Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cell Mol Med ; 28(4): e18081, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358034

RESUMO

Atractylodes macrocephala III (ATL III), with anti-inflammatory and antitumor effects, is the main compound of Atractylodes macrocephala. Whether ATL III has an effect on cervical cancer and the specific mechanism are still unclear. Here, we investigated the effects of ATL III on cervical cancer cells at different concentrations and found that ATL III downregulates insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), which was found to be highly expressed in cervical cancer tissue by RNA-Seq. In this study, we found that ATL III promotes apoptosis and regulates epithelial-mesenchymal transition (EMT) in cervical cancer cells (HeLa and SiHa cells) and that IGF2BP3 is a common target gene of ATL III in HeLa and SiHa cells. The expression level of IGF2BP3 in cervical cancer cells was proportional to their migration and invasion abilities. This was verified by transfection of cells with a small interfering RNA and an IGF2BP3 overexpression plasmid. After ATL III treatment, the migration and invasion abilities of cervical cancer cells were obviously reduced, but these effects were attenuated after overexpression of IGF2BP3. In addition, the transcription factor IGF2BP3 was predicted by the JASPAR system. After intersection with our sequencing results, we verified the promotional effect of ETV5 (ETS translocation variant 5) on IGF2BP3 and found that ALT III inhibited ETV5. In general, our research showed that ATL III inhibits the migration and invasion of cervical cancer cells by regulating IGF2BP3 through ETV5.


Assuntos
Atractylodes , Neoplasias do Colo do Útero , Feminino , Humanos , Atractylodes/química , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética
2.
Mol Cancer ; 23(1): 125, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849860

RESUMO

BACKGROUND: Breast cancer is the most common malignant tumor, and metastasis remains the major cause of poor prognosis. Glucose metabolic reprogramming is one of the prominent hallmarks in cancer, providing nutrients and energy to support dramatically elevated tumor growth and metastasis. Nevertheless, the potential mechanistic links between glycolysis and breast cancer progression have not been thoroughly elucidated. METHODS: RNA-seq analysis was used to identify glucose metabolism-related circRNAs. The expression of circSIPA1L3 in breast cancer tissues and serum was examined by qRT-PCR, and further assessed its diagnostic value. We also evaluated the prognostic potential of circSIPA1L3 by analyzing a cohort of 238 breast cancer patients. Gain- and loss-of-function experiments, transcriptomic analysis, and molecular biology experiments were conducted to explore the biological function and regulatory mechanism of circSIPA1L3. RESULTS: Using RNA-seq analysis, circSIPA1L3 was identified as the critical mediator responsible for metabolic adaption upon energy stress. Gain- and loss-of-function experiments revealed that circSIPA1L3 exerted a stimulative effect on breast cancer progression and glycolysis, which could also be transported by exosomes and facilitated malignant behaviors among breast cancer cells. Significantly, the elevated lactate secretion caused by circSIPA1L3-mediated glycolysis enhancement promoted the recruitment of tumor associated macrophage and their tumor-promoting roles. Mechanistically, EIF4A3 induced the cyclization and cytoplasmic export of circSIPA1L3, which inhibited ubiquitin-mediated IGF2BP3 degradation through enhancing the UPS7-IGF2BP3 interaction. Furthermore, circSIPA1L3 increased mRNA stability of the lactate export carrier SLC16A1 and the glucose intake enhancer RAB11A through either strengthening their interaction with IGF2BP3 or sponging miR-665, leading to enhanced glycolytic metabolism. Clinically, elevated circSIPA1L3 expression indicated unfavorable prognosis base on the cohort of 238 breast cancer patients. Moreover, circSIPA1L3 was highly expressed in the serum of breast cancer patients and exhibited high diagnostic value for breast cancer patients. CONCLUSIONS: Our study highlights the oncogenic role of circSIPA1L3 through mediating glucose metabolism, which might serve as a promising diagnostic and prognostic biomarker and potential therapeutic target for breast cancer.


Assuntos
Progressão da Doença , Exossomos , Regulação Neoplásica da Expressão Gênica , Glucose , RNA Circular , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Exossomos/metabolismo , RNA Circular/genética , Glucose/metabolismo , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Animais , Prognóstico , Glicólise , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Reprogramação Metabólica , Proteínas de Membrana , Peptídeos e Proteínas de Sinalização Intracelular
3.
Apoptosis ; 29(5-6): 709-725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459420

RESUMO

Hepatocellular carcinoma (HCC) is highly metastatic and invasive. CircRNA participates in gene regulation of multiple tumor metastases, but little is known whether it is a bystander or an actual player in HCC metastasis. We aim to explore the molecular mechanisms of novel circRNAs in HCC metastasis. RT-qPCR was used to detect the expression of 13 circRNAs derived by the ERBB3 gene. The function of circ_0098823 and DNM1L in HCC cells were estimated by CCK-8, transwell assays, flow cytometry, electron microscope, and in vivo experiments. RNA binding protein of circ_0098823 was confirmed by RNA pull-down, mass spectrometry, and RNA immunoprecipitation. The expression of DNM1L after IGF2BP3 knockdown was detected by RT-qPCR and western blot. Circ_0098823 was significantly up-regulated both in HCC tissues and HGF induced cell lines. Circ_0098823 overexpression significantly enhanced proliferation, migration, and invasion but decreased apoptosis of HCC cells, particularly promoted mitochondrial fission. Compared with the control group, the tumors in the circ_0098823 knockdown mice were significantly smaller and lighter. Circ_0098823 silencing suppressed DNM1L expression, a key molecule for fission, which enhanced proliferation, migration and invasion, and inhibited apoptosis of HCC cell. IGF2BP3 was a binding protein of circ_0098823. The expression and mRNA stability of DNM1L were down-regulated by IGF2BP3 knockdown. IGF2BP3 knockdown significantly alleviated the excessive migration, invasion and apoptosis of HCC cells caused by circ_0098823 overexpression. This study uncovered a novel circ_0098823 with tumor-promoting effect, and the mechanism by which circ_0098823 participates in HCC progression through IGF2BP3-guided DNM1L. Our study broadens molecular understanding of HCC progression.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Dinaminas , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Dinâmica Mitocondrial , RNA Circular , Proteínas de Ligação a RNA , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Dinâmica Mitocondrial/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Apoptose/genética , Proliferação de Células/genética , Movimento Celular/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Masculino , Metástase Neoplásica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Camundongos Nus , Camundongos Endogâmicos BALB C
4.
Funct Integr Genomics ; 24(1): 29, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353724

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor with a high recurrence rate and a poor prognosis. Long intergenic nonprotein coding RNA 942 (LINC00942) is reported to be related to ferroptosis and the immune response in HCC and serves as an oncogene in various cancers. This research aimed to explore the contribution of LINC00942 in HCC progression. Functional assays were used to evaluate the functional role of LINC00942 in vitro and in vivo. Mechanistic assays were conducted to assess the association of LINC00942 with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and solute carrier family 7 member 11 (SLC7A11) and the regulatory pattern of LINC00942 in HCC cells. LINC00942 was found to exhibit upregulation in HCC tissue and cells. LINC00942 facilitated HCC cell proliferation, suppressed ferroptosis, and converted naive CD4+ T cells to inducible Treg (iTreg) cells by regulating SLC7A11. Furthermore, SLC7A11 expression was positively modulated by LINC00942 in HCC cells. IGF2BP3 was a shared RNA-binding protein (RBP) for LINC00942 and SLC7A11. The binding between the SLC7A11 3' untranslated region and IGF2BP3 was verified, and LINC00942 was found to recruit IGF2BP3 to promote SLC7A11 mRNA stability in an m6A-dependent manner. Moreover, mouse tumor growth and proliferation were inhibited, and the number of FOXP3+CD25+ T cells was increased, while ferroptosis was enhanced after LINC00942 knockdown in vivo. LINC00942 suppresses ferroptosis and induces Treg immunosuppression in HCC by recruiting IGF2BP3 to enhance SLC7A11 mRNA stability, which may provide novel therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Linfócitos T Reguladores , Ferroptose/genética , Neoplasias Hepáticas/genética , Terapia de Imunossupressão
5.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
6.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701556

RESUMO

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Assuntos
Sistema A de Transporte de Aminoácidos , Metiltransferases , Metilação de RNA , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos Nus , Prognóstico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Metilação de RNA/genética
7.
Mol Cell Biochem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026029

RESUMO

Ferroptosis is recently discovered as an important player in the initiation, proliferation, and progression of human tumors. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has been reported as an oncogene in multiple types of cancers, including lung adenocarcinoma (LUAD). However, little research has been designed to investigate the regulation of IGF2BP3 on ferroptosis in LUAD. qRT-PCR and western blot were used to measure the mRNA and protein expression of IGF2BP3 and transcription factor AP-2 alpha (TFAP2A). CCK-8 assay was performed to determine cell viability. DCFH-DA and C11-BODIPY staining were used to detect the levels of intracellular reactive oxygen species (ROS) and lipid ROS. The corresponding assay kits were used to analyze the levels of malondialdehyde (MDA) and glutathione (GSH). SRAMP website and m6A RNA immunoprecipitation (Me-RIP) were used to predict and confirm the m6A modification of TFAP2A. RIP experiments were conducted to confirm the binding of IGF2BP3 and TFAP2A. RNA stability assay was performed using actinomycin D. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter experiments were performed to confirm the interaction between TFAP2A and cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4). Mice xenotransplant model was also constructed to explore the effect of IGF2BP3 on LUAD tumor growth and ferroptosis. IGF2BP3 and TFAP2A were both highly expressed in LUAD. IGF2BP3 or TFAP2A knockdown induced ferroptosis by aggravating erastin-induced cell viability suppression, increasing the production of intracellular ROS, lipid ROS, and MDA, and decreasing GSH synthesis, GSH/GSSG ratio, and cystine uptake. Mechanistically, IGF2BP3 stabilized TFAP2A expression via m6A modification. Moreover, sh-IGF2BP3-mediated ferroptosis was significantly abated by TFAP2A overexpression. Furthermore, TFAP2A binds to the promoters of SLC7A11 and GPX4 to promote their transcription. Also, IGF2BP3 depletion suppressed LUAD tumor growth by inducing ferroptosis in mice. IGF2BP3 suppresses ferroptosis in LUAD by m6A-dependent regulation of TFAP2A to promote the transcription of SLC7A11 and GPX4. Our findings suggest that targeting IGF2BP3/TFAP2A/SLC7A11/GPX4 axis might be a potential therapeutic choice to increase ferroptosis sensitivity in LUAD.

8.
Prostaglandins Other Lipid Mediat ; 172: 106832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460759

RESUMO

Atherosclerosis (AS) represents a prevalent initiating factor for cardiovascular events. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an oncofetal RNA-binding protein that participates in cardiovascular diseases. This work aimed to elaborate the effects of IGF2BP3 on AS and the probable mechanism by using an oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) model. Results indicated that IGF2BP3 expression was declined in the blood of AS patients and ox-LDL-induced HUVECs. IGF2BP3 elevation alleviated ox-LDL-provoked viability loss, apoptosis, oxidative DNA damage and endothelial dysfunction in HUVECs. Moreover, IGF2BP3 bound SESN1 and stabilized SESN1 mRNA. Furthermore, SESN1 interference reversed the impacts of IGF2BP3 overexpression on the apoptosis, oxidative DNA damage and endothelial dysfunction of ox-LDL-challenged HUVECs. Additionally, the activation of Nrf2 signaling mediated by IGF2BP3 up-regulation in ox-LDL-treated HUVECs was blocked by SESN1 absence. Collectively, SESN1 stabilized by IGF2BP3 might protect against AS by activating Nrf2 signaling.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , RNA Mensageiro , Proteínas de Ligação a RNA , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Apoptose/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Estabilidade de RNA/efeitos dos fármacos , Dano ao DNA , Sestrinas
9.
Mol Biol Rep ; 51(1): 288, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329630

RESUMO

BACKGROUND: Insulin-like Growth Factor 2 Binding Protein 3 (IGF2BP3) promotes cancer migration and invasion by binding to several coding and non-coding RNAs. Hypoxia stimulates tumor progression by upregulating Hypoxia Inducible Factors and downstream signaling. Quaking (QKI) gene, which is upregulated in hypoxia and promotes epithelial to mesenchymal transition (EMT), induces circular RNAs. Therefore, the axis between IGF2BP3, QKI, circular RNAs and their respective host genes under hypoxia was studied. METHODS AND RESULTS: Several IGF2BP3-bound circular RNAs were previously identified in HepG2. There were 13 circRNAs originating from 8 host genes bound to IGF2BP3. We confirmed their binding to IGF2BP3 in U87MG using an RNA Immunoprecipitation assay. MALAT1, an oncogenic lncRNA was also found to be associated with IGF2BP3. Three adherent cell lines expressing high levels of IGF2BP3 viz., HeLa, HepG2 and U87MG were cultured under normoxia (20%O2) and hypoxia (<0.2%O2) for 48-168 h. Expression of IGF2BP3, QKI, EMT markers, IGF2BP3-bound circRNAs and their host mRNAs expression were assessed by quantitative real-time PCR (qRT-PCR) in both normoxia and hypoxia. The hypoxia markers viz., VEGF and CA9 were upregulated in all the cell lines in hypoxia at all time points along with an increase in SNAIL. We found 6 genes, viz., PHC3, CDYL, ANKRD17, ARID1A, NEIL3 and FNDC3B with increased expression both at the mRNA and circRNA level indicating their synergistic role in tumor initiation. Overall, we found that circRNA to mRNA expression was observed to be increased for most of the genes and time points of hypoxia in all the cell lines. IGF2BP3 and QKI were also upregulated in hypoxia indicating their role in circRNA biogenesis and stability. CONCLUSION: Our data implies that hypoxia augments circRNA biogenesis which might subsequently play a role in tumor progression.


Assuntos
Transição Epitelial-Mesenquimal , RNA Circular , Proteínas de Ligação a RNA , Humanos , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/genética , Células HeLa , RNA Circular/genética , RNA Mensageiro , Proteínas de Ligação a RNA/genética
10.
Cell Mol Biol Lett ; 29(1): 39, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504159

RESUMO

BACKGROUND: IGF2BP3 functions as an RNA-binding protein (RBP) and plays a role in the posttranscriptional control of mRNA localization, stability, and translation. Its dysregulation is frequently associated with tumorigenesis across various cancer types. Nonetheless, our understanding of how the expression of the IGF2BP3 gene is regulated remains limited. The specific functions and underlying mechanisms of IGF2BP3, as well as the potential benefits of targeting it for therapeutic purposes in bladder cancer, are not yet well comprehended. METHODS: The mRNA and protein expression were examined by RT-qPCR and western blotting, respectively. The methylation level of CpG sites was detected by Bisulfite sequencing PCR (BSP). The regulation of IGF2BP3 expression by miR-320a-3p was analyzed by luciferase reporter assay. The functional role of IGF2BP3 was determined through proliferation, colony formation, wound healing, invasion assays, and xenograft mouse model. The regulation of HMGB1 by IGF2BP3 was investigated by RNA immunoprecipitation (RIP) and mRNA stability assays. RESULTS: We observed a significant elevation in IGF2BP3 levels within bladder cancer samples, correlating with more advanced stages and grades, as well as an unfavorable prognosis. Subsequent investigations revealed that the upregulation of IGF2BP3 expression is triggered by copy number gain/amplification and promoter hypomethylation in various tumor types, including bladder cancer. Furthermore, miR-320a-3p was identified as another negative regulator in bladder cancer. Functionally, the upregulation of IGF2BP3 expression exacerbated bladder cancer progression, including the proliferation, migration, and invasion of bladder cancer. Conversely, IGF2BP3 silencing produced the opposite effects. Moreover, IGF2BP3 expression positively correlated with inflammation and immune infiltration in bladder cancer. Mechanistically, IGF2BP3 enhanced mRNA stability and promoted the expression of HMGB1 by binding to its mRNA, which is a factor that promotes inflammation and orchestrates tumorigenesis in many cancers. Importantly, pharmacological inhibition of HMGB1 with glycyrrhizin, a specific HMGB1 inhibitor, effectively reversed the cancer-promoting effects of IGF2BP3 overexpression in bladder cancer. Furthermore, the relationship between HMGB1 mRNA and IGF2PB3 is also observed in mammalian embryonic development, with the expression of both genes gradually decreasing as embryonic development progresses. CONCLUSIONS: Our present study sheds light on the genetic and epigenetic mechanisms governing IGF2BP3 expression, underscoring the critical involvement of the IGF2BP3-HMGB1 axis in driving bladder cancer progression. Additionally, it advocates for the investigation of inhibiting IGF2BP3-HMGB1 as a viable therapeutic approach for treating bladder cancer.


Assuntos
Proteína HMGB1 , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , MicroRNAs/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Metilação de DNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Inflamação/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Mamíferos/genética
11.
Cell Mol Biol Lett ; 29(1): 97, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961325

RESUMO

BACKGROUND: Pancreatic cancer (PC) is one of the most malignant cancers with highly aggressiveness and poor prognosis. N6-methyladenosine (m6A) have been indicated to be involved in PC development. Glucan Branching Enzyme 1 (GBE1) is mainly involved in cell glycogen metabolism. However, the function of GBE1 and Whether GBE1 occurs m6A modification in PC progression remains to be illustrated. METHODS: The clinical prognosis of GBE1 was analyzed through online platform. The expression of GBE1 was obtained from online platform and then verified in normal and PC cell lines. Lentivirus was used to generated GBE1 stable-overexpression or knockdown PC cells. Cell Counting Kit (CCK-8), colony formation assay, sphere formation assay and flow cytometry assay were conducted to analyze cell proliferation and stemness ability in vitro. Subcutaneous and orthotopic mouse models were used to verify the function of GBE1 in vivo. RNA immunoprecipitation (RIP) assay, RNA stability experiment and western blots were conducted to explore the molecular regulation of GBE1 in PC. RESULTS: GBE1 was significantly upregulated in PC and associated with poor prognosis of PC patients. Functionally, GBE1 overexpression facilitated PC cell proliferation and stemness-like properties, while knockdown of GBE1 attenuated the malignancy of PC cells. Importantly, we found the m6A modification of GBE1 RNA, and WTAP and IGF2BP3 was revealed as the m6A regulators to increase GBE1 mRNA stability and expression. Furthermore, c-Myc was discovered as a downstream gene of GBE1 and functional rescue experiments showed that overexpression of c-Myc could rescue GBE1 knockdown-induced PC cell growth inhibition. CONCLUSIONS: Our study uncovered the oncogenic role of GBE1/c-Myc axis in PC progression and revealed WTAP/IGF2BP3-mediated m6A modification of GBE1, which highlight the potential application of GBE1 in the targeted therapy of PC.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteínas de Ligação a RNA , Regulação para Cima , Humanos , Proliferação de Células/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Camundongos , Regulação para Cima/genética , Camundongos Nus , Prognóstico
12.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679464

RESUMO

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Assuntos
Carcinoma de Células Escamosas , Papillomavirus Humano 16 , Metiltransferases , Proteínas dos Microfilamentos , Infecções por Papillomavirus , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero , Feminino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Proteínas Repressoras , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo
13.
Cancer Cell Int ; 23(1): 330, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110984

RESUMO

BACKGROUND: Increasing evidence highlights the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of renal cell carcinoma (RCC). Here, we explored the mechanism of AGAP2-AS1 in the occurrence and development of clear cell RCC (ccRCC) involving IGF2BP3/miR-9-5p/THBS2. METHODS: The expressions of AGAP2-AS1, IGF2BP3, miR-9-5p, and THBS2 and their relationship were analyzed by bioinformatics. The targeting relationship between AGAP2-AS1 and miR-9-5p and between miR-9-5p and THBS2 was evaluated with their effect on cell biological behaviors and macrophage polarization assayed. Finally, we tested the effect of AGAP2-AS1 on ccRCC tumor formation in xenograft tumors. RESULTS: IGF2BP3 could stabilize AGAP2-AS1 through m6A modification. AGAP2-AS1 was highly expressed in ccRCC tissues and cells. The lentivirus-mediated intervention of AGAP2-AS1 induced malignant behaviors of ccRCC cells and led to M2 polarization of macrophages. In addition, THBS2 promoted M2 polarization of macrophages by activating the PI3K/AKT signaling pathway. AGAP2-AS1 could directly bind with miR-9-5p and promote the expression of THBS2 downstream of miR-9-5p. These results were further verified by in vivo experiments. CONCLUSION: AGAP2-AS1 stabilized by IGF2BP3 competitively binds to miR-9-5p to up-regulate THBS2, activating the PI3K/AKT signaling pathway and inducing macrophage M2 polarization, thus facilitating the development of RCC.

14.
Chem Biol Drug Des ; 103(2): e14473, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38378275

RESUMO

N6-methyladenosine (m6A) modification and m6A-related RNA-binding proteins (RBPs) play vital roles in various aspects of circRNA metabolism. Hsa_circRNA_103820 is implicated in the pathogenesis of multiple cancers, including lung cancer (LC). Moreover, bioinformatics analysis has suggested that hsa_circRNA_103820 possesses potential peptide-coding ability. Thus, we aimed to investigate the function and peptide-coding potential of hsa_circRNA_103820 in this study. Cell viability, apoptosis rate, and migratory and invasive abilities were assessed using CCK-8, flow cytometry, and transwell assays, respectively. Hsa_circRNA_103820 level was measured using RT-qPCR assay, and the interaction between hsa_circRNA_103820 and IGF2BP3 was examined through RIP and RT-qPCR assays. The coding ability of hsa_circRNA_103820 and protein levels were determined through western blot assay. The results showed that hsa_circRNA_103820 reduced cell viability, attenuated cell migratory and invasive abilities, and promoted cell apoptosis in LC. IGF2BP3 negatively regulated hsa_circRNA_103820 expression and interacted with it. Hsa_circRNA_103820 knockdown alleviated si-IGF2BP3-mediated anti-viability, anti-migration, anti-invasion, and pro-apoptosis effects in LC cells. Moreover, a 188-amino acid (aa) peptide encoded by hsa_circRNA_103820 decreased cell viability, facilitated cell apoptosis, and inhibited cell migration and invasion in LC. Collectively, hsa_circRNA_103820, regulated by IGF2BP3, encodes a 188-aa peptide and inhibits the malignant progression of LC cells by inhibiting the AKT pathway.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , RNA Circular/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/genética , Peptídeos , Linhagem Celular Tumoral , Movimento Celular
15.
Transl Oncol ; 44: 101932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492500

RESUMO

The genome of oral squamous cell carcinoma (OSCC) has been extensively characterized via bulk sequencing, revealing a multitude of genetic changes. The gene IGF2BP3, which encodes for the insulin-like growth factor 2 mRNA-binding protein 3, has been observed to be highly expressed in several types of cancer. This finding suggests that IGF2BP3 may play a significant role in the initiation and advancement of cancer. Nevertheless, the mechanisms by which IGF2BP3 contribute to OSCC are yet to be fully understood. In this study, we have observed that IGF2BP3 exhibits overexpression in OSCC. Based on our findings from bulk sequencing analysis, we have concluded that IGF2BP3 could potentially serve as a biomarker for predicting poor prognosis in OSCC. Moreover, it has been demonstrated that IGF2BP3 exhibits a significant association with the initiation and advancement of tumors both in vivo and in vitro. The evaluation of IGF2BP3 expression levels in relation to the cell cycle stage was conducted using single-cell RNA sequencing data. Tumor cells characterized by elevated IGF2BP3 expression demonstrated a higher percentage of cells in the G2/M transition phase. This study presents new findings indicating that the molecular target IGF2BP3 can serve as a prognostic indicator for tumors and has an impact on the development and progression of OSCC by influencing the regulation of the cell cycle.

16.
Transl Res ; 273: 1-15, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945255

RESUMO

Renal aging and the subsequent rise in kidney-related diseases are attributed to senescence in renal tubular epithelial cells (RTECs). Our study revealed that the abnormal expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of RNA N6-methyladenosine, is critically involved in cisplatin-induced renal tubular senescence. In cisplatin-induced senescence of RTECs, the promoter activity and transcription of IGF2BP3 is markedly suppressed. It was due to the down regulation of MYC proto-oncogene (MYC), which regulates IGF2BP3 transcription by binding to the putative site at 1852-1863 of the IGF2BP3 promoter. Overexpression of IGF2BP3 ameliorated cisplatin-induced renal tubular senescence in vitro. Mechanistic studies revealed that IGF2BP3 inhibits cellular senescence in RTECs by enhancing cyclin-dependent kinase 6 (CDK6) mRNA stability and increasing its expression. The inhibition effect of IGF2BP3 on tubular senescence is partially reversed by the knockdown of CDK6. Further, IGF2BP3 recruits nuclear cap binding protein subunit 1 (NCBP1) and inhibits CDK6 mRNA decay, by recognizing m6A modification. Specifically, IGF2BP3 recognizes m6A motif "GGACU" at nucleotides 110-114 in the 5' untranslated region (UTR) field of CDK6 mRNA. The involvement of IGF2BP3/CDK6 in alleviating tubular senescence was confirmed in a cisplatin-induced acute kidney injury (AKI)-to-chronic kidney disease (CKD) model. Clinical data also suggests an age-related decrease in IGF2BP3 and CDK6 levels in renal tissue or serum samples from patients. These findings suggest that IGF2BP3/CDK6 may be a promising target in cisplatin-induced tubular senescence and renal failure.

17.
Cell Signal ; 119: 111154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565412

RESUMO

BACKGROUND: Circular RNAs (circRNAs), which are covalently closed non-coding RNAs, are frequently dysregulated in cancer. However, their precise role in bladder cancer (BCa) remains largely unknown. METHODS: Expression of hsa_circ_0005320 in tissues and cell lines was detected using quantitative real-time PCR. Proliferation and colony forming capacity of BCa cells were assessed using Cell Counting Kit-8, ethynyl-labeled deoxyuridine, and colony formation assays. The cell cycle was analyzed using flow cytometry. Protein expression of insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) and cyclin dependent kinase 2 (CDK2) was examined using western blots. The binding of RNA and protein was validated using RNA immunoprecipitation. Additionally, xenograft tumor models were established to validate the function of hsa_circ_0005320 in vivo. RESULTS: We screened hsa_circ_0005320 from previous high-throughput sequencing and found that it was highly expressed in BCa tissues and associated with tumor differentiation and depth of invasion in BCa patients. Through functional experiments, we demonstrated that hsa_circ_0005320 promoted cell proliferation and regulated the cell cycle. Mechanistically, hsa_circ_0005320 interacted with and upregulated the expression of IGF2BP3, which binds to and enhances the stability of CDK2 mRNA. Furthermore, knockdown of hsa_circ_0005320 resulted in a reduction in tumor burden in vivo. CONCLUSIONS: Collectively, these findings highlight the pro-oncogenic role of hsa_circ_0005320 in BCa through the IGF2BP3/CDK2 axis, providing valuable insights into the mechanism of circRNAs in tumor progression.


Assuntos
Ciclo Celular , Proliferação de Células , Quinase 2 Dependente de Ciclina , RNA Circular , Proteínas de Ligação a RNA , Neoplasias da Bexiga Urinária , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Circular/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética
18.
Genet Test Mol Biomarkers ; 28(8): 311-321, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39023781

RESUMO

Objective: To examine if METTL5 promotes the proliferation of nonsmall cell lung cancer (NSCLC) cells by interacting with IGF2BP3. Methods: The expression patterns of METTL5 and IGF2BP3 in NSCLC tissues, their relationship with survival rate, and their correlation were analyzed using bioinformatics and clinical sample analyses. The effects of METTL5 overexpression and IGF2BP3 knockdown, as well as those of METTL5 knockdown and IGF2BP3 overexpression, on the proliferation of NSCLC cells were analyzed by transfecting appropriate constructs. The interaction between METTL5 and IGF2BP3 was verified using the co-immunoprecipitation (Co-IP) assay. The in vivo effects of METTL5 and IGF2BP3 on NSCLC growth were analyzed using the tumor-bearing nude mouse model. Results: METTL5 and IGF2BP3 expression levels were positively correlated and were associated with poor clinical prognosis. The METTL5 and IGF2BP3 expression levels were upregulated in the clinical NSCLC samples. IGF2BP3 expression did not affect METTL5 expression but was regulated by METTL5. IGF2BP3 overexpression mitigated the METTL5 knockdown-induced impaired cell proliferation. Meanwhile, IGF2BP3 knockdown suppressed METTL5-mediated NSCLC cell proliferation. The Co-IP assay results revealed the interaction between METTL5 and IGF2BP3 in NSCLC cells. IGF2BP3 knockdown suppressed tumor growth, whereas IGF2BP3 overexpression enhanced tumor volume and quality. Conclusion: METTL5 induces NSCLC cell proliferation by interacting with IGF2BP3. Thus, METTL5 is a potential biomarker and a therapeutic target for NSCLC.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Metiltransferases , Camundongos Nus , Proteínas de Ligação a RNA , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Proliferação de Células/genética , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade
19.
Thorac Cancer ; 15(17): 1357-1368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709912

RESUMO

BACKGROUND: Berberine (BBR), an isoquinoline alkaloid from Coptidis rhizoma, has been found to have powerful activities against various human malignancies, including breast cancer. However, the underlying antitumor mechanisms of BBR in breast cancer remain poorly understood. METHODS: Breast cancer cells were cultured and treated with different doses (0, 20, 40, and 60 µM) of BBR for 48 h. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. Fibroblast growth factor 7 (FGF7), methyltransferase-like 3 (METTL3), and insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) mRNA levels and protein levels were measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Interaction between METTL3 and FGF7 m6A was assessed using methylated RNA immunoprecipitation (MeRIP)-qPCR and RNA immunoprecipitation (RIP) assay. Binding ability between IGF2BP3 and FGF7 mRNA was analyzed using RIP assay. RESULTS: BBR treatment hindered breast cancer cell proliferation, invasion, migration, and induced apoptosis. FGF7 expression was upregulated in breast cancer tissues, while its level was reduced in BBR-treated tumor cells. FGF7 upregulation relieved the repression of BBR on breast cancer cell malignant behaviors. In mechanism, METTL3 stabilized FGF7 mRNA through the m6A-IGF2BP3-dependent mechanism and naturally improved FGF7 expression. BBR treatment inhibited breast cancer growth in vivo. CONCLUSION: BBR treatment blocked breast cancer cell growth and metastasis partly by regulating METTL3-mediated m6A modification of FGF7 mRNA, providing a promising therapeutic target for breast cancer treatment.


Assuntos
Berberina , Neoplasias da Mama , Proliferação de Células , Fator 7 de Crescimento de Fibroblastos , Metiltransferases , RNA Mensageiro , Humanos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Feminino , Camundongos , Proliferação de Células/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fator 7 de Crescimento de Fibroblastos/genética , Apoptose/efeitos dos fármacos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Movimento Celular/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Transl Med ; 14(8): e1793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113232

RESUMO

INTRODUCTION: Liver fibrosis is primarily driven by the activation of hepatic stellate cells (HSCs), which involves various epigenetic modifications. OBJECTIVES: N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotic cells, influences numerous physiological and pathological processes. Nevertheless, the role of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader gene mediating m6A modifications, in liver fibrosis remains unclear. METHODS AND RESULTS: This study demonstrated that IGF2BP3 knockout reduces liver fibrosis by promoting HSC ferroptosis (FPT) and inactivating HSCs. Multi-omics analysis revealed that HSC-specific IGF2BP3 knockout decreased m6A content in Jagged1 (Jag1), a key component of the Notch signalling pathway. Furthermore, IGF2BP3 deficiency significantly reduced the expression of hairy and enhancer of split-1 (Hes1), a transcription factor in the Notch/Jag1 signalling pathway, with mRNA levels declining to 35%-62% and protein levels to 28%-35%. Additionally, it suppressed glutathione peroxidase 4 (GPX4) (decreased to approximately 31%-38%), a negative regulator of FPT, thereby facilitating HSC FPT progression and reducing profibrotic gene expression. CONCLUSION: These findings uncover a novel IGF2BP3/Notch/Jag1 signalling pathway involving HSC FPT, suggesting promising targets for ameliorating liver fibrosis. KEY POINTS/HIGHLIGHTS: IGF2BP3 deficiency inactivates Jag1 signalling. IGF2BP3 deficiency-mediated m6A modifications promote HSC ferroptosis. IGF2BP3 inhibition facilitates ferroptosis in HSCs via the Hes1/GPX4 axis. IGF2BP3 deficiency inactivates Jag1/Notch1/3/Hes1 signalling pathway inactivation, leading to the decrease in GPX4, which contributes to HSC ferroptosis.


Assuntos
Ferroptose , Células Estreladas do Fígado , Proteína Jagged-1 , Cirrose Hepática , Proteínas de Ligação a RNA , Receptores Notch , Transdução de Sinais , Ferroptose/genética , Células Estreladas do Fígado/metabolismo , Animais , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Camundongos Knockout , Masculino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA