Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.554
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2316615121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861602

RESUMO

Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 µM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.


Assuntos
Antineoplásicos , Irídio , Metano , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Irídio/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino
2.
Proc Natl Acad Sci U S A ; 120(1): e2206850120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577066

RESUMO

Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts.


Assuntos
Monóxido de Carbono , Hidrogênio , Monóxido de Carbono/química , Oxirredução , Catálise , Hidrogênio/química , Platina/química
3.
Nano Lett ; 24(20): 6148-6157, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728265

RESUMO

Magnetic field mediated magnetic catalysts provide a powerful pathway for accelerating their sluggish kinetics toward the oxygen evolution reaction (OER) but remain great challenges in acidic media. The key obstacle comes from the production of an ordered magnetic domain catalyst in the harsh acidic OER. In this work, we form an induced local magnetic moment in the metallic Ir catalyst via the significant 3d-5d hybridization by introducing cobalt dopants. Interestingly, CoIr nanoclusters (NCs) exhibit an excellent magnetic field enhanced acidic OER activity, with the lowest overpotential of 220 mV at 10 mA cm-2 and s long-term stability of 120 h under a constant magnetic field (vs 260 mV/20 h without a magnetic field). The turnover frequency reaches 7.4 s-1 at 1.5 V (vs RHE), which is 3.0 times higher than that without magnetization. Density functional theory results show that CoIr NCs have a pronounced spin polarization intensity, which is preferable for OER enhancement.

4.
Small ; 20(10): e2305662, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37897152

RESUMO

The search for high-performance and low-cost electrocatalysts in acid conditions still remains a challenging target. Herein, iridium (Ir) doped strontium manganate (named as Irx -SMO) is proposed as an efficient and durable low-iridium electrocatalyst for water oxidation in acidic media. The Ir0.1 -SMO with 75% less iridium in comparison to that of iridium dioxide (IrO2 ) exhibits excellent performance for oxygen evolution reaction (OER), which is even better than most of the iridium-based oxide electrocatalysts. The theoretical outcomes confirm the activation of the inert manganese sites in strontium manganate by the incorporation of iridium dopants. This work reveals the boosted effect of the iridium dopants on the OER activity of strontium manganate, providing a strategy to tune the activity of manganese-based perovskites in electrocatalysis.

5.
Small ; : e2402543, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077961

RESUMO

Area-selective deposition (ASD) based on self-aligned technology has emerged as a promising solution for resolving misalignment issues during ultrafine patterning processes. Despite its potential, the problems of area-selectivity losing beyond a certain thickness remain critical in ASD applications. This study reports a novel approach to sustain the area-selectivity of Ir films as the thickness increases. Ir films are deposited on Al2O3 as the growth area and SiO2 as the non-growth area using atomic-layer-deposition with tricarbonyl-(1,2,3-η)-1,2,3-tri(tert-butyl)-cyclopropenyl-iridium and O3. O3 exhibits a dual effect, facilitating both deposition and etching. In the steady-state growth regime, O3 solely contributes to deposition, whereas in the initial growth stages, longer exposure to O3 etches the initially formed isolated Ir nuclei through the formation of volatile IrO3. Importantly, longer O3 exposure is required for the initial etching on the growth area(Al2O3) compared to the non-growth area(SiO2). By controlling the O3 injection time, the area selectivity is sustained even above a thickness of 25 nm by suppressing nucleation on the non-growth area. These findings shed light on the fundamental mechanisms of ASD using O3 and offer a promising avenue for advancing thin-film technologies. Furthermore, this approach holds promise for extending ASD to other metals susceptible to forming volatile species.

6.
Small ; : e2403845, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940392

RESUMO

As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.

7.
Small ; : e2404118, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165199

RESUMO

Significantly reducing the iridium content in oxygen evolution reaction (OER) catalysts while maintaining high electrocatalytic activity and stability is a key priority in the development of large-scale proton exchange membrane (PEM) electrolyzers. In practical catalysts, this is usually achieved by depositing thin layers of iridium oxide on a dimensionally stable metal oxide support material that reduces the volumetric packing density of iridium in the electrode assembly. By comparing two support materials with different structure types, it is shown that the chemical nature of the metal oxide support can have a strong influence on the crystallization of the iridium oxide phase and the direction of crystal growth. Epitaxial growth of crystalline IrO2 is achieved on the isostructural support material SnO2, both of which have a rutile structure with very similar lattice constants. Crystallization of amorphous IrOx on an SnO2 substrate results in interconnected, ultrasmall IrO2 crystallites that grow along the surface and are firmly anchored to the substrate. Thereby, the IrO2 phase enables excellent conductivity and remarkable stability of the catalyst at higher overpotentials and current densities at a very low Ir content of only 14 at%. The chemical epitaxy described here opens new horizons for the optimization of conductivity, activity and stability of electrocatalysts and the development of other epitaxial materials systems.

8.
Small ; : e2401964, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162112

RESUMO

Exploring efficacious low-Ir electrocatalysts for oxygen evolution reaction (OER) is crucial for large-scale application of proton exchange membrane water electrolysis (PEMWE). Herein, an efficient non-precious lanthanide-metal-doped IrO2 electrocatalyst is presented for OER catalysis by doping large-ionic-radius Nd into IrO2 crystal. The doped Nd breaks the long-ranged order structure by triggering the strain effect and thus inducing an atomic rearrangement of Nd─IrO2 involving the forming of Nd─O─Ir bonds along with an increased amount of oxygen vacancies (Ov), giving rise of a long-ranged disorder but a short-ranged order structure. The formed Nd─O─Ir bonds tailor the electronic structure of Ir, leading to a lowered d-band center that weakens intermediates absorption on Ir sites. Moreover, doping Nd triggers Nd─IrO2 to catalyze OER mainly through lattice oxygen mechanism (LOM) by activating lattice oxygen owing to abundant Ov. The optimal catalyst only requires a relatively low overpotential of 263 mV@10 mA cm-2 with a high mass activity of 216.98 A gIr -1 (at 1.53 V) (eightfold of commercial IrO2), and also shows a superior durability at 50 mA cm-2 (20 h) than commercial IrO2 (3 h) due to the oxidation-suppressing effect induced by Nd doping. This work offers insights into designing high-performance low-Ir electrocatalysts for PEMWE application.

9.
Small ; 20(22): e2310036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126916

RESUMO

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.

10.
Small ; : e2401404, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644200

RESUMO

Developing low-loading platinum-group-metal (PGM) catalysts is one of the key challenges in commercializing anion-exchange-membrane-fuel-cells (AEMFCs), especially for hydrogen oxidation reaction (HOR). Here, ruthenium-iridium nanoparticles being deposited on a Zn-N species-doped carbon carrier (Ru6Ir/Zn-N-C) are synthesized and used as an anodic catalyst for AEMFCs. Ru6Ir/Zn-N-C shows extremely high mass activity (5.87 A mgPGM -1) and exchange current density (0.92 mA cm-2), which is 15.1 and 3.9 times that of commercial Pt/C, respectively. Based on the Ru6Ir/Zn-N-C AEMFCs achieve a peak power density of 1.50 W cm-2, surpassing the state-of-the-art commercial PtRu catalysts and the power ratio of the normalized loading is 14.01 W mgPGM anode -1 or 5.89 W mgPGM -1 after decreasing the anode loading (87.49 µg cm-2) or the total PGM loading (0.111 mg cm-2), satisfying the US Department of Energy's PGM loading target. Moreover, the solvent and solute isotope separation method is used for the first time to reveal the kinetic process of HOR, which shows the reaction is influenced by the adsorption of H2O and OH-. The improvement of the hydrogen bond network connectivity of the electric double layer by adjusting the interfacial H2O structure together with the optimized HBE and OHBE is proposed to be responsible for the high HOR activity of Ru6Ir/Zn-N-C.

11.
Small ; : e2402003, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884191

RESUMO

Global healthcare based on the Internet of Things system is rapidly transforming to measure precise physiological body parameters without visiting hospitals at remote patients and associated symptoms monitoring. 2D materials and the prevailing mood of current ever-expanding MXene-based sensing devices motivate to introduce first the novel iridium (Ir) precious metal incorporated vanadium (V)-MXene via industrially favored emerging atomic layer deposition (ALD) techniques. The current work contributes a precise control and delicate balance of Ir single atomic forms or clusters on the V-MXene to constitute a unique precious metal-MXene embedded heterostructure (Ir-ALD@V-MXene) in practical real-time sensing healthcare applications to thermography with human-machine interface for the first time. Ir-ALD@V-MXene delivers an ultrahigh durability and sensing performance of 2.4% °C-1 than pristine V-MXene (0.42% °C-1), outperforming several conventionally used MXenes, graphene, underscoring the importance of the Ir-ALD innovative process. Aberration-corrected advanced ultra-high-resolution transmission/scanning transmission electron microscopy confirms the presence of Ir atomic clusters on well-aligned 2D-layered V-MXene structure and their advanced heterostructure formation (Ir-ALD@V-MXene), enhanced sensing mechanism is investigated using density functional theory (DFT) computations. A rational design empowering the Ir-ALD process on least explored V-MXene can potentially unfold further precious metals ALD-process developments for next-generation wearable personal healthcare devices.

12.
Small ; 20(12): e2307500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940631

RESUMO

The promising cyclometalated iridium (III) complexes have been proved to possess great potential in vacuum-deposited organic light-emitting diodes (OLEDs) applications for full-color displays and white solid-state lighting sources. Herein, based on the unique bidentate ligand of dibenzo[a,c]phenazine (dbpz) group with strong conjugated effect of aromatic rings for red emission, four novel [3+2+1] coordinated iridium (III) emissive materials have been rationally designed and synthesized. The monodentate ligands of -CN and -OCN have been effectively employed to tune the deep-red emission of 628-675 nm with high photoluminescence quantum yields up to 98%. Moreover, all devices displayed deep-red color coordinates ranging from (0.675, 0.325) to (0.716, 0.284), which is close to the standard-red color coordinates of (0.708, 0.292), as recommended by International Telecommunication Union Radiocommunication (ITU-R) BT.2020. The device based on nBuIr(dbpz)CN with an exciplex cohost has exhibited maximum external quantum efficiencies of 20.7% and good stability. With nBuIr(dbpz)CN as an effective sensitizer, the nBuIr(dbpz)OCN based phosphorescent OLED devices have successfully demonstrated cascading energy transfer processes, contributing to pure red emission with maximum luminance as high as 6471 cd m-2. Therefore, this work has been successfully demonstrated rational molecular design strategy of [3+2+1] iridium complexes to obtain highly efficient deep-red electrophosphorescent emission.

13.
Small ; 20(32): e2309705, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461528

RESUMO

Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is crucial in the pursuit of clean and sustainable hydrogen energy, yet still challenging. Herein, a spontaneous redox strategy is reported to achieve iridium single-atoms anchored on hierarchical nanosheet-based porous Fe doped ß-Ni(OH)2 pyramid array electrodes (SAs Ir/Fe-ß-Ni(OH)2), which exhibits high OER performance with a low overpotential of 175 mV at 10 mA cm-2 and a remarkable OER current density in alkaline electrolyte, surpassing Fe-ß-Ni(OH)2/NF and IrO2 by 31 and 38 times at 1.43 V versus RHE, respectively. OER catalytic mechanism demonstrates that the conversion of *OH→*O and the active lattice O content can be significantly improved due to the modulation effect of the Ir single atoms on the local electronic structure and the redox behavior of FeNi (oxy) hydroxide true active species. This work provides a promising insight into understanding the OER enhancement mechanism for Ir single-atoms modified FeNi-hydroxide systems.

14.
Small ; : e2401110, 2024 Jun 14.
Artigo em Catalão | MEDLINE | ID: mdl-38874051

RESUMO

For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.

15.
Chembiochem ; 25(9): e202400094, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488304

RESUMO

Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.


Assuntos
Complexos de Coordenação , Irídio , Irídio/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Humanos , Técnicas Biossensoriais/métodos , Imagem Óptica , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Animais , Medições Luminescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química
16.
Chembiochem ; 25(4): e202300798, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169080

RESUMO

Site-specific modification of proteins with synthetic fluorescent tag effectively improves the resolution of imaging, and such a labeling method with negligible three-dimensional structural perturbations and minimal impact on the biological functions of proteins is of high interest to dissect the high-resolution activities of biomolecules in complex systems. To this end, several non-emissive iridium(III) complexes [Ir(C-N)2 (H2 O)2 ]+ OTF- (C-N denotes various cyclometalated ligands) were designed and synthesized. These complexes were tested for attaching a protein by coordinating to H/X (HisMet, HisHis, and HisCys) that are separated by i and i+4 in α-helix. Replacement of the two labile water ligands in the iridium(III) complex by a protein HisHis pair increases the luminescent intensity up to over 100 folds. This labeling approach has been demonstrated in a highly specific and efficient manner in a number of proteins, and it is also feasible for labeling target proteins in cell lysates.


Assuntos
Irídio , Luminescência , Irídio/química
17.
J Biol Inorg Chem ; 29(1): 113-125, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183420

RESUMO

Two novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as 3IL state. Singlet oxygen generation with good yields (40% for 1 and 82% for 2) was established by detecting 1O2 directly, through its emission at 1270 nm. Photostability studies were also performed to assess the viability of the complexes as photosensitizers (PS) for photodynamic therapy (PDT). Complex 1 was selected as a good candidate to investigate light-activated killing of cells, whilst complex 2 was found to be toxic in the dark and unstable under light. Complex 1 demonstrated high phototoxicity indexes (PI) in the visible region, PI > 250 after irradiation at 405 nm and PI > 150 at 455 nm, in EJ bladder cancer cells.


Assuntos
Benzimidazóis , Neoplasias , Fotoquimioterapia , Ligantes , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Morte Celular , Irídio/farmacologia , Irídio/química
18.
Chemistry ; 30(13): e202303406, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109038

RESUMO

Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.

19.
Chemistry ; 30(39): e202401333, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38779790

RESUMO

Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20 bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.

20.
Chemistry ; 30(36): e202401063, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38654592

RESUMO

14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA