Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(15-16): 1109-1122, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301766

RESUMO

Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+ ; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , MicroRNAs , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/patologia
2.
Am J Hum Genet ; 111(8): 1656-1672, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39043182

RESUMO

Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.


Assuntos
Síndrome de Alagille , Proteína Jagged-1 , Mutação de Sentido Incorreto , Síndrome de Alagille/genética , Proteína Jagged-1/genética , Humanos , Éxons/genética
3.
Proc Natl Acad Sci U S A ; 119(50): e2201097119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469766

RESUMO

Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.


Assuntos
Síndrome de Alagille , Ductos Biliares Intra-Hepáticos , Transdução de Sinais , Animais , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mosaicismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Regeneração , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/patologia , Fibroblastos
4.
Kidney Int ; 106(1): 98-114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38521405

RESUMO

Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.


Assuntos
Metilação de DNA , Fibrose , Proteínas de Homeodomínio , Proteína Jagged-1 , Regiões Promotoras Genéticas , Receptores Notch , Transdução de Sinais , Obstrução Ureteral , Animais , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Masculino , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Rim/patologia , Rim/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Epigênese Genética , Nefropatias/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/etiologia , Fatores de Transcrição
5.
Angiogenesis ; 27(2): 273-283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37796367

RESUMO

Notch and its ligands play a critical role in rheumatoid arthritis (RA) pathogenesis. Hence, studies were conducted to delineate the functional significance of the Notch pathway in RA synovial tissue (ST) cells and the influence of RA therapies on their expression. Morphological studies reveal that JAG1, DLL4, and Notch1 are highly enriched in RA ST lining and sublining CD68+CD14+ MΦs. JAG1 and DLL4 transcription is jointly upregulated in RA MΦs reprogrammed by TLR4/5 ligation and TNF, whereas Syntenin-1 exposure expands JAG1, DLL4, and Notch1 expression levels in these cells. Single-cell RNA-seq data exhibit that JAG1 and Notch3 are overexpressed on all fibroblast-like synoviocyte (FLS) subpopulations, in parallel, JAG2, DLL1, and Notch1 expression levels are modest on RA FLS and are predominately potentiated by TLR4 ligation. Intriguingly, JAG1, DLL1/4, and Notch1/3 are presented on RA endothelial cells, and their expression is mutually reconfigured by TLR4/5 ligation in the endothelium. Synovial JAG1/JAG2/DLL1 or Notch1/3 transcriptomes were unchanged in patients who received disease-modifying anti-rheumatic drugs (DMARDs) or IL-6R Ab therapy regardless of disease activity score. Uniquely, RA MΦs and endothelial cells rewired by IL-6 displayed DLL4 transcriptional upregulation, and IL-6R antibody treatment disrupted RA ST DLL4 transcription in good responders compared to non-responders or moderate responders. Nevertheless, the JAG1/JAG2/DLL1/DLL4 transcriptome was diminished in anti-TNF good responders with myeloid pathotype and was unaltered in the fibroid pathotype except for DLL4. Taken together, our findings suggest that RA myeloid Notch ligands can serve as markers for anti-TNF responsiveness and trans-activate Notch receptors expressed on RA FLS and/or endothelial cells.


Assuntos
Artrite Reumatoide , Inibidores do Fator de Necrose Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Células Endoteliais/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Notch/metabolismo , Biomarcadores , Artrite Reumatoide/tratamento farmacológico , Ligantes , Receptor Notch1/metabolismo
6.
Liver Int ; 44(2): 541-558, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014627

RESUMO

BACKGROUND & AIMS: Alagille syndrome (ALGS) manifests with peripheral intrahepatic bile duct (IHBD) paucity, which can spontaneously resolve. In a model for ALGS, Jag1Ndr/Ndr mice, this occurs with distinct architectural mechanisms in hilar and peripheral IHBDs. Here, we investigated region-specific IHBD characteristics and addressed whether IGF1, a cholangiocyte mitogen that is downregulated in ALGS and in Jag1Ndr/Ndr mice, can improve biliary outcomes. METHODS: Intrahepatic cholangiocyte organoids (ICOs) were derived from hilar and peripheral adult Jag1+/+ and Jag1Ndr/Ndr livers (hICOs and pICOs, respectively). ICOs were grown in Matrigel or microwell arrays, and characterized using bulk RNA sequencing, immunofluorescence, and high throughput analyses of nuclear sizes. ICOs were treated with IGF1, followed by analyses of growth, proliferation, and death. CellProfiler and Python scripts were custom written for image analyses. Key results were validated in vivo by immunostaining. RESULTS: Cell growth assays and transcriptomics demonstrated that Jag1Ndr/Ndr ICOs were less proliferative than Jag1+/+ ICOs. IGF1 specifically rescued survival and growth of Jag1Ndr/Ndr pICOs. Jag1Ndr/Ndr hICOs were the least proliferative, with lower Notch signalling and an enrichment of hepatocyte signatures and IGF uptake/transport pathways. In vitro (Jag1Ndr/Ndr hICOs) and in vivo (Jag1Ndr/Ndr hilar portal tracts) analyses revealed ectopic HNF4a+ hepatocytes. CONCLUSIONS: Hilar and peripheral Jag1Ndr/Ndr ICOs exhibit differences in Notch signalling status, proliferation, and cholangiocyte commitment which may result in cholangiocyte-to-hepatocyte transdifferentiation. While Jag1Ndr/Ndr pICOs can be rescued by IGF1, hICOs are unresponsive, perhaps due to their hepatocyte-like state and/or expression of IGF transport components. IGF1 represents a potential therapeutic for peripheral bile ducts.


Assuntos
Síndrome de Alagille , Sistema Biliar , Camundongos , Animais , Síndrome de Alagille/genética , Ductos Biliares , Ductos Biliares Intra-Hepáticos , Organoides/metabolismo
7.
Adv Exp Med Biol ; 1441: 629-644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884738

RESUMO

Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.


Assuntos
Dupla Via de Saída do Ventrículo Direito , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/genética , Dupla Via de Saída do Ventrículo Direito/genética , Mutação , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição/genética
8.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884747

RESUMO

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Assuntos
Aorta Torácica , Valva Aórtica , Humanos , Aorta Torácica/anormalidades , Aorta Torácica/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Doença da Válvula Aórtica Bicúspide/genética , Estenose da Valva Pulmonar/genética , Mutação , Receptor Notch1/genética , Valvopatia Aórtica/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Calcinose/genética , Calcinose/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
9.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
10.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892440

RESUMO

NOTCH3 receptor signaling has been linked to the regulation of smooth muscle cell proliferation and the maintenance of smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (World Health Organization Group 1 idiopathic disease: PAH) is a fatal disease characterized clinically by elevated pulmonary vascular resistance caused by extensive vascular smooth muscle cell proliferation, perivascular inflammation, and asymmetric neointimal hyperplasia in precapillary pulmonary arteries. In this review, a detailed overview of the specific role of NOTCH3 signaling in PAH, including its mechanisms of activation by a select ligand, downstream signaling effectors, and physiologic effects within the pulmonary vascular tree, is provided. Animal models showing the importance of the NOTCH3 pathway in clinical PAH will be discussed. New drugs and biologics that inhibit NOTCH3 signaling and reverse this deadly disease are highlighted.


Assuntos
Hipertensão Arterial Pulmonar , Receptor Notch3 , Transdução de Sinais , Humanos , Receptor Notch3/metabolismo , Receptor Notch3/genética , Animais , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
11.
J Neurochem ; 166(4): 747-762, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422446

RESUMO

Notch signal plays an important role in regulating cell-cell interactions with the adjacent cells. However, it remains unknown whether Jagged1 (JAG-1) mediated Notch signaling regulates bone cancer pain (BCP) via the spinal cell interactions mechanism. Here, we showed that intramedullary injection of Walker 256 breast cancer cells increased the expression of JAG-1 in spinal astrocytes and knockdown of JAG-1 reduced BCP. The supplementation of exogenous JAG-1 to the spinal cord induced BCP-like behavior and promoted expression of c-Fos and hairy and enhancer of split homolog-1 (Hes-1) in the spinal cord of the naïve rats. These effects were reversed when the rats were administered intrathecal injections of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT). The intrathecal injection of DAPT reduced BCP and inhibited Hes-1 and c-Fos expression in the spinal cord. Furthermore, our results showed that JAG-1 up-regulated Hes-1 expression by inducing the recruitment of Notch intracellular domain (NICD) to the RBP-J/CSL-binding site located within the Hes-1 promoter sequence. Finally, the intrathecal injection of c-Fos-antisense oligonucleotides (c-Fos-ASO) and administration of sh-Hes-1 to the spinal dorsal horn also alleviated BCP. The study indicates that inhibition of the JAG-1/Notch signaling axis may be a potential strategy for the treatment of BCP.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Ratos , Animais , Dor do Câncer/etiologia , Neoplasias Ósseas/complicações , Transdução de Sinais/fisiologia , Dor , Medula Espinal
12.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511516

RESUMO

Alagille syndrome (ALGS) is a multisystem condition characterized by cholestasis and bile duct paucity on liver biopsy and variable involvement of the heart, skeleton, eyes, kidneys, and face and caused by pathogenic variants in the JAG1 or NOTCH2 gene. The variable expressivity of the clinical phenotype and the lack of genotype-phenotype correlations lead to significant diagnostic difficulties. Here we present an analysis of 18 patients with cholestasis who were diagnosed with ALGS. We used an NGS panel targeting coding exons of 52 genes, including the JAG1 and NOTCH2 genes. Sanger sequencing was used to verify the mutation in the affected individuals and family members. The specific facial phenotype was seen in 16/18 (88.9%). Heart defects were seen in 8/18 (44.4%) patients (pulmonary stenosis in 7/8). Butterfly vertebrae were seen in 5/14 (35.7%) patients. Renal involvement was detected in 2/18 (11.1%) cases-one patient had renal cysts, and one had obstructive hydronephrosis. An ophthalmology examination was performed on 12 children, and only one had posterior embryotoxon (8.3%). A percutaneous liver biopsy was performed in nine cases. Bile duct paucity was detected in six/nine cases (66.7%). Two patients required liver transplantation because of cirrhosis. We identified nine novel variants in the JAG1 gene-eight frameshift variants (c.1619_1622dupGCTA (p.Tyr541X), c.1160delG (p.Gly387fs), c.964dupT (p.C322fs), c.120delG (p.L40fs), c.1984dupG (p.Ala662Glyfs), c.3168_3169delAG (p.R1056Sfs*51), c.2688delG (p.896CysfsTer49), c.164dupG (p.Cys55fs)) and one missense variant, c.2806T > G (p.Cys936Gly). None of the patients presented with NOTCH2 variants. In accordance with the classical criteria, only six patients could meet the diagnostic criteria in our cohort without genetic analysis. Genetic testing is important in the diagnosis of ALGS and can help differentiate it from other types of cholestasis.


Assuntos
Síndrome de Alagille , Colestase , Humanos , Síndrome de Alagille/complicações , Síndrome de Alagille/genética , Colestase/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834003

RESUMO

The NOTCH ligands JAG1 and JAG2 have been correlated in vitro with multiple myeloma (MM) cell proliferation, drug resistance, self-renewal and a pathological crosstalk with the tumor microenvironment resulting in angiogenesis and osteoclastogenesis. These findings suggest that a therapeutic approach targeting JAG ligands might be helpful for the care of MM patients and lead us to explore the role of JAG1 and JAG2 in a MM in vivo model and primary patient samples. JAG1 and JAG2 protein expression represents a common feature in MM cell lines; therefore, we assessed their function through JAG1/2 conditional silencing in a MM xenograft model. We observed that JAG1 and JAG2 showed potential as therapeutic targets in MM, as their silencing resulted in a reduction in the tumor burden. Moreover, JAG1 and JAG2 protein expression in MM patients was positively correlated with the presence of MM cells in patients' bone marrow biopsies. Finally, taking advantage of the Multiple Myeloma Research Foundation (MMRF) CoMMpass global dataset, we showed that JAG2 gene expression level was a predictive biomarker associated with patients' overall survival and progression-free survival, independently from other main molecular or clinical features. Overall, these results strengthened the rationale for the development of a JAG1/2-tailored approach and the use of JAG2 as a predictive biomarker in MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Biomarcadores , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ligantes , Microambiente Tumoral
14.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834227

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.


Assuntos
Anexina A2 , Glioblastoma , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Recidiva Local de Neoplasia , Receptores Notch/metabolismo
15.
Hum Mutat ; 43(12): 1824-1828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819173

RESUMO

Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.


Assuntos
Síndrome de Alagille , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Síndrome de Alagille/genética , Coração , Proteínas de Ligação ao Cálcio
16.
FASEB J ; 35(8): e21784, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34252231

RESUMO

The human endometrium undergoes cycle-dependent changes and is only receptive to an implanting blastocyst within a narrow window of 2-4 days in the mid-secretory phase. Such functional changes require delicate interplay between a diversity of factors including cytokines and signaling pathways. The Notch signaling pathway members are expressed in human endometrium. We have previously demonstrated that Notch ligand Jagged1 (JAG1) localizes in the endometrial luminal epithelium (LE) and is abnormally reduced in infertile women during receptivity. However, the functional consequences of reduced JAG1 production on endometrial receptivity to implantation of the blastocyst are unknown. This study aimed to determine the role of JAG1 in regulating endometrial receptivity in humans and mice. Knockdown of JAG1 in both primary human endometrial epithelial cells and Ishikawa cells significantly reduced their adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. We confirmed that in human endometrial epithelial cells, JAG1 interacted with Notch Receptor 3 (NOTCH3) and knockdown of JAG1 significantly reduced the expression of Notch signaling downstream target HEY1 and classical receptivity markers. Knockdown of Jag1 in mouse LE significantly impaired blastocyst implantation. We identified ten genes (related to tight junction, infertility, and cell adhesion) that were differentially expressed by Jag1 knockdown in LE in mice. Further analysis of the tight junction family members in both species revealed that JAG1 altered the expression of tight junction components only in mice. Together, our data demonstrated that JAG1 altered endometrial epithelial cell adhesive capacity and regulated endometrial receptivity in both humans and mice likely via different mechanisms.


Assuntos
Implantação do Embrião , Endométrio/metabolismo , Proteína Jagged-1/metabolismo , Transdução de Sinais , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Proteína Jagged-1/genética , Camundongos
17.
Proc Natl Acad Sci U S A ; 116(10): 4538-4547, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787185

RESUMO

Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from ß-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.


Assuntos
Permeabilidade Capilar , Retinopatia Diabética/patologia , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Ativação Enzimática , Hiperglicemia/metabolismo , Proteína Jagged-1/biossíntese , Camundongos , Óxido Nítrico/biossíntese , Vasos Retinianos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
18.
Ecotoxicol Environ Saf ; 238: 113582, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512476

RESUMO

Cypermethrin (CYP), a widely-used composite pyrethroid pesticide, has underlying nephrotoxic effects. To elucidate potential roles of the MAPK pathway, the Jag/Notch pathway, and miRNAs in CYP-mediated kidney lesion, Sprague-Dawley rats and glomerular mesangial cells were used in this work. Results displayed that ß-CYP abnormally altered renal histomorphology and ultrastructures, induced renal DNA damage, and impaired renal functions, as evidenced by the increase in plasma levels of Cys-C and ß2-Mg. ß-CYP activated the JNK/c-Jun pathway by inducing ROS and oxidative stress. Meanwhile, ß-CYP changed the miRNA expression profile, miR-21-5p showing the most significant increase. Moreover, the Jag1/Notch2/Hes1 pathway was directly targeted by miR-21-5p, the mRNA and protein expression of Jag1, Notch2, and Hes1 being declined in vivo and in vitro. The chemokine CXCL16 was induced by ß-CYP, accompanied by the inflammatory factor production and inflammatory cell infiltration in kidneys. The specific JNK inhibitor, Jag1 overexpression, Hes1 overexpression, bidirectional Co-IP, ChIP, and CXCL16 silencing demonstrated that CXCL16 co-regulated by the JNK/c-Jun and Jag1/Notch2/Hes1 pathways elicited renal inflammation. Collectively, our findings indicate that ß-CYP is of nephrotoxicity and it not only directly changes renal histomorphology and ultrastructures, but induces CXCL16 to trigger renal inflammation via the JNK/c-Jun and Jag1/Notch2/Hes1 pathways, finally synergistically contributing to kidney damage.


Assuntos
Quimiocina CXCL16 , Proteína Jagged-1 , Rim , MAP Quinase Quinase 4 , MicroRNAs , Piretrinas , Animais , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , MAP Quinase Quinase 4/metabolismo , MicroRNAs/metabolismo , Piretrinas/toxicidade , Ratos , Ratos Sprague-Dawley , Receptor Notch2/genética , Receptor Notch2/metabolismo
19.
Genomics ; 113(1 Pt 1): 344-355, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338631

RESUMO

ChIP-seq is widely used for mapping the transcription factor (TF) binding sites throughout the genome in vivo. In this study, we adopted and modified ChIPmentation, a fast, robust, low-input requirement ChIP-seq method, to a transient expression system using soybean protoplasts to expedite the exploration of TF binding sites. To test this new protocol, we expressed a tagged version of a C2H2-type zinc finger TF, JAGGED1 (GmJAG1), in soybean protoplasts and successfully identified its binding sites in the soybean genome. Furthermore, valuable genomic features such as a novel GmJAG1-binding motif, and the epigenetic characteristics as well as an enhancer-like function of GmJBSs were also found via coupling ATAC-seq and H3K27me3 ChIP-seq data. The application of the modified ChIPmentation protocol in this study using soybean protoplasts provided a new approach for rapid elucidation of how a TF binds to the various target genes in the soybean genome, as illustrated here using GmJAG1.


Assuntos
Glycine max/genética , Proteína Jagged-1/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteína Jagged-1/genética , Motivos de Nucleotídeos , Proteínas de Plantas/genética , Ligação Proteica , Protoplastos/metabolismo
20.
Genet Med ; 23(2): 323-330, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33077891

RESUMO

PURPOSE: Detection of all major classes of genomic variants in a single test would decrease cost and increase the efficiency of genomic diagnostics. Genome sequencing (GS) has the potential to provide this level of comprehensive detection. We sought to demonstrate the utility of GS in the molecular diagnosis of 18 patients with clinically defined Alagille syndrome (ALGS), who had a negative or inconclusive result by standard-of-care testing. METHODS: We performed GS on 16 pathogenic variant-negative probands and two probands with inconclusive results (of 406 ALGS probands) and analyzed the data for sequence, copy-number, and structural variants in JAG1 and NOTCH2. RESULTS: GS identified four novel pathogenic alterations including a copy-neutral inversion, a partial deletion, and a promoter variant in JAG1, and a partial NOTCH2 deletion, for an additional diagnostic yield of 0.9%. Furthermore, GS resolved two complex rearrangements, resulting in identification of a pathogenic variant in 97.5% (n = 396/406) of patients after GS. CONCLUSION: GS provided an increased diagnostic yield for individuals with clinically defined ALGS who had prior negative or incomplete genetic testing by other methods. Our results show that GS can detect all major classes of variants and has potential to become a single first-tier diagnostic test for Mendelian disorders.


Assuntos
Síndrome de Alagille , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Sequência de Bases , Mapeamento Cromossômico , Testes Genéticos , Humanos , Proteína Jagged-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA