Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 756: 109996, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621445

RESUMO

Hyperthermostable enzymes are highly desirable biocatalysts due to their exceptional stability at extreme temperatures. Recently, a hyperthermostable carboxylesterase EstD9 from Anoxybacillus geothermalis D9 was biochemically characterized. The enzyme exhibited remarkable stability at high temperature. In this study, we attempted to probe the conformational adaptability of EstD9 under extreme conditions via in silico approaches. Circular dichroism revealed that EstD9 generated new ß-sheets at 80 °C, making the core of the hydrolase fold more stable. Interestingly, the profiles of molecular dynamics simulation showed the lowest scores of radius of gyration and solvent accessible surface area (SASA) at 80 °C. Three loops were responsible for protecting the catalytic site, which resided at the interface between the large and cap domains. To further investigate the structural adaptation in extreme conditions, the intramolecular interactions of the native structure were investigated. EstD9 revealed 18 hydrogen bond networks, 7 salt bridges, and 9 hydrophobic clusters, which is higher than the previously reported thermostable Est30. Collectively, the analysis indicates that intramolecular interactions and structural dynamics play distinct roles in preserving the overall EstD9 structure at elevated temperatures. This work is relevant to both fundamental and applied research involving protein engineering of industrial thermostable enzymes.


Assuntos
Anoxybacillus , Carboxilesterase , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Termodinâmica , Anoxybacillus/enzimologia , Carboxilesterase/química , Carboxilesterase/metabolismo , Temperatura Alta , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
2.
Chemphyschem ; 25(15): e202400191, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703034

RESUMO

Herein, we report a spectroscopic study of N-acetyl-L-cysteine, an important antioxidant drug, using Fourier-transform microwave techniques and in isolated conditions. Two conformers are observed, where most stable structure adopts a cis disposition, and the second conformer has a lower abundance and adopts a trans disposition. The rotational constants and the barriers to methyl internal rotation are determined for each conformer, allowing a precise conformation identification. The results show that the cis form adopts an identical structure in the crystal, solution, and gas phases. Additionally, the structures are contrasted against those of cysteine.


Assuntos
Acetilcisteína , Acetilcisteína/química , Cisteína/química , Rotação , Análise Espectral/métodos , Conformação Molecular , Micro-Ondas
3.
J Virol ; 96(14): e0080622, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862697

RESUMO

Baculoviruses initiate oral infection in the highly alkaline midgut of insects via a group of envelope proteins called per os infectivity factors (PIFs). To date, no high-resolution structural information has been reported for any PIF. Here, we present the crystal structure of the PIF5 ectodomain (PIF5e) from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) at a 2.2-Å resolution. It revealed an open cavity between the N-terminal E1 domain and the C-terminal E2 domain and a cysteine-rich region with three pairs of disulfide bonds in the E2 domain. Multiple conserved intramolecular interactions within PIF5 are essential for maintaining its tertiary structure. Two conserved arginines (Arg8 and Arg74) play critical roles in E1-E2 interactions, and mutagenesis analysis supported their crucial role in oral infection. Importantly, the reduction in the oral infectivity of the Arg8, Arg74, or cysteine mutant viruses was related to the proteolytic cleavage of PIF5 by the endogenous protease embedded in occlusion bodies during alkaline treatment. This suggested that the structural stability of PIF5 under physiological conditions in the insect midgut is critical for baculoviral oral infectivity. IMPORTANCEPer os infection mediated by PIFs is the highly complex mechanism by which baculoviruses initiate infection in insects. Previous studies revealed that multiple PIF proteins form a large PIF complex on the envelope of virions, while PIF5 functions independently of the PIF complex. Here, we report the crystal structure of AcMNPV PIF5e, which, to our knowledge, is the first atomic structure reported for a PIF protein. The structure revealed the precise locations of three previously proposed disulfide bonds and other conserved intramolecular interactions, which are important for the structural stability of PIF5 and are also essential for oral infectivity. These findings advance our understanding of the molecular mechanism of baculovirus oral infection under alkaline conditions.


Assuntos
Nucleopoliedrovírus , Proteínas do Envelope Viral , Animais , Cisteína/química , Dissulfetos/química , Insetos , Nucleopoliedrovírus/química , Nucleopoliedrovírus/genética , Conformação Proteica , Spodoptera , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
4.
J Comput Aided Mol Des ; 37(7): 279-299, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37245168

RESUMO

We present a computational strategy based on thermodynamic cycles to predict and describe the chemical equilibrium between the 3d-transition metal ions Zn2+, Cu2+, and VO2+ and the widely used antineoplastic drug doxorubicin. Our method involves benchmarking a theoretical protocol to compute gas-phase quantities using DLPNO Coupled-Cluster calculations as reference, followed by estimating solvation contributions to the reaction Gibbs free energies using both explicit partial (micro)solvation steps for charged solutes and neutral coordination complexes, as well as a continuum solvation procedure for all solutes involved in the complexation process. We rationalized the stability of these doxorubicin-metal complexes by inspecting quantities obtained from the topology of their electron densities, particularly the bond critical points and non-covalent interaction index. Our approach allowed us to identify representative species in solution phase, infer the most likely complexation process for each case, and identify key intramolecular interactions involved in the stability of these compounds. To the best of our knowledge, this is the first study reporting thermodynamic constants for the complexation of doxorubicin with transition metal ions. Unlike other methods, our procedure is computationally affordable for medium-sized systems and provides valuable insights even with limited experimental data. Furthermore, it can be extended to describe the complexation process between 3d-transition metal ions and other bioactive ligands.


Assuntos
Antineoplásicos , Complexos de Coordenação , Termodinâmica , Complexos de Coordenação/química , Íons , Doxorrubicina , Zinco/química
5.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982642

RESUMO

The mechanism of the recently reported catalyzed asymmetric hydrogenation of enyne 1 catalyzed by the Co-(R,R)-QuinoxP* complex was studied by DFT. Conceivable pathways for the Co(I)-Co(III) mechanism were computed together with a Co(0)-Co(II) catalytic cycle. It is commonly assumed that the exact nature of the chemical transformations taking place along the actually operating catalytic pathway determine the sense and level of enantioselection of the catalytic reaction. In this work, two chemically different mechanisms reproduced the experimentally observed perfect stereoselection of the same handedness. Moreover, the relative stabilities of the transition states of the stereo induction stages were controlled via exactly the same weak disperse interactions between the catalyst and the substrate.


Assuntos
Hidrogenação , Estereoisomerismo , Catálise
6.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375142

RESUMO

Operation lifetime, as an important parameter, determines the performance of phosphorescent organic light-emitting diodes (OLEDs). Unveiling the intrinsic degradation mechanism of emission material is crucial for improving the operation's lifetime. In this article, the photo-stabilities of tetradentate transition metal complexes, the popular phosphorescent materials, are explored by means of density functional theory (DFT) and time-dependent (TD)-DFT, aiming to illustrate the geometric signatures as important factors to control the photo-stabilities. Results indicate that for the tetradentate Ni(II), Pd(II), and Pt(II) complexes, the coordinate bonds of the Pt(II) complex exhibit stronger strength. It seems that the strengths of coordinate bonds are closely related to the atomic number of the metal center in the same group, which could be attributed to the various electron configurations. The effect of intramolecular and intermolecular interactions on ligand dissociation is also explored here. The large intramolecular steric hindrance and strong π-π interaction between the Pd(II) complexes caused by aggregation could effectively raise the energy barriers of the dissociation reaction, leading to an unfeasible reaction pathway. Moreover, the aggregation of Pd(II) complex can change the photo-deactivation mechanism as compared to that of monomeric Pd(II) complex, which is favored for avoiding the TTA (triplet-triplet annihilation) process.

7.
Angew Chem Int Ed Engl ; 62(20): e202302629, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929615

RESUMO

The dual-ratiometric thermometry is one of highly accurate methods for microscopic thermal measurement in biological systems. Herein, a series of chromone derivatives with noncovalently intramolecular interactions (NIIs) were designed and synthesized for ratiometric thermometers. The triplet states of these organic compounds were systematically tuned upon regulating the conformation with NIIs to yield efficient room temperature phosphorescence and large wavelength difference between fluorescence and phosphorescence simultaneously. As a result, an unprecedent organic 3D dual-ratiometric thermometer was established based on the intensity ratio and lifetime ratio of fluorescence/phosphorescence vs temperature, which was used for in vitro and in vivo bio-thermometry with high accuracy. This work provides a novel method to achieve organic dual ratiometric thermometers via tuning the triplet excited states.

8.
Chembiochem ; 23(20): e202200316, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35801833

RESUMO

Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.


Assuntos
Bactérias Gram-Positivas , Proteínas de Membrana , Ésteres , Antibacterianos , Proteínas de Bactérias
9.
Chemistry ; 27(23): 6954-6962, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33539577

RESUMO

The naphthalenediimide (NDI) scaffold in contrast to its higher congeners possess low-fluorescence. In spite of elegant synthetic developments, a highly emissive NDI is quite rare to find, as well as, a green-light-emitting NDI is yet to be explored. Herein, we report a novel class of symmetric and asymmetric NH2 -substituted core-NDIs (1-5) with tunable fluorescence in the visible region and extending to the NIR frontier. Importantly, the bis-NH2 -substituted NDI 2 revealed quantum yield, Φ f of ≈81 and ≈68 % in toluene and DMSO, respectively, suggesting versatility of the fluorophore in a wide range of solvent polarity. The dye 1 is shown to be the first NDI-based green-light emitter. The donor piperidine group in 5 diminish the Φ f by 40-fold providing a lever to modulate the excited-state intramolecular proton transfer (ESIPT) process. Our synthetic protocol applies a Pd catalyst and a benign hydride source simplifying the non-trivial -NH2 group integration at the NDI-core. TD-DFT calculations predicted strong intramolecular hydrogen bonds in the excited state in the bulk nonpolar medium and responsiveness to solvent polarity. The maximization of the NDI emission outlined here would further boost the burgeoning repertoire of applications of the NDI scaffold.


Assuntos
Corantes Fluorescentes , Imidas , Naftalenos , Teoria Quântica , Espectrometria de Fluorescência
10.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199746

RESUMO

Intramolecular interactions are shown to be key for favoring a given structure in systems with a variety of conformers. In ortho-substituted benzene derivatives including a beryllium moiety, beryllium bonds provide very large stabilizations with respect to non-bound conformers and enthalpy differences above one hundred kJ·mol-1 are found in the most favorable cases, especially if the newly formed rings are five or six-membered heterocycles. These values are in general significantly larger than hydrogen bonds in 1,2-dihidroxybenzene. Conformers stabilized by a beryllium bond exhibit the typical features of this non-covalent interaction, such as the presence of a bond critical point according to the topology of the electron density, positive Laplacian values, significant geometrical distortions and strong interaction energies between the donor and acceptor quantified by using the Natural Bond Orbital approach. An isodesmic reaction scheme is used as a tool to measure the strength of the beryllium bond in these systems in terms of isodesmic energies (analogous to binding energies), interaction energies and deformation energies. This approach shows that a huge amount of energy is spent on deforming the donor-acceptor pairs to form the new rings.

11.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946666

RESUMO

The broadband rotational spectrum of jet-cooled laser-ablated thioproline was recorded. Two conformers of this system were observed and identified with the help of DFT and ab initio computations by comparison of the observed and calculated rotational constants and 14N quadrupole coupling constants as well as the predicted energies compared to the observed relative populations. These conformers showed a mixed bent/twisted arrangement of the five-membered ring similar to that of the related compound thiazolidine with the N-H bond in axial configuration. The most stable form had the COOH group in an equatorial position on the same side of the ring as N-H. The arrangement of the C=O group close to the N-H bond led to a weak interaction between them (classified as type I) characterized by a noncovalent interaction analysis. The second form had a trans-COOH arrangement showing a type II O-H···N hydrogen bond. In thioproline, the stability of conformers of type I and type II was reversed with respect to proline. We show how the conformation of the ring depends on the function associated with the endocyclic N atom when comparing the structures of isolated thioproline with its zwitterion observed in condensed phases and with peptide forms.


Assuntos
Modelos Moleculares , Tiazolidinas/química , Conformação Molecular
12.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500596

RESUMO

The physicochemical properties and reactivity of macrocycles are critically shaped by their conformations. In this work, we have identified seven conformations of the macrocyclic ketone cyclododecanone using chirped-pulse Fourier transform microwave spectroscopy in combination with ab initio and density functional theory calculations. Cyclododecanone is strongly biased towards adopting a square configuration of the heavy atom framework featuring three C-C bonds per side. The substitution and effective structures of this conformation have been determined through the observation of its 13C isotopologues. The minimisation of transannular interactions and, to a lesser extent, HCCH eclipsed configurations drive conformational preferences. Our results contribute to a better understanding of the intrinsic forces mediating structural choices in macrocycles.

13.
Angew Chem Int Ed Engl ; 60(35): 19314-19323, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34128575

RESUMO

Nonfullerene acceptors (MQ3, MQ5, MQ6) are synthesized using asymmetric and symmetric ladder-type heteroheptacene cores with selenophene heterocycles. Although MQ3 and MQ5 are constructed with the same number of selenophene heterocycles, the heteroheptacene core of MQ5 is end-capped with selenophene rings while that of MQ3 is flanked with thiophene rings. With the enhanced noncovalent interaction of O⋅⋅⋅Se compared to that of O⋅⋅⋅S, MQ5 shows a bathochromically shifted absorption band and greatly improved carrier transport, leading to a higher power conversion efficiency (PCE) of 15.64 % compared to MQ3, which shows a PCE of 13.51 %. Based on the asymmetric heteroheptacene core, MQ6 shows an improved carrier transport induced by the reduced π-π stacking distance, related with the increased dipole moment in comparison with the nonfullerene acceptors based on symmetric cores. MQ6 exhibits a PCE of 16.39 % with a VOC of 0.88 V, a FF of 75.66 %, and a JSC of 24.62 mA cm-2 .

14.
Chemphyschem ; 21(6): 525-530, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32012435

RESUMO

Four conformers of the non-proteinogenic α-amino acid isovaline, vaporized by laser ablation, are characterized by Fourier-transform microwave techniques in a supersonic expansion. The comparison between the experimental rotational and 14 N nuclear quadrupole coupling constants and the ab initio calculated ones provides conclusive evidence for the identification of the conformers. The most stable species is stabilized by an N-H⋅⋅⋅O =C intramolecular hydrogen bond and a cis-COOH interaction, whereas the higher-energy conformers exhibit an N⋅⋅⋅H-O intramolecular hydrogen bond and trans-COOH, as in other aliphatic amino acids. The spectroscopic data herein reported can be used for the astrophysical purpose in a possible detection of isovaline in space.


Assuntos
Gases/química , Valina/química , Ligação de Hidrogênio , Conformação Molecular
15.
Mol Pharm ; 16(8): 3600-3608, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31199662

RESUMO

Monomethyl auristatin E and monomethyl auristatin F are widely used cytotoxic agents in antibody-drug conjugates (ADCs), a group of promising cancer drugs. The ADCs specifically target cancer cells, releasing the auristatins inside, which results in the prevention of mitosis. The auristatins suffer from a potentially serious flaw, however. In solution, the molecules exist in an equal mixture of two conformers, cis and trans. Only the trans-isomer is biologically active and the isomerization process, i.e., the conversion of cis to trans is slow. This significantly diminishes the efficiency of the drugs and their corresponding ADCs, and perhaps more importantly, raises concerns over drug safety. The potency of the auristatins would be enhanced by decreasing the amount of the biologically inactive isomer, either by stabilizing the trans-isomer or destabilizing the cis-isomer. Here, we follow the computer-aided design strategy of shifting the conformational equilibrium and employ high-level quantum chemical modeling to identify promising candidates for improved auristatins. Coupled cluster calculations predict that a simple halogenation in the norephedrine/phenylalanine residues shifts the isomer equilibrium almost completely toward the active trans-conformation, due to enhanced intramolecular interactions specific to the active isomer.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Imunoconjugados/química , Oligopeptídeos/química , Química Farmacêutica/métodos , Desenho Assistido por Computador , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
16.
J Comput Chem ; 38(29): 2500-2508, 2017 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-28782828

RESUMO

A molecular fragmentation method has been used to analyze the intramolecular interactions in the three molecules coupled diamantane, hexaphenylethane, and all-meta-tert-butyl substituted hexaphenylethane. The significance of these systems lies in the fact, that steric crowding effects enable a stabilization of the central carbon bond that possesses an extended length (1.6 to 1.7 Å) beyond conventional carbon-carbon bonds due to the steric repulsion of the attached hydrocarbon groups. The total stability of these molecules therefore depends on a delicate balance between attractive interaction forces on the one hand and on repulsive forces on the other hand. We have quantified the different interaction energy contributions using symmetry-adapted perturbation theory based on a density functional theory description of the monomers. It has been found that the attractive dispersion interactions increase more strongly with the level of crowding in the systems than the counteracting exchange interactions. This shows that steric crowding effects can have a significant impact on the structure and stability of large and branched molecules. © 2017 Wiley Periodicals, Inc.

17.
J Comput Chem ; 38(13): 981-997, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28253426

RESUMO

A novel approach for calculating deformation densities is presented, which enables to calculate the deformation density resulting from a change between two chemical states, typically conformers, without the need for radical fragments. The Fragment, Atom, Localized, Delocalized, and Interatomic (FALDI) charge density decomposition scheme is introduced, which is applicable to static electron densities (FALDI-ED), conformational deformation densities (FALDI-DD) as well as orthodox fragment-based deformation densities. The formation of an intramolecular NH⋅⋅⋅N interaction in protonated ethylene diamine is used as a case study where the FALDI-based conformational deformation densities (with atomic or fragment resolution) are compared with an orthodox EDA-based approach. Atomic and fragment deformation densities revealed in real-space details that (i) pointed at the origin of density changes associated with the intramolecular H-bond formation and (ii) fully support the IUPAC H-bond representation. The FALDI scheme is equally applicable to intra- and intermolecular interactions. © 2017 Wiley Periodicals, Inc.

18.
Chemistry ; 23(30): 7238-7244, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28212459

RESUMO

Nicotinoids are agonists of the acetylcholine receptor (nAChR) and play important biochemical and pharmacological roles. Herein, we report on the structure and conformation of cotinine, and compare its molecular properties with the nicotine prototype, from which it only differs in the addition of a carbonyl group. This investigation included a theoretical survey of the effects of rotamerization of the pyridine moiety, the puckering of the pyrrolidinone ring and the internal rotation of the methyl group. The experimental work examined the rotational spectrum of the molecule in a supersonic expansion, using both broadband chirped-pulse excitation techniques and cavity microwave spectrometers. Two conformers were observed for cotinine, and the fine and hyperfine structures arising from the two quadrupolar 14 N nuclei and the methyl internal rotor were fully analyzed. The two observed conformers share the same twisted conformation of the five-membered ring, but differ in a roughly 180° rotamerization around the C-C bond connecting the two rings. The energy barriers for the internal rotation of the methyl group in cotinine (4.55(4) and 4.64(3) kJ mol-1 , respectively) are much lower than in nicotine (estimated in 16.5 kJ mol-1 ). The combination of different intramolecular electronic effects, hydrogen bonding and possible binding differences to receptor molecules arising from the carbonyl group could explain the lower affinity of cotinine for nAChRs.


Assuntos
Cotinina/química , Nicotina/química , Agonistas Nicotínicos/química , Ligação de Hidrogênio , Metilação , Modelos Moleculares , Conformação Molecular , Piridinas/química , Pirrolidinonas/química , Estereoisomerismo , Termodinâmica
19.
Magn Reson Chem ; 55(12): 1079-1083, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28703432

RESUMO

The 1 JC-F coupling constant can be useful to probe the conformational landscape of organofluorine compounds and the intramolecular interactions governing the stereochemistry of these compounds. Neighboring oxygen electron lone pairs and a carbonyl group relative to a C─F bond affect this coupling constant in an opposite way, and therefore, analysis of the interactions involving these entities simultaneously indicates which effect dominates 1 JC-F . Spin-spin coupling constant calculations for a series of fluorinated tetrahydropyrans, cyclohexanones, and dihydropyran-3-ones indicated that an electrostatic/dipolar interaction between the C─F and C═O bonds is more important than the steric interaction between the C─F bond and the oxygen electron lone pairs. An intuitive consequence of such outcome is that this interaction not only drives the coupling constant but can also be taken into account when aiming at the stereochemical control of functionalized organofluorine compounds.

20.
Molecules ; 22(2)2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157170

RESUMO

A theoretical study of the peri interactions, both intramolecular hydrogen (HB) and chalcogen bonds (YB), in 1-hydroxy-8YH-naphthalene, 1,4-dihydroxy-5,8-di-YH-naphthalene, and 1,5-dihydroxy-4,8-di-YH-naphthalene, with Y = O, S, and Se was carried out. The systems with a OH:Y hydrogen bond are the most stable ones followed by those with a chalcogen O:Y interaction, those with a YH:O hydrogen bond (Y = S and Se) being the least stable ones. The electron density values at the hydrogen bond critical points indicate that they have partial covalent character. Natural Bond Orbital (NBO) analysis shows stabilization due to the charge transfer between lone pair orbitals towards empty Y-H that correlate with the interatomic distances. The electron density shift maps and non-covalent indexes in the different systems are consistent with the relative strength of the interactions. The structures found on the CSD were used to compare the experimental and calculated results.


Assuntos
Calcogênios/química , Ligação de Hidrogênio , Modelos Teóricos , Naftalenos/química , Modelos Químicos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA