
Whipworms of the genus Trichuris are nematode parasites that infect mammals and can lead to various intestinal diseases of human and veterinary interest. The most intimate interaction between the parasite and the host intestine occurs through the anterior region of the nematode body, inserted into the intestinal mucosa during infection. One of the most prominent structures of the nematode surface found at the infection site is the bacillary band, a surface domain formed by a number of cells, mostly stichocytes and bacillary glands, whose structure and function are still under debate. Here, we used confocal microscopy, field emission scanning electron microscopy, helium ion microscopy, transmission electron microscopy and FIB-SEM tomography to unveil the functional role of the bacillary gland cell. We analyzed the surface organization as well as the intracellular milieu of the bacillary glands of Trichuris muris in high pressure frozen/freeze-substituted samples. Results showed that the secretory content is preserved in all gland openings, presenting a projected pattern. FIB-SEM analysis showed that the lamellar zone within the bacillary gland chamber is formed by a set of lacunar structures that may exhibit secretory or absorptive functions. In addition, incubation of parasites with the fluid phase endocytosis marker sulforhodamine B showed a time-dependent uptake by the parasite mouth, followed by perfusion through different tissues with ultimate secretion through the bacillary gland. Taken together, the results show that the bacillary gland possess structural characteristics of secretory and absorptive cells and unequivocally demonstrate that the bacillary gland cell functions as a secretory structure.
Assuntos
Trichuris/fisiologia , Animais , Endocitose/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodosRESUMO
The megapinosome is an endocytic cell organel that we observed in human macrophages with electron microscopy. In a previous work we showed that it is formed by an endocytic event that we called megapinocytosis. The megapinosome is filled with a membrane surrounded trabecular meshwork that is topologically part of the cytosol. In this work we used scanning transmission electron tomography on high pressure frozen and freeze substituted human macrophages in order to unravel the three-dimensional structure of both the megapinosome and the adjacent structures. The megapinosome consists of the trabecular meshwork and the lacunae which are connected with and topologically equivalent to the cytosol. The surrounding lumen is topologically equivalent to the structures of the vesicular pathway. In addition, we show the connections of the trabecular meshwork with the cytosol and the connection of the megapinosomes to a complex tubular and cisternal system covering a large part of the macrophages that we named megapinosome complex. We assume that our methodological approach, based on high pressure freezing from a defined physiological state and three-dimensional imaging, renders the tubular components of the macrophages better visible than the classical two-dimensional imaging of chemically fixed cells used as a "blueprint" for textbook illustrations. The cell biological functions of the megapinosome are largely enigmatic. Probably, megapinosomes assures storage of surface membranes that can be promptly made available when a macrophage needs to change shape to move through a tissue, to uptake extracellular material or dead cells as well as to fight against microbes.
Assuntos
Macrófagos/metabolismo , Microscopia Eletrônica/métodos , Citosol/metabolismo , Endocitose/fisiologia , PressãoRESUMO
Advances in electron microscopy including improved imaging techniques and state-of-the-art detectors facilitate imaging of larger tissue volumes with electron microscopic resolution. In combination with genetic tools for the generation of mouse mutants this allows assessing the three-dimensional (3D) characteristics of pathological features in disease models. Here we revisited the axonal pathology in the central nervous system of a mouse model of spastic paraplegia type 2, the Plp-/Y mouse. Although PLP is a bona fide myelin protein, the major hallmark of the disease in both SPG2 patients and mouse models are axonal swellings comprising accumulations of numerous organelles including mitochondria, gradually leading to irreversible axonal loss. To assess the number and morphology of axonal mitochondria and the overall myelin preservation we evaluated two sample preparation techniques, chemical fixation or high-pressure freezing and freeze substitution, with respect to the objective of 3D visualization. Both methods allowed visualizing distribution and morphological details of axonal mitochondria. In Plp-/Y mice the number of mitochondria is 2-fold increased along the entire axonal length. Mitochondria are also found in the excessive organelle accumulations within axonal swellings. In addition, organelle accumulations were detected within the myelin sheath and the inner tongue. We find that 3D electron microscopy is required for a comprehensive understanding of the size, content and frequency of axonal swellings, the hallmarks of axonal pathology.
Assuntos
Axônios/patologia , Microscopia Eletrônica de Transmissão/métodos , Animais , Sistema Nervoso Central/patologia , Camundongos , Microscopia Eletrônica de Varredura , Bainha de Mielina/patologiaRESUMO
OBJECTIVE: The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS: In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS: The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS: Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.
Assuntos
Criopreservação/métodos , Células Endoteliais/química , Células Endoteliais/ultraestrutura , Glicocálix/química , Glicocálix/ultraestrutura , Fixação de Tecidos/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Cultivadas , Feminino , Substituição ao Congelamento/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Microvasos/citologia , Tomografia por Raios XRESUMO
Cryofixation by high-pressure freezing (HPF) followed by freeze substitution (FS) is a preferred method to prepare biological specimens for ultrastructural studies. It has been shown to achieve uniform vitrification and ultrastructure preservation of complex structures in different cell types. One limitation of HPF is the small sample volume of <200 µm thickness and about 2000 µm across. A wool follicle is a rare intact organ in a single sample about 200 µm thick. Within each follicle, specialized cells derived from multiple cell lineages assemble, mature and cornify to make a wool fibre, which contains 95% keratin and associated proteins. In addition to their complex structure, large density changes occur during wool fibre development. Limited water movement and accessibility of fixatives are some issues that negatively affect the preservation of the follicle ultrastructure via conventional chemical processing. Here, we show that HPF-FS of wool follicles can yield high-quality tissue preservation for ultrastructural studies using transmission electron microscopy.
Assuntos
Criopreservação/métodos , Substituição ao Congelamento/métodos , Folículo Piloso/ultraestrutura , Lã/ultraestrutura , Animais , Congelamento , Microscopia Eletrônica de Transmissão/métodos , Ovinos , VitrificaçãoRESUMO
The afferent inner hair cell synapse harbors the synaptic ribbon, which ensures a constant vesicle supply. Synaptic vesicles (SVs) are arranged in morphologically discernable pools, linked via filaments to the ribbon or the presynaptic membrane. We propose that filaments play a major role in SV resupply and exocytosis at the ribbon. Using advanced electron microscopy, we demonstrate that SVs are organized in sub-pools defined by the filament number per vesicle and its connections. Upon stimulation, SVs increasingly linked to other vesicles and to the ribbon, whereas single-tethered SVs dominated at the membrane. Mutant mice for the hair cell protein otoferlin (pachanga, OtofPga/Pga ) are profoundly deaf with reduced sustained release, serving as a model to investigate the SV replenishment at IHCs. Upon stimulation, multiple-tethered and docked vesicles (rarely observed in wild-type) accumulated at OtofPga/Pga active zones due to an impairment downstream of docking. Conclusively, vesicles are organized in sub-pools at ribbon-type active zones by filaments to support vesicle supply, transport, and finally release.