Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2310600120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871207

RESUMO

Light perception for orientation in zoospore-forming fungi is linked to homo- or heterodimeric rhodopsin-guanylyl cyclases (RGCs). Heterodimeric RGCs, first identified in the chytrid Rhizoclosmatium globosum, consist of an unusual near-infrared absorbing highly fluorescent sensitizer neorhodopsin (NeoR) that is paired with a visual light-absorbing rhodopsin responsible for enzyme activation. Here, we present a comprehensive analysis of the distribution of RGC genes in early-branching fungi using currently available genetic data. Among the characterized RGCs, we identified red-sensitive homodimeric RGC variants with maximal light activation close to 600 nm, which allow for red-light control of GTP to cGMP conversion in mammalian cells. Heterodimeric RGC complexes have evolved due to a single gene duplication within the branching of Chytridiales and show a spectral range for maximal light activation between 480 to 600 nm. In contrast, the spectral sensitivity of NeoRs is reaching into the near-infrared range with maximal absorption between 641 and 721 nm, setting the low energy spectral edge of rhodopsins so far. Based on natural NeoR variants and mutational studies, we reevaluated the role of the counterion-triad proposed to cause the extreme redshift. With the help of chimera constructs, we disclose that the cyclase domain is crucial for functioning as homo- or heterodimers, which enables the adaptation of the spectral sensitivity by modular exchange of the photosensor. The extreme spectral plasticity of retinal chromophores in native photoreceptors provides broad perspectives on the achievable spectral adaptation for rhodopsin-based molecular tools ranging from UVB into the near-infrared.


Assuntos
Retina , Rodopsina , Animais , Rodopsina/genética , Células Fotorreceptoras , Luz , Guanilato Ciclase/genética , Mamíferos
2.
Pflugers Arch ; 476(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421407

RESUMO

Increases in the current threshold occur in optic nerve axons with the application of infra-red laser light, whose mechanism is only partly understood. In isolated rat optic nerve, laser light was applied near the site of electrical stimulation, via a flexible fibre optic. Paired applications of light produced increases in threshold that were reduced on the second application, the response recovering with increasing delays, with a time constant of 24 s. 3-min duration single applications of laser light gave rise to a rapid increase in threshold followed by a fade, whose time-constant was between 40 and 50 s. After-effects were sometimes apparent following the light application, where the resting threshold was reduced. The increase in threshold was partially blocked by 38.6 mM Li+ in combination with 5  µ M bumetanide, a manoeuvre increasing refractoriness and consistent with axonal depolarization. Assessing the effect of laser light on the nerve input resistance ruled out a previously suggested fall in myelin resistance as contributing to threshold changes. These data appear consistent with an axonal membrane potential that partly relies on temperature-dependent electroneutral Na+ influx, and where fade in the response to the laser may be caused by a gradually diminishing Na+ pump-induced hyperpolarization, in response to falling intracellular [Na+].


Assuntos
Axônios , Lasers , Nervo Óptico , Sódio , Animais , Ratos , Nervo Óptico/metabolismo , Sódio/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Axônios/efeitos da radiação , Potenciais da Membrana/fisiologia , Masculino , Bumetanida/farmacologia , Ratos Sprague-Dawley
3.
J Synchrotron Radiat ; 31(Pt 1): 77-84, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010796

RESUMO

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).

4.
Lasers Med Sci ; 39(1): 159, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890186

RESUMO

Striae distensae are common dermatological complaint. Cold laser using low-level light/laser therapy (LLLT) offers healing and analgesic effects and was not yet compared to 'hot lasers' efficacy. Study objective: to assess the efficacy and safety of LLLT in the management of stria alba compared to fractional carbon dioxide (FCO2) laser alone and to the combined use of both devices. Thirty patients with stria alba were randomized to receive either LLLT using diode 808 nm; 8-12 sessions, 2-3 sessions weekly (Group A) or FCO2 laser; 2 monthly sessions (Group B) or combined both devices simultaneously (Group C). Follow up was at 1 month and 3 months after last session. The efficacy of LLLT was statistically comparable to FCO2, despite numerical superiority of the latter. The combined group had the least numerical values in all efficacy outcomes. Patients in LLLT group did not experience any downtime. LLLT is effective in the management of stria alba comparable to the FCO2 laser. The lack of downtime with LLLT is reflected positively on patient's satisfaction. However, this is counterbalanced by the frequent weekly visits. Although adding LLLT to FCO2 laser palliates the laser side effects but it offers the least efficacy. Trial registration number NCT04165226 (clinicaltrials.gov).


Assuntos
Lasers de Gás , Terapia com Luz de Baixa Intensidade , Humanos , Lasers de Gás/uso terapêutico , Adulto , Feminino , Terapia com Luz de Baixa Intensidade/métodos , Terapia com Luz de Baixa Intensidade/instrumentação , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Resultado do Tratamento , Satisfação do Paciente , Adolescente
5.
J Appl Clin Med Phys ; 25(7): e14364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626753

RESUMO

PURPOSE: To enable a real-time applicator guidance for brachytherapy, we used for the first time infra-red tracking cameras (OptiTrack, USA) integrated into a mobile cone-beam computed tomography (CBCT) scanner (medPhoton, Austria). We provide the first description of this prototype and its performance evaluation. METHODS: We performed assessments of camera calibration and camera-CBCT registration using a geometric calibration phantom. For this purpose, we first evaluated the effects of intrinsic parameters such as camera temperature or gantry rotations on the tracked marker positions. Afterward, calibrations with various settings (sample number, field of view coverage, calibration directions, calibration distances, and lighting conditions) were performed to identify the requirements for achieving maximum tracking accuracy based on an in-house phantom. The corresponding effects on camera-CBCT registration were determined as well by comparing tracked marker positions to the positions determined via CBCT. Long-term stability was assessed by comparing tracking and a ground-truth on a weekly basis for 6 weeks. RESULTS: Robust tracking with positional drifts of 0.02 ± 0.01 mm was feasible using the system after a warm-up period of 90 min. However, gantry rotations affected the tracking and led to inaccuracies of up to 0.70 mm. We identified that 4000 samples and full coverage were required to ensure a robust determination of marker positions and camera-CBCT registration with geometric deviations of 0.18 ± 0.03 mm and 0.42 ± 0.07 mm, respectively. Long-term stability showed deviations of more than two standard deviations from the initial calibration after 3 weeks. CONCLUSION: We implemented for the first time a standalone combined camera-CBCT system for tracking in brachytherapy. The system showed high potential for establishing corresponding workflows.


Assuntos
Braquiterapia , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Braquiterapia/instrumentação , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia Guiada por Imagem/instrumentação , Calibragem , Processamento de Imagem Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem
6.
J Clin Monit Comput ; 38(4): 827-845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38512360

RESUMO

Technologies for monitoring organ function are rapidly advancing, aiding physicians in the care of patients in both operating rooms (ORs) and intensive care units (ICUs). Some of these emerging, minimally or non-invasive technologies focus on monitoring brain function and ensuring the integrity of its physiology. Generally, the central nervous system is the least monitored system compared to others, such as the respiratory, cardiovascular, and renal systems, even though it is a primary target in most therapeutic strategies. Frequently, the effects of sedatives, hypnotics, and analgesics are entirely unpredictable, especially in critically ill patients with multiple organ failure. This unpredictability exposes them to the risks of inadequate or excessive sedation/hypnosis, potentially leading to complications and long-term negative outcomes. The International PRactice On TEChnology neuro-moniToring group (I-PROTECT), comprised of experts from various fields of clinical neuromonitoring, presents this document with the aim of reviewing and standardizing the primary non-invasive tools for brain monitoring in anesthesia and intensive care practices. The focus is particularly on standardizing the nomenclature of different parameters generated by these tools. The document addresses processed electroencephalography, continuous/quantitative electroencephalography, brain oxygenation through near-infrared spectroscopy, transcranial Doppler, and automated pupillometry. The clinical utility of the key parameters available in each of these tools is summarized and explained. This comprehensive review was conducted by a panel of experts who deliberated on the included topics until a consensus was reached. Images and tables are utilized to clarify and enhance the understanding of the clinical significance of non-invasive neuromonitoring devices within these medical settings.


Assuntos
Encéfalo , Cuidados Críticos , Eletroencefalografia , Espectroscopia de Luz Próxima ao Infravermelho , Ultrassonografia Doppler Transcraniana , Humanos , Eletroencefalografia/métodos , Ultrassonografia Doppler Transcraniana/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cuidados Críticos/métodos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Unidades de Terapia Intensiva , Oxigênio , Monitorização Neurofisiológica/métodos , Anestesia/métodos
7.
J Perianesth Nurs ; 39(2): 235-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37999688

RESUMO

PURPOSE: Sevoflurane is an inhalational general anesthetic that has been used recently to treat chronic, painful lesions, reportedly supporting analgesia and wound healing. The potential for repeated exposure to off-gassed sevoflurane vapor, especially outside the air-conditioned operating theatre environment, is of some concern. DESIGN: This paper explores the qualitative and quantitative pathing of off-gassed sevoflurane from a topically applied liquid source. METHODS: Using a small, unventilated test-box (total volume 0.5 m3) with infra-red imaging and gas-analysing, we investigated the spatial distribution of sevoflurane vapor following complete vaporization of a 20 mL liquid sample. Utilizing the infra-red absorption of sevoflurane, it was possible to visualize (as an apparent reduction in temperature) the streaming path of the sevoflurane vapor. Sevoflurane levels (%) in the test-box were measured using an infra-red gas analyzer. FINDINGS: In keeping with its higher density than air, sevoflurane vapor was seen to "waterfall" from the liquid source and accumulate in the bottom of the test-box. Sevoflurane vapor concentration was minimal above the liquid source. When extrapolated to a larger (unventilated) room, we estimate that the sevoflurane concentration would be less than 10 ppm one centimetre above the liquid pool. With vacuum extraction, these levels would be even lower. CONCLUSIONS: Due to sevoflurane's tendency to accumulate on the floor, it is concluded that topical application of liquid sevoflurane posses virtually no risk to off-gas exposure in unventilated spaces.


Assuntos
Anestésicos Inalatórios , Éteres Metílicos , Sevoflurano , Éteres Metílicos/análise , Anestésicos Inalatórios/análise , Salas Cirúrgicas
8.
Small ; 19(28): e2301383, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971287

RESUMO

Thermal transport in polymer nanocomposites becomes dependent on the interfacial thermal conductance due to the ultra-high density of the internal interfaces when the polymer and filler domains are intimately mixed at the nanoscale. However, there is a lack of experimental measurements that can link the thermal conductance across the interfaces to the chemistry and bonding between the polymer molecules and the glass surface. Characterizing the thermal properties of amorphous composites are a particular challenge as their low intrinsic thermal conductivity leads to poor measurement sensitivity of the interfacial thermal conductance. To address this issue here, polymers are confined in porous organosilicates with high interfacial densities, stable composite structure, and varying surface chemistries. The thermal conductivities and fracture energies of the composites are measured with frequency dependent time-domain thermoreflectance (TDTR) and thin-film fracture testing, respectively. Effective medium theory (EMT) along with finite element analysis (FEA) is then used to uniquely extract the thermal boundary conductance (TBC) from the measured thermal conductivity of the composites. Changes in TBC are then linked to the hydrogen bonding between the polymer and organosilicate as quantified by Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. This platform for analysis is a new paradigm in the experimental investigation of heat flow across constituent domains.

9.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050648

RESUMO

Non-dispersive infra-red (NDIR) detectors have become the dominant method for measuring atmospheric CO2, which is thought to be an important gas for honeybee colony health. In this work we describe a microcontroller-based system used to collect data from Senserion SCD41 NDIR sensors placed in the crown boards and queen excluders of honeybee colonies. The same sensors also provide relative humidity and temperature data. Several months of data have been recorded from four different hives. The mass change measurements, from hive scales, when foragers leave the hive were compared with the data from the gas sensors. Our data suggest that it is possible to estimate the colony size from the change in measured CO2, however no such link with the humidity is observed. Data are presented showing the CO2 decreasing over many weeks as a colony dies.


Assuntos
Dióxido de Carbono , Registros , Abelhas , Animais , Umidade , Temperatura
10.
Sensors (Basel) ; 23(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36772359

RESUMO

Precision Irrigation (PI) is a promising technique for monitoring and controlling water use that allows for meeting crop water requirements based on site-specific data. However, implementing the PI needs precise data on water evapotranspiration. The detection and monitoring of crop water stress can be achieved by several methods, one of the most interesting being the use of infra-red (IR) thermometry combined with the estimate of the Crop Water Stress Index (CWSI). However, conventional IR equipment is expensive, so the objective of this paper is to present the development of a new low-cost water stress detection system using TL indices obtained by crossing the responses of infrared sensors with image processing. The results demonstrated that it is possible to use low-cost IR sensors with a directional Field of Vision (FoV) to measure plant temperature, generate thermal maps, and identify water stress conditions. The Leaf Temperature Maps, generated by the IR sensor readings of the plant segmentation in the RGB image, were validated by thermal images. Furthermore, the estimated CWSI is consistent with the literature results.

11.
Chembiochem ; 23(2): e202100516, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34783144

RESUMO

An NIR emitting (λem ≈730 nm) cyanine probe ExCy was synthesized in good yields by extending the π-conjugation length (i. e., with furan moiety) to the donor-accepter system. ExCy exhibited a large Stokes' shift (Δλ≈100 nm) due to strong intramolecular charge transfer (ICT), and high fluorescence quantum yield (Φfl ≈0.47 in DCM). Due to its low fluorescence in an aqueous environment (Φfl ≈0.007 in H2 O), the probe exhibited the potential of achieving a large fluorescence turn-on upon entering a hydrophobic cellular environment. Fluorescence confocal microscopy studies revealed that ExCy was readily excitable with a far-red laser line (i. e., 640 nm) while the corresponding emission was collected in the NIR region. ExCy exhibited excellent selectivity towards live cell mitochondria according to the co-localization studies. The probe also exhibited high photostability, long-term imaging ability and wash-free staining ability, when being applied to live cells. Our studies indicated that the mitochondrial localization of ExCy was dependent on the membrane potential of the mitochondria. ExCy was successfully utilized as a mitochondrial membrane potential dysfunction indicator to visually identify cells with mitochondrial dysfunction via fluorescence confocal microscopy. ExCy was further examined for potential in vivo imaging of zebrafish.


Assuntos
Corantes/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Corantes/farmacologia
12.
Plant Cell Environ ; 45(6): 1954-1961, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297071

RESUMO

Diffuse light has been shown to alter plant leaf photosynthesis, transpiration and water-use efficiency. Despite this, the angular distribution of light for the artificial light sources used with common gas exchange systems is unknown. Here, we quantify the angular distribution of light from common gas exchange systems and demonstrate the use of an integrating sphere for manipulating those light distributions. Among three different systems, light from a 90° angle perpendicular to the leaf surface (±5.75°) was <25% of the total light reaching the leaf surface. The integrating sphere resulted in a greater range of possible distributions from predominantly direct light (i.e., >40% of light from a 90 ± 5.75° angle perpendicular to the leaf surface) to almost entirely diffuse (i.e., light from an even distribution drawn from a nearly 0° horizontal angle to a perpendicular 90° angle). The integrating sphere can thus create light environments that more closely mimic the variation in sunlight under both clear and cloudy conditions. In turn, different proportions of diffuse light increased, decreased or did not change photosynthetic rates depending on the plant species observed. This new tool should allow the scientific community to explore new and creative questions about plant function within the context of global climate change.


Assuntos
Fotossíntese , Folhas de Planta , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal , Plantas , Água
13.
Photochem Photobiol Sci ; 21(2): 235-245, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35001348

RESUMO

We present a systematic study on the properties of Na(Y,Gd)F4-based upconverting nanoparticles (UCNP) doped with 18% Yb3+, 2% Tm3+, and the influence of Gd3+ (10-50 mol% Gd3+). UCNP were synthesized via the solvothermal method and had a range of diameters within 13 and 50 nm. Structural and photophysical changes were monitored for the UCNP samples after a 24-month incubation period in dry phase and further redispersion. Structural characterization was performed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as dynamic light scattering (DLS), and the upconversion luminescence (UCL) studies were executed at various temperatures (from 4 to 295 K) using time-resolved and steady-state spectroscopy. An increase in the hexagonal lattice phase with the increase of Gd3+ content was found, although the cubic phase was prevalent in most samples. The Tm3+-luminescence intensity as well as the Tm3+-luminescence decay times peaked at the Gd3+ concentration of 30 mol%. Although the general upconverting luminescence properties of the nanoparticles were preserved, the 24-month incubation period lead to irreversible agglomeration of the UCNP and changes in luminescence band ratios and lifetimes.


Assuntos
Luminescência , Nanopartículas , Fluoretos , Microscopia Eletrônica de Transmissão , Nanopartículas/química
14.
BMC Gastroenterol ; 22(1): 146, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346074

RESUMO

BACKGROUND: Analysis of the constituents of gallstones using various spectroscopic techniques assists in identification of the pathogenesis of gallstones. In the current study, using Fourier Transform Infra-Red (FTIR) Spectroscopy, a Gallstone Standard Library (GSL) and a Gallstone Real Patients' Library (GRPL) were developed and validated for gallstone composition analysis. METHODS: The study was conducted at the Department of Pathology & Laboratory Medicine, Aga Khan University, Pakistan. Pure standards (cholesterol, calcium carbonate, bilirubin and bile salts) and gallstone specimens were analyzed using FTIR Nicolet iS-5 Spectrometer from Thermo Fisher Scientific, USA. Thermo Scientific™ QCheck™ algorithm, embedded within the OMNIC™ software, was used to identify the unique spectral fingerprint of the patient samples to match with known, standard material. Matching of > 75% was considered acceptable. Validation for accuracy of the library was performed for twenty analyzed gallstones at an international reference lab. RESULTS: Concerted search analysis was performed against the developed GSL consisting of 71 "pure component" spectrum divided into 5 types to generate the library. For the Gallstone Real Patient Library (GRPL), 117 patient samples were analyzed. Ninety-eight gall stones (83.8%) out of 117 stones matched with the developed GSL. Majority stones were mixed stones (95.92%), with cholesterol being the primary component (91.83%). Results of the developed library were 100% in agreement with the reports received from the external reference lab. CONCLUSIONS: The library developed displayed good consistency and can be used for detection of gallstone composition in Pakistan and replace the traditional labor- and time-intensive chemical method of gallstone analysis.


Assuntos
Cálculos Biliares , Bilirrubina , Colesterol , Análise de Fourier , Cálculos Biliares/etiologia , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Fluoresc ; 32(3): 949-960, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35166972

RESUMO

Nanomedicine and fluorescent optical imaging are effective in early cancer detection. The current study synthesized biocompatible nanocomposites from natural biomaterials towards inexpensive and safe cancer theragnostic. Two forms of nanocomposites were synthesized using the ionic gelation method: 1. Chitosan/ Withania Somnifera /tripolyphosphate nanocomposites, 2. Withania Somnifera/Chitosan nanocomposites. The nanocomposites were characterized by dynamic light scattering, zeta potential, and the transmission electron microscope. Fourier transform infrared spectroscopy analyzed the Withania Somnifera root water extract, Chitosan, and the synthesized nanocomposites. The cytotoxicity of the nanocomposites was investigated against the colon cancer cells (Caco2 cells) in the absence and the presence of laser (665 nm, 5 mW) irradiation. MTT assay evaluated the cytotoxicity, and Trypan blue assay assessed the cell viability. Cancerous cells were photographed under the inverted microscope in the presence and the absence of laser irradiation. Results were analyzed statistically using one-way variance (ANOVA) analysis with Bonferroni post-Hoc multiple two-group comparisons. The characterization results ensured the successful synthesis of Withania Somnifera/Chitosan nanocomposites. The results showed an increase in the cytotoxicity against colon carcinoma and a decrease in cell viability in the presence and absence of Near-infrared laser irradiation under the action of nanocomposites. The cytotoxicity of the synthesized nanocomposites increased by exposing the cells to the laser. The shining light of the nanocomposites appeared on the cells photographed under the inverted microscope. The synthesized natural nanocomposites promise systemic cytotoxicity will be efficient in molecular imaging in vivo applications.


Assuntos
Quitosana , Nanocompostos , Neoplasias , Withania , Células CACO-2 , Quitosana/química , Meios de Contraste , Humanos , Nanocompostos/química , Extratos Vegetais , Withania/química
16.
J Nanobiotechnology ; 20(1): 311, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794602

RESUMO

The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.


Assuntos
Nanopartículas , Fotoquimioterapia , Corantes , Polímeros , Água
17.
Lasers Med Sci ; 37(2): 1235-1244, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34297266

RESUMO

Investigate the effects of low-level lasers therapy (LLLT) aiming abdominal lipolysis. Female Wistar rats received applications of LLLT directly in the abdominal skin twice a week (5 weeks). Except the control group (n = 5), animals received treatments with red wavelength 660 nm being (I) R3.3 group (n = 5): 3.3 J/cm2, and (II) R5 group (n = 5): 5 J/cm2, or infrared wavelength 808 nm being (III) IR3.3 group (n = 5): 3.3 J/cm2, and (IV) IR5 group (n = 5): 5 J/cm2. Abdominal subcutaneous and liver tissues were evaluated histologically. Levels of thiobarbituric acid reactive substances (TBARS) and catalase (CAT) activity were analyzed in liver tissue. In the peripheral blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, and total cholesterol were investigated. Micronucleus assay was performed in the bone marrow. Except for the IR3.3 group, all treated groups reduced the body weight (p < 0.001). The R5 group reduced the abdominal subcutaneous tissue weight and thickness (p < 0.05), even though all treated groups reduced the number of adipocytes and its size (p < 0.001). No histological changes in the liver. There were no alterations in the triglycerides and LDL levels. The IR5 group increased the total cholesterol levels and decreased the HDL, ALT (both p < 0.05), and AST levels (p < 0.001). The group IR3.3 showed higher levels of ALP (p < 0.01). The R3.3 group increased the TBARS and CAT activity (p < 0.05). No mutagenic effects were found. The red laser treatment at 5 J/cm2 led to lipolysis and did not alter the liver's parameters.


Assuntos
Terapia com Luz de Baixa Intensidade , Animais , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/farmacologia , Feminino , Lipólise , Fígado/patologia , Terapia com Luz de Baixa Intensidade/efeitos adversos , Ratos , Ratos Wistar , Tela Subcutânea
18.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062420

RESUMO

Ethylene glycol (EG) and isopropanol (ISO) are among the major toxic alcohols that pose a risk to human health. However, it is important to distinguish them, since EG is more prone to cause renal failure, and can thus be more dangerous when ingested than ISO. Analysis of alcohols such as isopropanol and ethylene glycol generally can be performed with a complex chromatographic method. Here, we present an optical method based on absorption spectroscopy, performed remotely on EG-ISO mixtures filling a microchannel. Mixtures of ethylene glycol in isopropanol at different volume concentrations were analyzed in a contactless manner in a rectangular-section glass micro-capillary provided with integrated reflectors. Fiber-coupled broadband light in the wavelength range 1.3-1.7 µm crossed the microchannel multiple times before being directed towards an optical spectrum analyzer. The induced zig-zag path increased the fluid-light interaction length and enhanced the effect of optical absorption. A sophisticated theoretical model was developed and the results of our simulations were in very good agreement with the results of the experimental spectral measurements. Moreover, from the acquired data, we retrieved a responsivity parameter, defined as power ratio at two wavelengths, that is linearly related to the EG concentration in the alcoholic mixtures.


Assuntos
2-Propanol , Etilenoglicol , Álcoois , Humanos
19.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270905

RESUMO

Background: Reports suggest that adults with post-COVID-19 syndrome or long COVID may be affected by orthostatic intolerance syndromes, with autonomic nervous system dysfunction as a possible causal factor of neurocardiovascular instability (NCVI). Long COVID can also manifest as prolonged fatigue, which may be linked to neuromuscular function impairment (NMFI). The current clinical assessment for NCVI monitors neurocardiovascular performance upon the application of orthostatic stressors such as an active (i.e., self-induced) stand or a passive (tilt table) standing test. Lower limb muscle contractions may be important in orthostatic recovery via the skeletal muscle pump. In this study, adults with long COVID were assessed with a protocol that, in addition to the standard NCVI tests, incorporated simultaneous lower limb muscle monitoring for NMFI assessment. Methods: To conduct such an investigation, a wide range of continuous non-invasive biomedical sensing technologies were employed, including digital artery photoplethysmography for the extraction of cardiovascular signals, near-infrared spectroscopy for the extraction of regional tissue oxygenation in brain and muscle, and electromyography for assessment of timed muscle contractions in the lower limbs. Results: With the proposed methodology described and exemplified in this paper, we were able to collect relevant physiological data for the assessment of neurocardiovascular and neuromuscular functioning. We were also able to integrate signals from a variety of instruments in a synchronized fashion and visualize the interactions between different physiological signals during the combined NCVI/NMFI assessment. Multiple counts of evidence were collected, which can capture the dynamics between skeletal muscle contractions and neurocardiovascular responses. Conclusions: The proposed methodology can offer an overview of the functioning of the neurocardiovascular and neuromuscular systems in a combined NCVI/NMFI setup and is capable of conducting comparative studies with signals from multiple participants at any given time in the assessment. This could help clinicians and researchers generate and test hypotheses based on the multimodal inspection of raw data in long COVID and other cohorts.


Assuntos
COVID-19 , Sistema Cardiovascular , Adulto , COVID-19/complicações , Humanos , Contração Muscular , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
20.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269993

RESUMO

The diagnosis and management of inflammatory bowel disease relies on histological assessment, which is costly, subjective, and lacks utility for point-of-care diagnosis. Fourier-transform infra-red spectroscopy provides rapid, non-destructive, reproducible, and automatable label-free biochemical imaging of tissue for diagnostic purposes. This study characterises colitis using spectroscopy, discriminates colitis from healthy tissue, and classifies inflammation severity. Hyperspectral images were obtained from fixed intestinal sections of a murine colitis model treated with cell therapy to improve inflammation. Multivariate analyses and classification modelling were performed using supervised and unsupervised machine-learning algorithms. Quantitative analysis of severe colitis showed increased protein, collagen, and nucleic acids, but reduced glycogen when compared with normal tissue. A partial least squares discriminant analysis model, including spectra from all intestinal layers, classified normal colon and severe colitis with a sensitivity of 91.4% and a specificity of 93.3%. Colitis severity was classified by a stacked ensemble model yielding an average area under the receiver operating characteristic curve of 0.95, 0.88, 0.79, and 0.85 for controls, mild, moderate, and severe colitis, respectively. Infra-red spectroscopy can detect unique biochemical features of intestinal inflammation and accurately classify normal and inflamed tissue and quantify the severity of inflammation. This is a promising alternative to histological assessment.


Assuntos
Colite , Animais , Colite/diagnóstico , Colite/patologia , Análise de Fourier , Inflamação/diagnóstico , Intestinos/patologia , Análise dos Mínimos Quadrados , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA