Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499066

RESUMO

To clarify the crystal chemical features of natural and synthetic oxalates Me2+(C2O4)∙2H2O (Me2+ = Fe, Mn, Mg, Zn), including minerals of the humboldtine group, solid solutions of lindbergite Mn(C2O4)∙2H2O−glushinskite Mg(C2O4)∙2H2O were precipitated under various conditions, close to those characteristic of mineralization in biofilms: at the stoichiometric ratios ((Mn + Mg)/C2O4 = 1) and non-stochiometric ratios ((Mn + Mg)/C2O4 < 1), in the presence and absence of citrate ions. Investigation of precipitates was carried out by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermodynamic modelling was performed in order to evaluate the lindbergite−glushinskite equilibrium. It was shown that glushinskite belongs to the orthorhombic ß-modification (sp. Gr. Fddd), while lindbergite has a monoclinic α-modification (sp. gr. C2/c). Mg ions incorporate lindbergite in much higher quantities than Mn ions incorporate glushinskite; moreover, Mn glushinskites are characterized by violations of long-range order in their crystal structure. Lindbergite−glushinskite transition occurs abruptly and can be classified as a first-order isodimorphic transition. The Me2+/C2O4 ratio and the presence of citric acid in the solution affect the isomorphic capacity of lindbergite and glushinskite, the width of the transition and the equilibrium Mg/Mn ratio. The transition is accompanied by continuous morphological changes in crystals and crystal intergrowths. Given the obtained results, it is necessary to take into account in biotechnologies aimed at the bioremediation/bioleaching of metals from media containing mixtures of cations (Mg, Mn, Fe, Zn).


Assuntos
Oxalatos , Difração de Raios X , Oxalatos/química , Microscopia Eletrônica de Varredura , Íons
2.
J Colloid Interface Sci ; 656: 597-608, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38040500

RESUMO

Carbon materials play a crucial role in promoting the Fe(III)/Fe(II) redox cycle in heterogeneous Fenton reactions. However, the electron transfer efficiency between carbon and iron is typically low. In this study, we prepared a novel heterogeneous Fenton catalyst, humboldtine/hydrothermal carbon (Hum/HTC), using a one-step hydrothermal method and achieved about 100 % reduction in Fe(III) during synthesis. Moreover, the HTC continuously provided electrons to promote Fe(II) regeneration during the Fenton reaction. Electron paramagnetic resonance (EPR) and quenching experiments showed that Hum/HTC completely oxidized As(III) to As(V) via free radical and non-free radical pathways. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and two-dimensional correlation spectroscopy (2D-COS) analyses revealed that monodentate mononuclear (MM) and bidentate binuclear (BB) structures were the dominant bonding methods for As(V) immobilization. 40 %Hum/HTC exhibited a maximum As(III) adsorption capacity of 167 mg/g, which was higher than that of most reported adsorbents. This study provides a novel strategy for the efficient reduction of Fe(III) during catalyst synthesis and demonstrates that HTC can continuously accelerate Fe(II) regeneration in heterogeneous Fenton reactions.

3.
J Hazard Mater ; 404(Pt A): 124035, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035907

RESUMO

Efficient removal of Hg2+ from aqueous solution is key for environmental protection and human health. Herein, a novel composite of nano humboldtine decorated almandine was synthesized from almandine for the removal of Hg2+. Results showed that the Hg2+ removal process followed pseudo-second-order kinetic model and Langmuir equation, and the maximum adsorption capacity was 575.17 mg/g. Furthermore, Hg2+ removal by the composite was pH-dependent and low pH value facilitated the removal of Hg2+. SEM and HADDF-STEM results suggested a new rod morphology was generated and the adsorbed mercury was mainly enriched into this structure after reaction with Hg2+ solution. The removal mechanisms of Hg2+ by the composite was pH dependent, and included ion exchange, surface complexation, reduction and oxidation. Our results demonstrated that the composite was an ideal material for Hg2+ removal and the transformation ways of mercury related species could be a significant but currently underestimated pathway in natural and engineered systems.

4.
Chemosphere ; 253: 126650, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32268252

RESUMO

This study firstly reported a novel nano humboldtine/almandine composite (NHLA composite) prepared directly from almandine through one-pot method based on the interaction of almandine and oxalic acid. The formation of humboldtine/almandine binary phase from natural almandine was determined by X-ray diffraction. Analysis of scanning & transmission electron microscope showed that large amount of nano humboldtine with uniform size (average size of 15.59 nm) were loaded on the almandine sheets. Compared with raw minerals, Pb(Ⅱ) removal capacity of synthesized composite was significantly increased, demonstrating that the main active ingredient for Pb(Ⅱ) removal was humboldtine phase rather than almandine itself. Pb(Ⅱ) adsorption capacity was increased with the increasing of initial pH value or temperature. Langmuir isotherm and Pseudo-second order kinetic equation were well fitted with experimental results and the maximum Pb(Ⅱ) adsorption capacity from Langmuir isotherm was 574.71 mg/g at temperature of 25 °C. In addition, heavy metal removal experiments in coexisting systems of multiple heavy metal ions manifested that the composite had a high selectivity for Pb(Ⅱ) adsorption. Ion exchange, surface complexation and electrostatic interaction have involved in the Pb(Ⅱ) adsorption. The synthesized composite was considered as a low cost, high efficiency, super selectivity and easy to mass production material for Pb(Ⅱ) adsorption from solution.


Assuntos
Chumbo/química , Modelos Químicos , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados , Minerais/química , Difração de Raios X
5.
J Hazard Mater ; 383: 121199, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31541962

RESUMO

Preparing a cost-effective material which can been applied in a wide pH range is very crucial for the remediation of Cr(Ⅵ) polluted water. In this study, a novel material, almandine/humboldtine nanospheres (AHN) composites, was synthesized directly from almandine by one-pot method. Characterizations of XRD and SEM/TEM showed that the structure changes of almandine to nano-humboldtine leaded to significant increase of Cr(Ⅵ) removal capacities. And 96.45% of Cr(Ⅵ) was removed by AHN-24 composite at pH value of 3, initial Cr(Ⅵ) concentration of 20 mg/L, temperature of 298.15 K and dosage of 0.6 g/L. Furthermore, Cr(Ⅵ) removal capacity was only decreased from 48.23 mg/g to 34.33 mg/g when the initial pH value increased from 3 to 11, which demonstrated that the synthesized composite had a wide pH application range in Cr(Ⅵ) removal. The thermodynamic parameters (ΔG0 < 0, ΔH0 > 0 and ΔS0 > 0) illustrated that Cr(VI) removal process was spontaneous and endothermic. FTIR and XPS revealed that the Cr(Ⅵ) removal mechanisms included reduction-precipitation and reduction-complexation. Combined with cost analysis, all of results implied that the synthesized composites were a high efficient and low cost material for Cr(Ⅵ) pollution remediation in a wide pH range.

6.
Chemosphere ; 218: 670-679, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30504042

RESUMO

The potential hazards of Fe(III)-As(V) co-precipitate under reducing conditions are incompletely known. This work investigated the effect of Fe(III) reduction by ascorbic acid (AH2) on the stability of Fe(III)-As(V) co-precipitate at different pHs and Fe/As molar ratios. The results showed that As (14-98.9%) and Fe (27.9-99.3%) were significantly released into solution by 79.9-97.5% Fe(III) reduction of the co-precipitate (Fe/As molar ratios of 3 and 5) at pH 5-9. More As release was observed with the increase of pH (6-9) or decrease in Fe/As molar ratio (from 5 to 3). This could be attributed by oxalate, the final product of AH2 decomposition, which strongly competed with As(V) for Fe(II) at higher pH or lower Fe/As molar ratio, inhibiting parasymplesite accumulation and then causing more As mobilization. The stability of Fe(III)-As(V) co-precipitate with AH2 upon Fe(III) reduction was lower than that in oxic environment. Compared with produced Fe(II,III) (hydr)oxides in the presence of hydroquinone (QH2), humboldtine was formed during the long-term reactions of Fe(III)-As(V) co-precipitate with AH2. The findings of this study implied that parasymplesite and humboldtine as secondary solid products were environmental relevant and mainly responsible for As(V) and Fe(II) immobilization.


Assuntos
Arsenicais/química , Ácido Ascórbico/química , Compostos Férricos/química , Arsenicais/metabolismo , Precipitação Química , Concentração de Íons de Hidrogênio , Ferro/química , Oxirredução , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA