Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 325(5): C1276-C1293, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746697

RESUMO

Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.


Assuntos
Elevação dos Membros Posteriores , Transcriptoma , Humanos , Camundongos , Masculino , Feminino , Animais , Idoso , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Fibrose , Membro Posterior/metabolismo
2.
Curr Issues Mol Biol ; 45(4): 3068-3086, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185725

RESUMO

Currently, no ideal treatment exists to combat skeletal muscle disuse-induced atrophy and loss of strength. Because the activity of AMP-activated protein kinase (AMPK) in rat soleus muscle is suppressed at the early stages of disuse, we hypothesized that pre-treatment of rats with metformin (an AMPK activator) would exert beneficial effects on skeletal muscle during disuse. Muscle disuse was performed via hindlimb suspension (HS). Wistar rats were divided into four groups: (1) control (C), (2) control + metformin for 10 days (C+Met), (3) HS for 7 days (HS), (4) metformin treatment for 7 days before HS and during the first 3 days of 1-week HS (HS+Met). Anabolic and catabolic markers were assessed using WB and RT-PCR. Treatment with metformin partly prevented an HS-induced decrease in rat soleus weight and size of slow-twitch fibers. Metformin prevented HS-related slow-to-fast fiber transformation. Absolute soleus muscle force in the HS+Met group was increased vs. the HS group. GSK-3ß (Ser9) phosphorylation was significantly increased in the HS+Met group vs. the HS group. Metformin pre-treatment partly prevented HS-induced decrease in 18S+28S rRNA content and attenuated upregulation of calpain-1 and ubiquitin. Thus, pre-treatment of rats with metformin can ameliorate disuse-induced reductions in soleus muscle weight, the diameter of slow-type fibers, and absolute muscle strength.

3.
Curr Issues Mol Biol ; 45(5): 4214-4227, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37232737

RESUMO

(1) Background: Many studies have shown that microgravity experienced by astronauts or long-term bedridden patients results in increased oxidative stress and bone loss. Low-molecular-weight chondroitin sulfates (LMWCSs) prepared from intact chondroitin sulfate (CS) have been demonstrated to possess good antioxidant and osteogenic activities in vitro. This study aimed to assess the antioxidant activity of the LMWCSs in vivo and evaluate their potential in preventing microgravity-induced bone loss. (2) Methods: we used hind limb suspension (HLS) mice to simulate microgravity in vivo. We investigated the effects of LMWCSs against oxidative stress damage and bone loss in HLS mice and compared the findings with those of CS and a non-treatment group. (3) Results: LMWCSs reduced the HLS-induced oxidative stress level, prevented HLS-induced alterations in bone microstructure and mechanical strength, and reversed changes in bone metabolism indicators in HLS mice. Additionally, LMWCSs downregulated the mRNA expression levels of antioxidant enzyme- and osteogenic-related genes in HLS mice. The results showed that overall effect of LMWCSs was better than that of CS. (4) Conclusions: LMWCSs protect against the bone loss caused by simulated microgravity, which may be related to their ability to reduce oxidative stress. LMWCSs can be envisaged as potential antioxidants and bone loss protective agents in microgravity.

4.
Mol Med ; 29(1): 78, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344807

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) H19 is one of the most highly expressed and conserved transcripts in mammalian development, and its functions have been fully discussed in many contexts including tumorigenesis and skeletal muscle development. However, its exact role in muscle atrophy remains largely unknown. This study investigated the effect of lncRNA H19 on muscle atrophy and the potential underlying mechanism. METHODS: Hindlimb suspension (HS) of C57BL/6 mice and starvation of C2C12 cells with PBS were conducted to induce atrophy. Real-time PCR and Western blotting were used to measure the expression of RNAs and proteins. LncRNA H19 and its encoded miR-675 were overexpressed or inhibited in different models of muscle atrophy. Immunofluorescence was carried out to examine the cross-sectional area (CSA) and minimal Feret's diameter (MFD) of myofibers and myotube diameter. RESULTS: The expression levels of lncRNA H19 and miR-675 were significantly reduced in both the soleus and gastrocnemius muscles in response to HS. Overexpression of lncRNA H19 led to an increase in Atrogin-1 mRNA expression, and this effect was reversed by inhibiting miR-675. The overexpression of miR-675 aggravated both HS- and starving-induced muscle atrophy by inhibiting the IGF1R/Akt signaling pathway and promoting FoxO/Atrogin-1 expression. Conversely, miR-675 inhibition had the opposite effects. CONCLUSION: The lncRNA H19/miR-675 axis can induce muscle atrophy, and its downregulation in mice with HS-induced muscle atrophy may act as a protective mechanism against this condition.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Camundongos Endogâmicos C57BL , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Transdução de Sinais/genética , Mamíferos/metabolismo
5.
Calcif Tissue Int ; 112(1): 74-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282293

RESUMO

Extracellular vesicles (EVs) are potent means of cell-to-cell communication. They are released in biological fluids, including blood, urine, and saliva, and can be exploited to identify new biomarkers of diseases. We hypothesized that EVs contain molecular cargos involved in bone metabolism, possibly mirroring biological differences between postmenopausal and disuse osteoporosis. We tested this hypothesis in primary murine osteoblasts subjected to steroid depletion or to unloading, and in the serum of animal models of osteoporosis induced by ovariectomy or hindlimb tail suspension. EVs were isolated by ultracentrifugation and analysed by transmission electron microscopy, cytofluorimetry, immunoblotting and RT-PCR. Large-scale analyses were performed by Real-Time arrays and Proteome Profiler™ Antibody arrays. Finally, precise titration of analytes was carried out by ELISA assay. In vitro, we confirmed an increased release of EVs enriched in surface RANKL by primary mouse osteoblasts subjected to steroid depletion or simulated microgravity compared to controls. In vivo, circulating EVs isolated from the sera of control female mice expressed RANKL along with other genes associated with bone metabolism. Serum EVs from ovariectomized or hindlimb tail-suspended mice showed distinct molecular profiles. They expressed RANKL with different kinetics, while transcriptomic and proteomic profiles uncovered unique molecular signatures that discriminated the two conditions, unveiling exclusive molecules expressed in time- and osteoporosis type-dependent manner. These results suggest that circulating EVs could represent a new tool for monitoring the onset and the progression of diverse types of the disease in mice, paving the way for their exploitation to diagnose human osteoporosis in liquid biopsies.


Assuntos
Conservadores da Densidade Óssea , Vesículas Extracelulares , Osteoporose , Feminino , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Proteômica , Diferenciação Celular , Osteoporose/metabolismo , Vesículas Extracelulares/metabolismo
6.
FASEB J ; 36(10): e22548, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36121701

RESUMO

While muscle and bone adaptations to deconditioning have been widely described, few studies have focused on the tendon enthesis. Our study examined the effects of mechanical loading on the structure and mechanical properties of the Achilles tendon enthesis. We assessed the fibrocartilage surface area, the organization of collagen, the expression of collagen II, the presence of osteoclasts, and the tensile properties of the mouse enthesis both after 14 days of hindlimb suspension (HU) and after a subsequent 6 days of reloading. Although soleus atrophy was severe after HU, calcified fibrocartilage (CFc) was a little affected. In contrast, we observed a decrease in non-calcified fibrocartilage (UFc) surface area, collagen fiber disorganization, modification of morphological characteristics of the fibrocartilage cells, and altered collagen II distribution. Compared to the control group, restoring normal loads increased both UFc surface area and expression of collagen II, and led to a crimp pattern in collagen. Reloading induced an increase in CFc surface area, probably due to the mineralization front advancing toward the tendon. Functionally, unloading resulted in decreased enthesis stiffness and a shift in site of failure from the osteochondral interface to the bone, whereas 6 days of reloading restored the original elastic properties and site of failure. In the context of spaceflight, our results suggest that care must be taken when performing countermeasure exercises both during missions and during the return to Earth.


Assuntos
Tendão do Calcâneo , Elevação dos Membros Posteriores , Tendão do Calcâneo/metabolismo , Animais , Osso e Ossos , Colágeno/metabolismo , Camundongos , Músculo Esquelético/metabolismo
7.
Cell Mol Life Sci ; 79(6): 321, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622133

RESUMO

BACKGROUND: Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS: We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS: Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS: Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.


Assuntos
Relógios Biológicos , Mecanorreceptores , Músculo Esquelético , Atrofia Muscular , Animais , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Elevação dos Membros Posteriores , Masculino , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
J Clin Biochem Nutr ; 73(2): 124-130, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37700845

RESUMO

The impact of repeated administration of cinntamtannin A2 (A2, 25 µg/kg) on skeletal muscle disuse atrophy model mice induced by hindlimb suspension for 14 days was examined. In soleus, weight loss and a reduction in the average myofibre size with shifting to the smaller side of the peak were observed in the suspension-vehicle group, but A2 reduced these changes. Average myofibre size significantly increased in ground-A2 compared to ground-vehicle. A marked increase in the dephosphorylation of forkhead box O (FoxO) 3a by the suspension was reduced by A2. The phosphorylation of protein kinase B (Akt) and eukaryotic translation initiation factor 4E-binding protein (4EBP)-1 were significantly increased by the treatment of A2. In addition, a single dose of A2 increased dramatically in the 24-h excretion of catecholamines in urine. These results suggest that A2 administration results in sympathetic nerve activation and promotes hypertrophy while inhibiting the progress of disuse muscle atrophy.

9.
FASEB J ; 35(10): e21905, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569672

RESUMO

The study was aimed at investigating the mechanisms and structures which determine mechanical properties of skeletal muscles under gravitational unloading and plantar mechanical stimulation (PMS). We hypothesized that PMS would increase NO production and prevent an unloading-induced reduction in skeletal muscle passive stiffness. Wistar rats were hindlimb suspended and subjected to a daily PMS and one group of stimulated animals was also treated with nitric oxide synthase (NOS) inhibitor (L-NAME). Animals received mechanical stimulation of the feet for 4 h a day throughout 7-day hindlimb suspension (HS) according to a scheme that mimics the normal walking of the animal. Seven-day HS led to a significant reduction in soleus muscle weight by 25%. However, PMS did not prevent the atrophic effect induced by HS. Gravitational unloading led to a significant decrease in maximum isometric force and passive stiffness by 38% and 31%, respectively. The use of PMS prevented a decrease in the maximum isometric strength of the soleus muscle. At the same time, the passive stiffness of the soleus in the PMS group significantly exceeded the control values by 40%. L-NAME (NOS inhibitor) administration attenuated the effect of PMS on passive stiffness and maximum force of the soleus muscle. The content of the studied cytoskeletal proteins (α-actinin-2, α-actinin-3, desmin, titin, nebulin) decreased after 7-day HS, but this decrease was successfully prevented by PMS in a NOS-dependent manner. We also observed significant decreases in mRNA expression levels of α-actinin-2, desmin, and titin after HS, which was prevented by PMS. The study also revealed a significant NOS-dependent effect of PMS on the content of collagen-1a, but not collagen-3a. Thus, PMS during mechanical unloading is able to maintain soleus muscle passive tension and force as well as mRNA transcription and protein contents of cytoskeletal proteins in a NOS-dependent manner.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Elevação dos Membros Posteriores , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar
10.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614063

RESUMO

Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-ß (TGF-ß) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-ß inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-ß/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-ß/BMP balance and could be used to preserve muscle mass during catabolic situations.


Assuntos
Fator 4 Ativador da Transcrição , Atrofia Muscular , Ursidae , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Hibernação
11.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920198

RESUMO

Sustained sarcolemma depolarization due to loss of the Na,K-ATPase function is characteristic for skeletal muscle motor dysfunction. Ouabain, a specific ligand of the Na,K-ATPase, has a circulating endogenous analogue. We hypothesized that the Na,K-ATPase targeted by the elevated level of circulating ouabain modulates skeletal muscle electrogenesis and prevents its disuse-induced disturbances. Isolated soleus muscles from rats intraperitoneally injected with ouabain alone or subsequently exposed to muscle disuse by 6-h hindlimb suspension (HS) were studied. Conventional electrophysiology, Western blotting, and confocal microscopy with cytochemistry were used. Acutely applied 10 nM ouabain hyperpolarized the membrane. However, a single injection of ouabain (1 µg/kg) prior HS was unable to prevent the HS-induced membrane depolarization. Chronic administration of ouabain for four days did not change the α1 and α2 Na,K-ATPase protein content, however it partially prevented the HS-induced loss of the Na,K-ATPase electrogenic activity and sarcolemma depolarization. These changes were associated with increased phosphorylation levels of AMP-activated protein kinase (AMPK), its substrate acetyl-CoA carboxylase and p70 protein, accompanied with increased mRNA expression of interleikin-6 (IL-6) and IL-6 receptor. Considering the role of AMPK in regulation of the Na,K-ATPase, we suggest an IL-6/AMPK contribution to prevent the effects of chronic ouabain under skeletal muscle disuse.


Assuntos
Interleucina-6/genética , Transtornos Musculares Atróficos/tratamento farmacológico , Ouabaína/farmacologia , Proteínas Quinases/genética , ATPase Trocadora de Sódio-Potássio/genética , Quinases Proteína-Quinases Ativadas por AMP , Acetil-CoA Carboxilase/genética , Animais , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Elevação dos Membros Posteriores , Humanos , Interleucina-6/antagonistas & inibidores , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Técnicas de Cultura de Órgãos , Proteínas Quinases/efeitos dos fármacos , Ratos , Ratos Wistar
12.
J Clin Biochem Nutr ; 68(3): 228-234, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025025

RESUMO

We previously found that a single dose of theaflavins induced skeletal muscle metabolic changes. In this study, we examined the effect of theaflavins on disuse muscle atrophy model mice by hindlimb suspension. Mice were assigned to 4 groups; ground-vehicle, ground-theaflavins, suspension-vehicle, and suspension-theaflavins, dosed with theaflavins (250 mg/kg/day) for 2 weeks. The peak of myotube size of cross sectional area was significantly moved to the smaller side in the suspension-vehicle group compared with the ground-vehicle group, and these shifts were significantly reduced by the treatment with theaflavins in both soleus and extensor digitorum longus. The level of phosphorylated eukaryotic translation initiation factor 4E-binding protein (4EBP)-1, located downstream of the Akt/mTOR pathway, was significantly different between suspension-vehicle and suspension-theaflavins in soleus. The ratio of forkhead box O (FoxO) 3a to phosphorylated FoxO3a significantly increased in soleus or tended to rise in extensor digitorum longus of suspension-vehicle group compared with ground-vehicle. In contrast, these changes were not observed in suspension-theaflavins group. These results suggested that theaflavins inhibited the progress of disuse muscle atrophy through modulation of protein metabolism.

13.
Acta Pharmacol Sin ; 41(11): 1476-1486, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32934346

RESUMO

Recent studies demonstrate that diet quercetin (Quer) has obvious bone protective effects on ovariectomized rodents but thus far there is no direct evidence to support the inhibitory effect of Quer on bone loss caused by long-term unloading. In the present study, we investigated whether Quer could prevent bone loss induced by unloading in mice. Mice were subjected to hindlimb suspension (HLS) and received Quer (25, 50, 100 mg· kg-1 ·day-1, ig) for 4 weeks. Before euthanasia blood sample was collected; the femurs were harvested and subjected to MicroCT analysis. We showed that Quer administration markedly improved bone microstructure evidenced by dose-dependently reversing the reduction in bone volume per tissue volume, trabecular number, and bone mineral density, and the increase of trabecular spacing in mice with HLS. Analysis of serum markers and bone histometric parameters confirmed that Quer at both middle and high doses significantly decreased bone resorption-related markers collagen type I and tartrate-resistant acid phosphatase 5b, and increased bone formation-related marker procollagen 1 N-terminal propeptide as compared with HLS group. Treatment with Quer (1, 2, 5 µM) dose-dependently inhibited RANKL-induced osteoclastogenesis through promoting the expression of antioxidant hormone stanniocalcin 1 (STC1) and decreasing ROS generation; knockdown of STC1 blocked the inhibitory effect of Quer on ROS generation. Knockdown of STC1 also significantly promoted osteoclastogenesis in primary osteoclasts. In conclusion, Quer protects bones and prevents unloading-caused bone loss in mice through STC1-mediated inhibition of osteoclastogenesis. The findings suggest that Quer has the potential to prevent and treat off-load bone loss as an alternative supplement.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/prevenção & controle , Glicoproteínas/metabolismo , Osteogênese/efeitos dos fármacos , Quercetina/uso terapêutico , Animais , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Elevação dos Membros Posteriores , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Ligante RANK/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Am J Physiol Endocrinol Metab ; 317(1): E85-E98, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964703

RESUMO

Impaired recovery of aged muscle following a disuse event is an unresolved issue facing the older adult population. Although investigations in young animals have suggested that rapid regrowth of skeletal muscle following a disuse event entails a coordinated involvement of skeletal muscle macrophages, this phenomenon has not yet been thoroughly tested as an explanation for impaired muscle recovery in aging. To examine this hypothesis, young (4-5 mo) and old (24-26 mo) male mice were examined as controls following 2 wk of hindlimb unloading (HU) and following 4 (RL4) and 7 (RL7) days of reloading after HU. Muscles were harvested to assess muscle weight, myofiber-specifc cross-sectional area, and skeletal muscle macrophages via immunofluorescence. Flow cytometry was used on gastrocnemius and soleus muscle (at RL4) single-cell suspensions to immunophenotype skeletal muscle macrophages. Our data demonstrated impaired muscle regrowth in aged compared with young mice following disuse, which was characterized by divergent muscle macrophage polarization patterns and muscle-specifc macrophage abundance. During reloading, young mice exhibited the classical increase in M1-like (MHC II+CD206-) macrophages that preceeded the increase in percentage of M2-like macrophages (MHC II-CD206+); however, old mice did not demonstrate this pattern. Also, at RL4, the soleus demonstrated reduced macrophage abundance with aging. Together, these data suggest that dysregulated macrophage phenotype patterns in aged muscle during recovery from disuse may be related to impaired muscle growth. Further investigation is needed to determine whether the dysregulated macrophage response in the old during regrowth from disuse is related to a reduced ability to recruit or activate specific immune cells.


Assuntos
Envelhecimento/fisiologia , Polaridade Celular/fisiologia , Elevação dos Membros Posteriores/fisiologia , Macrófagos/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/reabilitação , Animais , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/imunologia , Atrofia Muscular/patologia , Condicionamento Físico Animal/fisiologia
15.
J Cell Physiol ; 233(10): 6329-6336, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29719042

RESUMO

Motor endplates naturally undergo continual morphological changes that are altered in response to changes in neuromuscular activity. This study examines the consequences of acute (6-12 hr) disuse following hindlimb suspension on rat soleus muscle endplate structural stability. We identify early changes in several key signaling events including markers of protein kinase activation, AMPK phosphorylation and autophagy markers which may play a role in endplate remodeling. Acute disuse does not change endplate fragmentation, however, it decreases both the individual fragments and the total endplate area. This decrease was accompanied by an increase in the mean fluorescence intensity from the nicotinic acetylcholine receptors which compensate the endplate area loss. Muscle disuse decreased phosphorylation of AMPK and its substrate ACC, and stimulated mTOR controlled protein synthesis pathway and stimulated autophagy. Our findings provide evidence that changes in endplate stability are accompanied by reduced AMPK phosphorylation and an increase in autophagy markers, and these changes are evident within hours of onset of skeletal muscle disuse.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Placa Motora/genética , Proteínas Quinases/genética , Serina-Treonina Quinases TOR/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia/fisiologia , Membro Posterior/metabolismo , Membro Posterior/fisiologia , Placa Motora/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Proteínas Quinases/biossíntese , Ratos , Receptores Nicotínicos/genética , Transdução de Sinais/genética
16.
Acta Pharmacol Sin ; 39(11): 1760-1767, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29891857

RESUMO

Bone loss induced by microgravity is a substantial barrier to humans in long-term spaceflight. Recent studies have revealed that icariin (ICA) can attenuate osteoporosis in postmenopausal women and ovariectomized rats. However, whether ICA can protect against microgravity-induced bone loss remains unknown. In this study, the effects of ICA on a hindlimb suspension rodent model were investigated. Two-month-old female Wistar rats were hindlimb suspended and treated with ICA (25 mg·kg-1·d-1, i.g.) or a vehicle for 4 weeks (n = 6). The bone mass density of the hindlimbs was analyzed using dual-energy X-ray absorptiometry and micro-CT. mRNA expression of osteogenic genes in the tibia and the content of bone metabolism markers in serum were measured using qRT-PCR and ELISA, respectively. The bone mineral phase was analyzed using X-ray diffraction and atomic spectrometry. The results showed that ICA treatment significantly rescued the hindlimb suspension-induced reduction in bone mineral density, trabecular number and thickness, as well as the increases in trabecular separation and the structure model index. In addition, ICA treatment recovered the decreased bone-related gene expression, including alkaline phosphatase (ALP), bone glaprotein (BGP), and osteoprotegerin/receptor activator of the NF-κB ligand ratio (OPG/RANKL), in the tibia and the decreased bone resorption marker TRACP-5b levels in serum caused by simulated microgravity. Notably, ICA treatment restored the instability of bone biological apatite and the metabolic disorder of bone mineral elicited by simulated microgravity. These results demonstrate that ICA treatment plays osteoprotective roles in bone loss induced by simulated microgravity by inhibiting bone resorption and stabilizing bone biological apatite.


Assuntos
Apatitas/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/prevenção & controle , Flavonoides/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Elevação dos Membros Posteriores , Metais Leves/metabolismo , Ratos Wistar
17.
Bioelectromagnetics ; 39(8): 569-584, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30350869

RESUMO

Microgravity is one of the main threats to the health of astronauts. Pulsed electromagnetic fields (PEMFs) have been considered as one of the potential countermeasures for bone loss induced by space flight. However, the optimal therapeutic parameters of PEMFs have not been obtained and the action mechanism is still largely unknown. In this study, a set of optimal therapeutic parameters for PEMFs (50 Hz, 0.6 mT 50% duty cycle and 90 min/day) selected based on high-throughput screening with cultured osteoblasts was used to prevent bone loss in rats induced by hindlimb suspension, a commonly accepted animal model to simulate the space environment. It was found that hindlimb suspension for 4 weeks led to significant decreases in femoral and vertebral bone mineral density (BMD) and their maximal loads, severe deterioration in bone micro-structure, and decreases in levels of bone formation markers and increases in bone resorption markers. PEMF treatment prevented about 50% of the decreased BMD and maximal loads, preserved the microstructure of cancellous bone and thickness of cortical bone, and inhibited decreases in bone formation markers. Histological analyses revealed that PEMFs significantly alleviated the reduction in osteoblast number and inhibited the increase in adipocyte number in the bone marrow. PEMFs also blocked decreases in serum levels of parathyroid hormone and its downstream signal molecule cAMP, and maintained the phosphorylation levels of protein kinase A (PKA) and cAMP response element-binding protein (CREB). The expression level of soluble adenylyl cyclases (sAC) was also maintained. It therefore can be concluded that PEMFs partially prevented the bone loss induced by weightless environment by maintaining bone formation through signaling of the sAC/cAMP/PKA/CREB pathway. Bioelectromagnetics. 39:569-584, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Adenilil Ciclases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Campos Eletromagnéticos , Membro Posterior/fisiologia , Osteogênese/efeitos da radiação , Adipócitos/citologia , Adipócitos/efeitos da radiação , Animais , Fenômenos Biomecânicos/efeitos da radiação , Peso Corporal/efeitos da radiação , Densidade Óssea/efeitos da radiação , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Feminino , Fêmur/citologia , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Fêmur/efeitos da radiação , Membro Posterior/efeitos da radiação , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Ratos , Ratos Wistar , Transdução de Sinais/efeitos da radiação , Coluna Vertebral/citologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiologia , Coluna Vertebral/efeitos da radiação , Suspensões , Microtomografia por Raio-X
18.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424476

RESUMO

Molecular mechanisms that trigger disuse-induced postural muscle atrophy as well as myosin phenotype transformations are poorly studied. This review will summarize the impact of 5' adenosine monophosphate -activated protein kinase (AMPK) activity on mammalian target of rapamycin complex 1 (mTORC1)-signaling, nuclear-cytoplasmic traffic of class IIa histone deacetylases (HDAC), and myosin heavy chain gene expression in mammalian postural muscles (mainly, soleus muscle) under disuse conditions, i.e., withdrawal of weight-bearing from ankle extensors. Based on the current literature and the authors' own experimental data, the present review points out that AMPK plays a key role in the regulation of signaling pathways that determine metabolic, structural, and functional alternations in skeletal muscle fibers under disuse.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Transtornos Musculares Atróficos/enzimologia , Animais , Metabolismo Energético , Humanos , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/patologia , Transdução de Sinais
19.
Am J Physiol Cell Physiol ; 312(5): C627-C637, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274922

RESUMO

Marked loss of skeletal muscle mass occurs under various conditions of disuse, but the molecular and cellular mechanisms leading to atrophy are not completely understood. We investigate early molecular events that might play a role in skeletal muscle remodeling during mechanical unloading (disuse). The effects of acute (6-12 h) hindlimb suspension on the soleus muscles from adult rats were examined. The integrity of plasma membrane lipid rafts was tested utilizing cholera toxin B subunit or fluorescent sterols. In addition, resting intracellular Ca2+ level was analyzed. Acute disuse disturbed the plasma membrane lipid-ordered phase throughout the sarcolemma and was more pronounced in junctional membrane regions. Ouabain (1 µM), which specifically inhibits the Na-K-ATPase α2 isozyme in rodent skeletal muscles, produced similar lipid raft changes in control muscles but was ineffective in suspended muscles, which showed an initial loss of α2 Na-K-ATPase activity. Lipid rafts were able to recover with cholesterol supplementation, suggesting that disturbance results from cholesterol loss. Repetitive nerve stimulation also restores lipid rafts, specifically in the junctional sarcolemma region. Disuse locally lowered the resting intracellular Ca2+ concentration only near the neuromuscular junction of muscle fibers. Our results provide evidence to suggest that the ordering of lipid rafts strongly depends on motor nerve input and may involve interactions with the α2 Na-K-ATPase. Lipid raft disturbance, accompanied by intracellular Ca2+ dysregulation, is among the earliest remodeling events induced by skeletal muscle disuse.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Músculo Esquelético/fisiopatologia , Transtornos Musculares Atróficos/fisiopatologia , Animais , Sinalização do Cálcio , Elevação dos Membros Posteriores , Masculino , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Ratos , Ratos Wistar
20.
Am J Respir Cell Mol Biol ; 54(5): 674-82, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26448063

RESUMO

Physical inactivity is an important contributor to skeletal muscle weakness, osteoporosis, and weight loss in chronic obstructive pulmonary disease. However, the effects of physical inactivity, in interaction with smoking, on lung, muscle, and bone are poorly understood. To address this issue, male mice were randomly assigned to an active (daily running), moderately inactive (space restriction), or extremely inactive group (space restriction followed by hindlimb suspension to mimic bed rest) during 24 weeks and simultaneously exposed to either cigarette smoke or room air. The effects of different physical activity levels and smoking status and their respective interaction were examined on lung function, body composition, in vitro limb muscle function, and bone parameters. Smoking caused emphysema, reduced food intake with subsequent loss of body weight, and fat, lean, and muscle mass, but increased trabecular bone volume. Smoking induced muscle fiber atrophy, which did not result in force impairment. Moderate inactivity only affected lung volumes and compliance, whereas extreme inactivity increased lung inflammation, lowered body and fat mass, induced fiber atrophy with soleus muscle dysfunction, and reduced exercise capacity and all bone parameters. When combined with smoking, extreme inactivity also aggravated lung inflammation and emphysema, and accelerated body and muscle weight loss. This study shows that extreme inactivity, especially when imposed by absolute rest, accelerates lung damage and inflammation. When combined with smoking, extreme inactivity is deleterious for muscle bulk, bone, and lungs. These data highlight that the consequences of physical inactivity during the course of chronic obstructive pulmonary disease should not be neglected.


Assuntos
Osso e Ossos/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal , Fumar/efeitos adversos , Animais , Composição Corporal , Peso Corporal , Contagem de Células , Comportamento Alimentar , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Tamanho do Órgão , Pneumonia/patologia , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA