Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Endocr Res ; 44(3): 110-116, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30721637

RESUMO

Aim: The TCF7L2 gene variant rs7903146 has the largest effect on type 2 diabetes risk reported in genome-wide association studies, however its role in adipose tissue development and function is unknown. We investigate the association between gene variant rs7903146 and metabolic parameters and examine in vitro and ex vivo gene expression of TCF7L2 in human adipose tissue and progenitor cells from two independent populations of young healthy men with increased risk of type 2 diabetes due to low birth weight (LBW). Design: Adipose tissue biopsies were excised from 40 healthy young men with low and normal birth weights (NBW) after a control and 5-day high-fat overfeeding diet. In another cohort including 13 LBW and 13 NBW men, adipocyte progenitor cells were isolated and cultivated. Transcriptome-wide expression was performed on RNA extracted from biopsies or cell cultures. Results: Diet-induced peripheral insulin resistance is more pronounced in carriers of the T-risk allele rs7903146, whereas no association with hepatic insulin resistance was shown. TCF7L2 expression increased during adipogenesis in isolated preadipocytes from both LBW and NBW men (p < 0.001) and correlated positively with markers of progenitor cell proliferation and maturation capacity. In the mature adipose tissue, LBW men had lower expression of TCF7L2 compared to NBW men at baseline (p = 0.03) and TCF7L2 expression was suppressed by short-term overfeeding in NBW men (p = 0.005). Conclusions: The results suggest a regulation of TCF7L2 expression during adipogenesis and in mature adipose tissue upon overfeeding, and further that young men exposed to an adverse intrauterine environment have reduced mature adipose tissue TCF7L2 expression.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Dieta Hiperlipídica , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adulto , Alelos , Estudos Cross-Over , Diabetes Mellitus Tipo 2/genética , Humanos , Recém-Nascido de Baixo Peso , Resistência à Insulina/fisiologia , Masculino , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Adulto Jovem
2.
Diabetologia ; 59(4): 799-812, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26750116

RESUMO

AIMS/HYPOTHESIS: Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. METHODS: mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. RESULTS: We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate <5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate <5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. CONCLUSIONS/INTERPRETATION: Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.


Assuntos
Tecido Adiposo/metabolismo , Transcriptoma/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Adulto , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Epigenômica , Ácidos Graxos Dessaturases/genética , Humanos , Recém-Nascido de Baixo Peso/fisiologia , Masculino , Proteínas do Tecido Nervoso/genética , Adulto Jovem
3.
Physiol Rep ; 4(19)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27694528

RESUMO

We hypothesized that an increased, incomplete fatty acid beta-oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5-day high-fat, high-calorie diet. We demonstrated that LBW men had higher C2 and C4-OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta-oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6-DC, C10-OH/C8-DC, and total hydroxyl-/dicarboxyl-acylcarnitine levels, which may suggest an increased fatty acid omega-oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10-OH/C8-DC and total hydroxyl-/dicarboxyl-acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl-/dicarboxyl-acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega-oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling.


Assuntos
Peso ao Nascer/fisiologia , Carnitina/análogos & derivados , Ciclo do Ácido Cítrico/fisiologia , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/administração & dosagem , Jejum/sangue , Ácidos Graxos/metabolismo , Recém-Nascido de Baixo Peso/fisiologia , Oxirredução , Adulto , Carnitina/sangue , Carnitina/metabolismo , Estudos Cross-Over , Dinamarca/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/métodos , Gorduras na Dieta/efeitos adversos , Ingestão de Energia/fisiologia , Humanos , Recém-Nascido de Baixo Peso/metabolismo , Insulina/sangue , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Physiol Rep ; 4(23)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27956466

RESUMO

Low birth weight (LBW) individuals exhibit a disproportionately increased, incomplete fatty acid oxidation and a decreased glucose oxidation, compared with normal birth weight (NBW) individuals, and furthermore have an increased risk of developing insulin resistance and type 2 diabetes. We hypothesized that changes in amino acid metabolism may occur parallel to alterations in fatty acid and glucose oxidation, and could contribute to insulin resistance. Therefore, we measured fasting plasma levels of 15 individual or pools of amino acids in 18 LBW and 25 NBW men after an isocaloric control diet and after a 5-day high-fat, high-calorie diet. We demonstrated that LBW and NBW men increased plasma alanine levels and decreased valine and leucine/isoleucine levels in response to overfeeding. Also, LBW men had higher alanine, proline, methionine, citrulline, and total amino acid levels after overfeeding compared with NBW men. Alanine and total amino acid levels tended to be negatively associated with the insulin-stimulated glucose uptake after overfeeding. Therefore, the higher amino acid levels in LBW men could be a consequence of their reduction in skeletal muscle insulin sensitivity due to overfeeding with a possible increased skeletal muscle proteolysis and/or could potentially contribute to an impaired insulin sensitivity. Furthermore, the alanine level was negatively associated with the plasma acetylcarnitine level and positively associated with the hepatic glucose production after overfeeding. Thus, the higher alanine level in LBW men could be accompanied by an increased anaplerotic formation of oxaloacetate and thereby an enhanced tricarboxylic acid cycle activity and as well an increased gluconeogenesis.


Assuntos
Aminoácidos/sangue , Dieta Hiperlipídica/efeitos adversos , Recém-Nascido de Baixo Peso/crescimento & desenvolvimento , Adulto , Estudos de Casos e Controles , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Humanos , Resistência à Insulina , Masculino , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA