Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Behav Genet ; 54(3): 233-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336922

RESUMO

Brain-imaging-genetic analysis is an emerging field of research that aims at aggregating data from neuroimaging modalities, which characterize brain structure or function, and genetic data, which capture the structure and function of the genome, to explain or predict normal (or abnormal) brain performance. Brain-imaging-genetic studies offer great potential for understanding complex brain-related diseases/disorders of genetic etiology. Still, a combined brain-wide genome-wide analysis is difficult to perform as typical datasets fuse multiple modalities, each with high dimensionality, unique correlational landscapes, and often low statistical signal-to-noise ratios. In this review, we outline the progress in brain-imaging-genetic methodologies starting from early massive univariate to current deep learning approaches, highlighting each approach's strengths and weaknesses and elongating it with the field's development. We conclude by discussing selected remaining challenges and prospects for the field.


Assuntos
Encéfalo , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
2.
J Transl Med ; 21(1): 726, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845765

RESUMO

OBJECTIVES: Gastrointestinal stromal tumors (GISTs) carrying different KIT exon 11 (KIT-11) mutations exhibit varying prognoses and responses to Imatinib. Herein, we aimed to determine whether computed tomography (CT) radiomics can accurately stratify KIT-11 mutation genotypes to benefit Imatinib therapy and GISTs monitoring. METHODS: Overall, 1143 GISTs from 3 independent centers were separated into a training cohort (TC) or validation cohort (VC). In addition, the KIT-11 mutation genotype was classified into 4 categories: no KIT-11 mutation (K11-NM), point mutations or duplications (K11-PM/D), KIT-11 557/558 deletions (K11-557/558D), and KIT-11 deletion without codons 557/558 involvement (K11-D). Subsequently, radiomic signatures (RS) were generated based on the arterial phase of contrast CT, which were then developed as KIT-11 mutation predictors using 1408 quantitative image features and LASSO regression analysis, with further evaluation of its predictive capability. RESULTS: The TC AUCs for K11-NM, K11-PM/D, K11-557/558D, and K11-D ranged from 0.848 (95% CI 0.812-0.884), 0.759 (95% CI 0.722-0.797), 0.956 (95% CI 0.938-0.974), and 0.876 (95% CI 0.844-0.908), whereas the VC AUCs ranged from 0.723 (95% CI 0.660-0.786), 0.688 (95% CI 0.643-0.732), 0.870 (95% CI 0.824-0.918), and 0.830 (95% CI 0.780-0.878). Macro-weighted AUCs for the KIT-11 mutant genotype ranged from 0.838 (95% CI 0.820-0.855) in the TC to 0.758 (95% CI 0.758-0.784) in VC. TC had an overall accuracy of 0.694 (95%CI 0.660-0.729) for RS-based predictions of the KIT-11 mutant genotype, whereas VC had an accuracy of 0.637 (95%CI 0.595-0.679). CONCLUSIONS: CT radiomics signature exhibited good predictive performance in estimating the KIT-11 mutation genotype, especially in prediction of K11-557/558D genotype. RS-based classification of K11-NM, K11-557/558D, and K11-D patients may be an indication for choice of Imatinib therapy.


Assuntos
Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Genótipo , Mesilato de Imatinib , Mutação/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptores Proteína Tirosina Quinases , Estudos Retrospectivos
3.
Neuroradiology ; 65(8): 1215-1223, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37316586

RESUMO

PURPOSE: The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS: Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS: 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION: MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Marcadores Genéticos , Homozigoto , Deleção de Sequência , Mutação , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Isocitrato Desidrogenase/genética
4.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772473

RESUMO

The expression abundance of transcripts in nondiseased breast tissue varies among individuals. The association study of genotypes and imaging phenotypes may help us to understand this individual variation. Since existing reports mainly focus on tumors or lesion areas, the heterogeneity of pathological image features and their correlations with RNA expression profiles for nondiseased tissue are not clear. The aim of this study is to discover the association between the nucleus features and the transcriptome-wide RNAs. We analyzed both microscopic histology images and RNA-sequencing data of 456 breast tissues from the Genotype-Tissue Expression (GTEx) project and constructed an automatic computational framework. We classified all samples into four clusters based on their nucleus morphological features and discovered feature-specific gene sets. The biological pathway analysis was performed on each gene set. The proposed framework evaluates the morphological characteristics of the cell nucleus quantitatively and identifies the associated genes. We found image features that capture population variation in breast tissue associated with RNA expressions, suggesting that the variation in expression pattern affects population variation in the morphological traits of breast tissue. This study provides a comprehensive transcriptome-wide view of imaging-feature-specific RNA expression for healthy breast tissue. Such a framework could also be used for understanding the connection between RNA expression and morphology in other tissues and organs. Pathway analysis indicated that the gene sets we identified were involved in specific biological processes, such as immune processes.


Assuntos
Neoplasias da Mama , Transcriptoma , Humanos , Feminino , Transcriptoma/genética , RNA/genética , Análise de Sequência de RNA , Genótipo , Fenótipo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética
5.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902378

RESUMO

The heterogeneity of lung tumor nodules is reflected in their phenotypic characteristics in radiological images. The radiogenomics field employs quantitative image features combined with transcriptome expression levels to understand tumor heterogeneity molecularly. Due to the different data acquisition techniques for imaging traits and genomic data, establishing meaningful connections poses a challenge. We analyzed 86 image features describing tumor characteristics (such as shape and texture) with the underlying transcriptome and post-transcriptome profiles of 22 lung cancer patients (median age 67.5 years, from 42 to 80 years) to unravel the molecular mechanisms behind tumor phenotypes. As a result, we were able to construct a radiogenomic association map (RAM) linking tumor morphology, shape, texture, and size with gene and miRNA signatures, as well as biological correlates of GO terms and pathways. These indicated possible dependencies between gene and miRNA expression and the evaluated image phenotypes. In particular, the gene ontology processes "regulation of signaling" and "cellular response to organic substance" were shown to be reflected in CT image phenotypes, exhibiting a distinct radiomic signature. Moreover, the gene regulatory networks involving the TFs TAL1, EZH2, and TGFBR2 could reflect how the texture of lung tumors is potentially formed. The combined visualization of transcriptomic and image features suggests that radiogenomic approaches could identify potential image biomarkers for underlying genetic variation, allowing a broader view of the heterogeneity of the tumors. Finally, the proposed methodology could also be adapted to other cancer types to expand our knowledge of the mechanistic interpretability of tumor phenotypes.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , MicroRNAs/genética , Fenótipo
6.
Eur Radiol ; 32(11): 7780-7788, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35587830

RESUMO

OBJECTIVES: To determine whether imaging-based risk stratification enables prognostication in diffuse glioma, NOS (not otherwise specified). METHODS: Data from 220 patients classified as diffuse glioma, NOS, between January 2011 and December 2020 were retrospectively included. Two neuroradiologists analyzed pre-surgical CT and MRI to assign gliomas to the three imaging-based risk types considering well-known imaging phenotypes (e.g., T2/FLAIR mismatch). According to the 2021 World Health Organization classification, the three risk types included (1) low-risk, expecting oligodendroglioma, isocitrate dehydrogenase (IDH)-mutant, and 1p/19q-codeleted; (2) intermediate-risk, expecting astrocytoma, IDH-mutant; and (3) high-risk, expecting glioblastoma, IDH-wildtype. Progression-free survival (PFS) and overall survival (OS) were estimated for each risk type. Time-dependent receiver operating characteristic analysis using 10-fold cross-validation with 100-fold bootstrapping was used to compare the performance of an imaging-based survival model with that of a historical molecular-based survival model published in 2015, created using The Cancer Genome Archive data. RESULTS: Prognostication according to the three imaging-based risk types was achieved for both PFS and OS (log-rank test, p < 0.001). The imaging-based survival model showed high prognostic value, with areas under the curves (AUCs) of 0.772 and 0.650 for 1-year PFS and OS, respectively, similar to the historical molecular-based survival model (AUC = 0.74 for PFS and 0.87 for OS). The imaging-based survival model achieved high long-term performance in both 3-year PFS (AUC = 0.806) and 5-year OS (AUC = 0.812). CONCLUSION: Imaging-based risk stratification achieved histomolecular-level prognostication in diffuse glioma, NOS, and could aid in guiding patient referral for insufficient or unsuccessful molecular diagnosis. KEY POINTS: • Three imaging-based risk types enable distinct prognostication in diffuse glioma, NOS (not otherwise specified). • The imaging-based survival model achieved similar prognostic performance as a historical molecular-based survival model. • For long-term prognostication of 3 and 5 years, the imaging-based survival model showed high performance.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Isocitrato Desidrogenase/genética , Medição de Risco
7.
Eur Radiol ; 32(4): 2255-2265, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34800150

RESUMO

OBJECTIVES: We tried to realize accurate pathological classification, assessment of prognosis, and genomic molecular typing of renal cell carcinoma by CT texture feature analysis. To determine whether CT texture features can perform accurate pathological classification and evaluation of prognosis and genomic characteristics in renal cell carcinoma. METHODS: Patients with renal cell carcinoma from five open-source cohorts were analyzed retrospectively in this study. These data were randomly split to train and test machine learning algorithms to segment the lesion, predict the histological subtype, tumor stage, and pathological grade. Dice coefficient and performance metrics such as accuracy and AUC were calculated to evaluate the segmentation and classification model. Quantitative decomposition of the predictive model was conducted to explore the contribution of each feature. Besides, survival analysis and the statistical correlation between CT texture features, pathological, and genomic signatures were investigated. RESULTS: A total of 569 enhanced CT images of 443 patients (mean age 59.4, 278 males) were included in the analysis. In the segmentation task, the mean dice coefficient was 0.96 for the kidney and 0.88 for the cancer region. For classification of histologic subtype, tumor stage, and pathological grade, the model was on a par with radiologists and the AUC was 0.83 [Formula: see text] 0.1, 0.80 [Formula: see text] 0.1, and 0.77 [Formula: see text] 0.1 at 95% confidence intervals, respectively. Moreover, specific quantitative CT features related to clinical prognosis were identified. A strong statistical correlation (R2 = 0.83) between the feature crosses and genomic characteristics was shown. The structural equation modeling confirmed significant associations between CT features, pathological (ß = - 0.75), and molecular subtype (ß = - 0.30). CONCLUSIONS: The framework illustrates high performance in the pathological classification of renal cell carcinoma. Prognosis and genomic characteristics can be inferred by quantitative image analysis. KEY POINTS: • The analytical framework exhibits high-performance pathological classification of renal cell carcinoma and is on a par with human radiologists. • Quantitative decomposition of the predictive model shows that specific texture features contribute to histologic subtype and tumor stage classification. • Structural equation modeling shows the associations of genomic characteristics to CT texture features. Overall survival and molecular characteristics can be inferred by quantitative CT texture analysis in renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Diagnóstico Diferencial , Genômica , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
8.
Neuroradiology ; 63(3): 353-362, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32840682

RESUMO

PURPOSE: Molecular parameters have become integral to glioma diagnosis. Much of radiogenomics research has focused on the use of advanced MRI techniques, but conventional MRI sequences remain the mainstay of clinical assessments. The aim of this research was to synthesize the current published data on the accuracy of standard clinical MRI for diffuse glioma genotyping, specifically targeting IDH and 1p19q status. METHODS: A systematic search was performed in September 2019 using PubMed and the Cochrane Library, identifying studies on the diagnostic value of T1 pre-/post-contrast, T2, FLAIR, T2*/SWI and/or 3-directional diffusion-weighted imaging sequences for the prediction of IDH and/or 1p19q status in WHO grade II-IV diffuse astrocytic and oligodendroglial tumours as defined in the WHO 2016 Classification of CNS Tumours. RESULTS: Forty-four studies including a total of 5286 patients fulfilled the inclusion criteria. Correlations between key glioma molecular markers, namely IDH and 1p19q, and distinctive MRI findings have been established, including tumour location, signal composition (including the T2-FLAIR mismatch sign) and apparent diffusion coefficient values. CONCLUSION: Consistent trends have emerged indicating that conventional MRI is valuable for glioma genotyping, particularly in presumed lower grade glioma. However, due to limited interobserver testing, the reproducibility of qualitatively assessed visual features remains an area of uncertainty.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Gradação de Tumores , Reprodutibilidade dos Testes
9.
Mol Cell Proteomics ; 18(8 suppl 1): S37-S51, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285282

RESUMO

Tumors are heterogeneous tissues with different types of cells such as cancer cells, fibroblasts, and lymphocytes. Although the morphological features of tumors are critical for cancer diagnosis and prognosis, the underlying molecular events and genes for tumor morphology are far from being clear. With the advancement in computational pathology and accumulation of large amount of cancer samples with matched molecular and histopathology data, researchers can carry out integrative analysis to investigate this issue. In this study, we systematically examine the relationships between morphological features and various molecular data in breast cancers. Specifically, we identified 73 breast cancer patients from the TCGA and CPTAC projects matched whole slide images, RNA-seq, and proteomic data. By calculating 100 different morphological features and correlating them with the transcriptomic and proteomic data, we inferred four major biological processes associated with various interpretable morphological features. These processes include metabolism, cell cycle, immune response, and extracellular matrix development, which are all hallmarks of cancers and the associated morphological features are related to area, density, and shapes of epithelial cells, fibroblasts, and lymphocytes. In addition, protein specific biological processes were inferred solely from proteomic data, suggesting the importance of proteomic data in obtaining a holistic understanding of the molecular basis for tumor tissue morphology. Furthermore, survival analysis yielded specific morphological features related to patient prognosis, which have a strong association with important molecular events based on our analysis. Overall, our study demonstrated the power for integrating multiple types of biological data for cancer samples in generating new hypothesis as well as identifying potential biomarkers predicting patient outcome. Future work includes causal analysis to identify key regulators for cancer tissue development and validating the findings using more independent data sets.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Proteogenômica , RNA-Seq
10.
Can Assoc Radiol J ; 72(4): 710-713, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33887979

RESUMO

The past year has been one of unprecedented challenge for the modern world and especially the medical profession. This review explores some of the most impactful topics published in the CARJ during the COVID-19 pandemic including physician wellbeing and burnout, patient safety, and technological innovations including dual energy CT, quantitative imaging and ultra-high frequency ultrasound. The impact of the COVID-19 pandemic on trainee education is discussed and evidence-based tips for providing value-added care are reviewed. Patient privacy considerations relevant to the development of artificial intelligence applications for medical imaging are explored. These publications in the CARJ demonstrate that although this year has brought adversity, it has also been a harbinger for new and exciting areas of focus in our field.


Assuntos
Esgotamento Profissional/psicologia , COVID-19/psicologia , Segurança do Paciente , Publicações Periódicas como Assunto , Radiologia/educação , Radiologia/métodos , COVID-19/prevenção & controle , Canadá , Humanos , SARS-CoV-2 , Sociedades Médicas
11.
Eur J Nucl Med Mol Imaging ; 46(2): 446-454, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30145701

RESUMO

PURPOSE: This study investigated the correlations between parameters of 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) scan and indices of genetic properties, heterogeneity index (HI), and tumor mutation burden (TMB), in patients with lung cancer. METHODS: We produced 106 PET indices for each tumor site that underwent genomic analysis in a total of 176 study subjects (age, 62.0 ± 10.0 y; males, 68.2%), comprising 101 adenocarcinoma (ADC), 29 squamous cell carcinoma (SQCC), and 46 small cell lung cancer (SCLC) patients. We then examined the correlations of the PET parameters with genetic properties of HI and TMB, according to pathology and tumor site. RESULTS: Comparisons between PET parameters and the genetic properties with false discovery rate (FDR) correction revealed that the surface standard uptake value (SUV) entropy of SUV statistics had a significant correlation with HI only in patients with SCLC who underwent a genetic test in lymph nodes (r = 0.592, p = 0.028), whereas PET parameters did not show a significant correlation with HI or TMB in patients with SCLC who underwent a genetic test in lung tissue. In patients with ADC and SQCC, there was no significant correlation between PET parameters and the genetic properties. Although SUVmax showed raw p values less than 0.05 in correlation with HI (r = 0.315, raw p = 0.048) and TMB (r = 0.206, raw p = 0.043) in ADC, and SUVpeak had a raw p value less than 0.05 in correlation with HI (r = 0.394, raw p = 0.046) in SQCC, these parameters were not significant when corrected by FDR. CONCLUSIONS: In this study, surface SUV entropy had a significant correlation with HI in SCLC. Regarding other PET parameters and tumors, no significant correlation with genetic parameters existed.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
12.
Proc IEEE Inst Electr Electron Eng ; 107(5): 912-927, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32051642

RESUMO

Imaging genomics focuses on characterizing genomic influence on the variation of neurobiological traits, holding promise for illuminating the pathogenesis, reforming the diagnostic system, and precision medicine of mental disorders. This paper aims to provide an overall picture of the current status of neuroimaging-genomic analyses in mental disorders, and how we can increase their translational potential into clinical practice. The review is organized around three perspectives. (a) Towards reliability, generalizability and interpretability, where we summarize the multivariate models and discuss the considerations and trade-offs of using these methods and how reliable findings may be reached, to serve as ground for further delineation. (b) Towards improved diagnosis, where we outline the advantages and challenges of constructing a dimensional transdiagnostic model and how imaging genomic analyses map into this framework to aid in deconstructing heterogeneity and achieving an optimal stratification of patients that better inform treatment planning. (c) Towards improved treatment. Here we highlight recent efforts and progress in elucidating the functional annotations that bridge between genomic risk and neurobiological abnormalities, in detecting genomic predisposition and prodromal neurodevelopmental changes, as well as in identifying imaging genomic biomarkers for predicting treatment response. Providing an overview of the challenges and promises, this review hopefully motivates imaging genomic studies with multivariate, dimensional and transdiagnostic designs for generalizable and interpretable findings that facilitate development of personalized treatment.

13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(1): 140-145, 2019 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-30887788

RESUMO

With the exacerbation of aging population in China, the number of patients with Alzheimer's disease (AD) is increasing rapidly. AD is a chronic but irreversible neurodegenerative disease, which cannot be cured radically at present. In recent years, in order to intervene in the course of AD in advance, many researchers have explored how to detect AD as early as possible, which may be helpful for effective treatment of AD. Imaging genomics is a kind of diagnosis method developed in recent years, which combines the medical imaging and high-throughput genetic omics together. It studies changes in cognitive function in patients with AD by extracting effective information from high-throughput medical imaging data and genomic data, providing effective guidance for early detection and treatment of AD patients. In this paper, the association analysis of magnetic resonance image (MRI) with genetic variation are summarized, as well as the research progress on AD with this method. According to complexity, the objects in the association analysis are classified as candidate brain phenotype, candidate genetic variation, genome-wide genetic variation and whole brain voxel. Then we briefly describe the specific methods corresponding to phenotypic of the brain and genetic variation respectively. Finally, some unsolved problems such as phenotype selection and limited polymorphism of candidate genes are put forward.

14.
Eur Radiol ; 28(9): 3640-3650, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29564594

RESUMO

OBJECTIVES: To build a reliable radiomics model from multiregional and multiparametric magnetic resonance imaging (MRI) for pretreatment prediction of O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status in glioblastoma multiforme (GBM). METHODS: In this retrospective multicentre study, 1,705 multiregional radiomics features were automatically extracted from multiparametric MRI. A radiomics model with a minimal set of all-relevant features and a radiomics model with univariately-predictive and non-redundant features were built for MGMT methylation prediction from a primary cohort (133 patients) and tested on an independent validation cohort (60 patients). Predictive models combing clinical factors were built and evaluated. Both radiomics models were assessed on subgroups stratified by clinical factors. RESULTS: The radiomics model with six all-relevant features allowed pretreatment prediction of MGMT methylation (AUC=0.88, accuracy=80 %), which significantly outperformed the model with eight univariately-predictive and non-redundant features (AUC=0.76, accuracy=70 %). Combing clinical factors with radiomics features did not benefit the prediction performance. The all-relevant model achieved significantly better performance in stratified analysis. CONCLUSIONS: Radiomics model built from multiregional and multiparameter MRI may serve as a potential imaging biomarker for pretreatment prediction of MGMT methylation in GBM. The all-relevant features have the potential of offering better predictive power than the univariately-predictive and non-redundant features. KEY POINTS: • Multiregional and multiparametric MRI features reliably predicted MGMT methylation in multicentre cohorts. • All-relevant imaging features predicted MGMT methylation better than univariately-predictive and non-redundant features. • Combing clinical factors with radiomics features did not benefit the prediction performance.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico por imagem , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/diagnóstico por imagem , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Criança , DNA de Neoplasias/genética , Feminino , Glioblastoma/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Curva ROC , Estudos Retrospectivos , Adulto Jovem
15.
Int J Mol Sci ; 19(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324666

RESUMO

Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ.


Assuntos
Mapeamento Encefálico/métodos , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Polimorfismo de Nucleotídeo Único , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
16.
Eur J Neurosci ; 45(12): 1501-1511, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27717213

RESUMO

The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of 'Met' carriers and homozygotes of the 'Val' allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Polimorfismo de Nucleotídeo Único , Navegação Espacial , Adulto , Hipocampo/fisiologia , Homozigoto , Humanos , Mutação de Sentido Incorreto
17.
J Magn Reson Imaging ; 46(4): 1017-1027, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28177554

RESUMO

PURPOSE: To determine whether dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) characteristics of the breast tumor and background parenchyma can distinguish molecular subtypes (ie, luminal A/B or basal) of breast cancer. MATERIALS AND METHODS: In all, 84 patients from one institution and 126 patients from The Cancer Genome Atlas (TCGA) were used for discovery and external validation, respectively. Thirty-five quantitative image features were extracted from DCE-MRI (1.5 or 3T) including morphology, texture, and volumetric features, which capture both tumor and background parenchymal enhancement (BPE) characteristics. Multiple testing was corrected using the Benjamini-Hochberg method to control the false-discovery rate (FDR). Sparse logistic regression models were built using the discovery cohort to distinguish each of the three studied molecular subtypes versus the rest, and the models were evaluated in the validation cohort. RESULTS: On univariate analysis in discovery and validation cohorts, two features characterizing tumor and two characterizing BPE were statistically significant in separating luminal A versus nonluminal A cancers; two features characterizing tumor were statistically significant for separating luminal B; one feature characterizing tumor and one characterizing BPE reached statistical significance for distinguishing basal (Wilcoxon P < 0.05, FDR < 0.25). In discovery and validation cohorts, multivariate logistic regression models achieved an area under the receiver operator characteristic curve (AUC) of 0.71 and 0.73 for luminal A cancer, 0.67 and 0.69 for luminal B cancer, and 0.66 and 0.79 for basal cancer, respectively. CONCLUSION: DCE-MRI characteristics of breast cancer and BPE may potentially be used to distinguish among molecular subtypes of breast cancer. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1017-1027.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Fenótipo , Reprodutibilidade dos Testes
18.
BMC Med Inform Decis Mak ; 17(Suppl 1): 61, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28539126

RESUMO

BACKGROUND: Rapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer's disease (LOAD). METHODS: For rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons. RESULTS: Our knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7 evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aß1-42 (p-value < 0.05). CONCLUSIONS: Our novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1ß in macrophages. Our results warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Mineração de Dados/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Éxons , Feminino , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Fenótipo
19.
BMC Cancer ; 16: 611, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27502180

RESUMO

BACKGROUND: Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. METHODS: One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. RESULTS: Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10(-4)). CONCLUSION: GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Redes Reguladoras de Genes , Genômica/métodos , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Apoptose , Neoplasias Encefálicas/genética , Ciclo Celular , Sistemas de Apoio a Decisões Clínicas , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Fenótipo , Transdução de Sinais , Análise de Sobrevida
20.
J Neurooncol ; 129(2): 289-300, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393347

RESUMO

Gene expression profiling from glioblastoma (GBM) patients enables characterization of cancer into subtypes that can be predictive of response to therapy. An integrative analysis of imaging and gene expression data can potentially be used to obtain novel biomarkers that are closely associated with the genetic subtype and gene signatures and thus provide a noninvasive approach to stratify GBM patients. In this retrospective study, we analyzed the expression of 12,042 genes for 558 patients from The Cancer Genome Atlas (TCGA). Among these patients, 50 patients had magnetic resonance imaging (MRI) studies including diffusion weighted (DW) MRI in The Cancer Imaging Archive (TCIA). We identified the contrast enhancing region of the tumors using the pre- and post-contrast T1-weighted MRI images and computed the apparent diffusion coefficient (ADC) histograms from the DW-MRI images. Using the gene expression data, we classified patients into four molecular subtypes, determined the number and composition of genes modules using the gap statistic, and computed gene signature scores. We used logistic regression to find significant predictors of GBM subtypes. We compared the predictors for different subtypes using Mann-Whitney U tests. We assessed detection power using area under the receiver operating characteristic (ROC) analysis. We computed Spearman correlations to determine the associations between ADC and each of the gene signatures. We performed gene enrichment analysis using Ingenuity Pathway Analysis (IPA). We adjusted all p values using the Benjamini and Hochberg method. The mean ADC was a significant predictor for the neural subtype. Neural tumors had a significantly lower mean ADC compared to non-neural tumors ([Formula: see text]), with mean ADC of [Formula: see text] and [Formula: see text] for neural and non-neural tumors, respectively. Mean ADC showed an area under the ROC of 0.75 for detecting neural tumors. We found eight gene modules in the GBM cohort. The mean ADC was significantly correlated with the gene signature related with dendritic cell maturation ([Formula: see text], [Formula: see text]). Mean ADC could be used as a biomarker of a gene signature associated with dendritic cell maturation and to assist in identifying patients with neural GBMs, known to be resistant to aggressive standard of care.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imagem de Difusão por Ressonância Magnética , Expressão Gênica/fisiologia , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Adulto , Idoso , Neoplasias Encefálicas/patologia , Meios de Contraste , Citocinas/genética , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Genoma/genética , Glioblastoma/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA