Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2301985120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192161

RESUMO

Voltage-dependent ion channels underlie the propagation of action potentials and other forms of electrical activity in cells. In these proteins, voltage sensor domains (VSDs) regulate opening and closing of the pore through the displacement of their positive-charged S4 helix in response to the membrane voltage. The movement of S4 at hyperpolarizing membrane voltages in some channels is thought to directly clamp the pore shut through the S4-S5 linker helix. The KCNQ1 channel (also known as Kv7.1), which is important for heart rhythm, is regulated not only by membrane voltage but also by the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2). KCNQ1 requires PIP2 to open and to couple the movement of S4 in the VSD to the pore. To understand the mechanism of this voltage regulation, we use cryogenic electron microscopy to visualize the movement of S4 in the human KCNQ1 channel in lipid membrane vesicles with a voltage difference across the membrane, i.e., an applied electric field in the membrane. Hyperpolarizing voltages displace S4 in such a manner as to sterically occlude the PIP2-binding site. Thus, in KCNQ1, the voltage sensor acts primarily as a regulator of PIP2 binding. The voltage sensors' influence on the channel's gate is indirect through the reaction sequence: voltage sensor movement → alter PIP2 ligand affinity → alter pore opening.


Assuntos
Canal de Potássio KCNQ1 , Lipídeos , Humanos , Canal de Potássio KCNQ1/metabolismo , Domínios Proteicos , Sítios de Ligação , Potenciais de Ação
2.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383485

RESUMO

The medial nucleus of the trapezoid body (MNTB) has been intensively investigated as a primary source of inhibition in brainstem auditory circuitry. MNTB-derived inhibition plays a critical role in the computation of sound location, as temporal features of sounds are precisely conveyed through the calyx of Held/MNTB synapse. In adult gerbils, cholinergic signaling influences sound-evoked responses of MNTB neurons via nicotinic acetylcholine receptors (nAChRs; Zhang et al., 2021) establishing a modulatory role for cholinergic input to this nucleus. However, the cellular mechanisms through which acetylcholine (ACh) mediates this modulation in the MNTB remain obscure. To investigate these mechanisms, we used whole-cell current and voltage-clamp recordings to examine cholinergic physiology in MNTB neurons from Mongolian gerbils (Meriones unguiculatus) of both sexes. Membrane excitability was assessed in brain slices, in pre-hearing (postnatal days 9-13) and post-hearing onset (P18-20) MNTB neurons during bath application of agonists and antagonists of nicotinic (nAChRs) and muscarinic receptors (mAChRs). Muscarinic activation induced a potent increase in excitability most prominently prior to hearing onset with nAChR modulation emerging at later time points. Pharmacological manipulations further demonstrated that the voltage-gated K+ channel KCNQ (Kv7) is the downstream effector of mAChR activation that impacts excitability early in development. Cholinergic modulation of Kv7 reduces outward K+ conductance and depolarizes resting membrane potential. Immunolabeling revealed expression of Kv7 channels as well as mAChRs containing M1 and M3 subunits. Together, our results suggest that mAChR modulation is prominent but transient in the developing MNTB and that cholinergic modulation functions to shape auditory circuit development.


Assuntos
Receptores Nicotínicos , Corpo Trapezoide , Animais , Feminino , Masculino , Corpo Trapezoide/fisiologia , Gerbillinae , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Receptores Nicotínicos/metabolismo , Colinérgicos , Vias Auditivas/fisiologia
3.
J Neurosci ; 43(43): 7073-7083, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648450

RESUMO

Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.


Assuntos
Canal de Potássio KCNQ2 , Agonistas Muscarínicos , Masculino , Feminino , Camundongos , Ratos , Animais , Sulfato de Desidroepiandrosterona , Canal de Potássio KCNQ2/metabolismo , Agonistas Muscarínicos/farmacologia , Dor/tratamento farmacológico , Formaldeído , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo
4.
Am J Physiol Cell Physiol ; 326(3): C893-C904, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284124

RESUMO

Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.


Assuntos
Barreira Hematoencefálica , Carbamatos , Epilepsia , Fenilenodiaminas , Animais , Ratos , Células Endoteliais , Ácido Caínico/toxicidade , Encéfalo
5.
Annu Rev Pharmacol Toxicol ; 61: 381-400, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32667860

RESUMO

Kv7 channels (Kv7.1-7.5) are voltage-gated K+ channels that can be modulated by five ß-subunits (KCNE1-5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2-7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2-7.5 and is largely dependent upon the number of ß-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Potenciais de Ação , Humanos , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Transdução de Sinais
6.
Cell Commun Signal ; 22(1): 416, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192337

RESUMO

Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Receptores ErbB , Gânglios Espinais , Histona Desacetilase 2 , Canal de Potássio KCNQ2 , Animais , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Ratos , Dor do Câncer/genética , Dor do Câncer/metabolismo , Dor do Câncer/patologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Transcrição Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Transdução de Sinais/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Feminino , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/genética
7.
Epilepsia ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140981

RESUMO

OBJECTIVE: Pharmacological activation of neuronal Kv7 channels by the antiepileptic drug retigabine (RTG; ezogabine) has been proven effective in treating partial epilepsy. However, RTG was withdrawn from the market due to the toxicity caused by its phenazinium dimer metabolites, leading to peripheral skin discoloration and retinal abnormalities. To address the undesirable metabolic properties of RTG and prevent the formation of phenazinium dimers, we made chemical modifications to RTG, resulting in a new RTG derivative, 1025c, N,N'-{4-[(4-fluorobenzyl) (prop-2-yn-1-yl)amino]-1,2-phenylene}bis(3,3-dimethylbutanamide). METHODS: Whole-cell recordings were used to evaluate Kv7 channel openers. Site-directed mutagenesis and molecular docking were adopted to investigate the molecular mechanism underlying 1025c and Kv7.2 interactions. Mouse seizure models of maximal electroshock (MES), subcutaneous pentylenetetrazol (scPTZ), and PTZ-induced kindling were utilized to test compound antiepileptic activity. RESULTS: The novel compound 1025c selectively activates whole-cell Kv7.2/7.3 currents in a concentration-dependent manner, with half-maximal effective concentration of .91 ± .17 µmol·L-1. The 1025c compound also causes a leftward shift in Kv7.2/7.3 current activation toward a more hyperpolarized membrane potential, with a shift of the half voltage of maximal activation (ΔV1/2) of -18.6 ± 3.0 mV. Intraperitoneal administration of 1025c demonstrates dose-dependent antiseizure activities in assays of MES, scPTZ, and PTZ-induced kindling models. Moreover, through site-directed mutagenesis combined with molecular docking, a key residue Trp236 has been identified as critical for 1025c-mediated activation of Kv7.2 channels. Photostability experiments further reveal that 1025c is more photostable than RTG and is unable to dimerize. SIGNIFICANCE: Our findings demonstrate that 1025c exhibits potent and selective activation of neuronal Kv7 channels without being metabolized to phenazinium dimers, suggesting its developmental potential as an antiseizure agent for therapy.

8.
Addict Biol ; 29(8): e13428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087789

RESUMO

The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.


Assuntos
Carbamatos , Cocaína , Fenilenodiaminas , Ratos Sprague-Dawley , Autoadministração , Sacarose , Animais , Fenilenodiaminas/farmacologia , Fenilenodiaminas/administração & dosagem , Carbamatos/farmacologia , Carbamatos/administração & dosagem , Cocaína/farmacologia , Cocaína/administração & dosagem , Masculino , Ratos , Sacarose/administração & dosagem , Sacarose/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Canais de Potássio KCNQ/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
9.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000434

RESUMO

GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.


Assuntos
Axônios , Gânglios Espinais , Receptores de GABA , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Camundongos , Axônios/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Células Cultivadas , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/citologia , Técnicas de Cocultura , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
10.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999185

RESUMO

The growing interest in Kv7.2/7.3 agonists originates from the involvement of these channels in several brain hyperexcitability disorders. In particular, Kv7.2/7.3 mutants have been clearly associated with epileptic encephalopathies (DEEs) as well as with a spectrum of focal epilepsy disorders, often associated with developmental plateauing or regression. Nevertheless, there is a lack of available therapeutic options, considering that retigabine, the only molecule used in clinic as a broad-spectrum Kv7 agonist, has been withdrawn from the market in late 2016. This is why several efforts have been made both by both academia and industry in the search for suitable chemotypes acting as Kv7.2/7.3 agonists. In this context, in silico methods have played a major role, since the precise structures of different Kv7 homotetramers have been only recently disclosed. In the present review, the computational methods used for the design of Kv.7.2/7.3 small molecule agonists and the underlying medicinal chemistry are discussed in the context of their biological and structure-function properties.


Assuntos
Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3 , Humanos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ3/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/antagonistas & inibidores , Simulação por Computador , Relação Estrutura-Atividade , Descoberta de Drogas/métodos , Animais
11.
J Physiol ; 601(17): 3739-3764, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37428651

RESUMO

Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 µm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.


Assuntos
Calmodulina , Síndrome do QT Longo , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Cálcio/metabolismo , Células HEK293 , Síndrome do QT Longo/genética , Mutação , Canal de Potássio KCNQ1/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G436-G445, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667839

RESUMO

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.


Assuntos
Bradicinina , Carbamatos , Fenilenodiaminas , Humanos , Bradicinina/farmacologia , Dor Abdominal , Trifosfato de Adenosina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa
13.
FASEB J ; 36(9): e22457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997997

RESUMO

Tree and shrub barks have been used as folk medicine by numerous cultures across the globe for millennia, for a variety of indications, including as vasorelaxants and antispasmodics. Here, using electrophysiology and myography, we discovered that the KCNQ5 voltage-gated potassium channel mediates vascular smooth muscle relaxant effects of barks used in Native American folk medicine. Bark extracts (1%) from Birch, Cramp Bark, Slippery Elm, White Oak, Red Willow, White Willow, and Wild Cherry each strongly activated KCNQ5 expressed in Xenopus oocytes. Testing of a subset including both the most and the least efficacious extracts revealed that Red Willow, White Willow, and White Oak KCNQ-dependently relaxed rat mesenteric arteries; in contrast, Black Haw bark neither activated KCNQ5 nor induced vasorelaxation. Two compounds common to the active barks (gallic acid and tannic acid) had similarly potent and efficacious effects on both KCNQ5 activation and vascular relaxation, and this together with KCNQ5 modulation by other tannins provides a molecular basis for smooth muscle relaxation effects of Native American folk medicine bark extracts.


Assuntos
Canais de Potássio KCNQ , Vasodilatadores , Animais , Humanos , Artérias Mesentéricas , Ratos , Taninos/farmacologia , Vasodilatadores/farmacologia , Indígena Americano ou Nativo do Alasca
14.
Epilepsia ; 64(7): e143-e147, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096745

RESUMO

Genetic variants in KCNQ2 are associated with a range of epilepsies, from self- limited (familial) neonatal-infantile epilepsy to developmental and epileptic encephalopathy (DEE). We retrospectively reviewed clinical data from eight patients with KCNQ2-related DEE who were treated with ezogabine. Treatment was initiated at a median age of 8 months (range, 7 weeks to 2.5 years) and continued for a median of 2.6 years (range, 7 months to 4.5 years). Five individuals had daily seizures at baseline and experienced at least 50% seizure reduction with treatment, sustained in four. One individual with two to four yearly seizures improved to rare events. Two individuals were seizure-free; treatment targeted cognition and development. Developmental improvements were reported in all eight patients. Weaning of ezogabine was associated with increased seizure frequency (N = 4), agitation and irritability (N = 2), poor sleep (N = 1), and developmental regression (N = 2). These data suggest that treatment with ezogabine is effective at reducing seizure burden and is associated with improved development. Minimal side effects were observed. Weaning was associated with increased seizures and behavioral disturbances in a subset. An approach targeting potassium channel dysfunction with ezogabine is warranted in patients with KCNQ2-related DEE.


Assuntos
Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia Generalizada/complicações , Canal de Potássio KCNQ2/genética , Mutação , Estudos Retrospectivos , Convulsões/tratamento farmacológico , Convulsões/genética , Lactente , Pré-Escolar
15.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36764326

RESUMO

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Assuntos
Acetilcolina , Vasodilatação , Masculino , Pessoa de Meia-Idade , Humanos , Nitroprussiato/farmacologia , Isoproterenol/farmacologia , Acetilcolina/farmacologia , Colchicina/farmacologia , Hipertensão Essencial , Receptores Adrenérgicos
16.
Cereb Cortex ; 32(14): 2907-2923, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34730179

RESUMO

Kainate receptors (KARs) are key regulators of synaptic circuits by acting at pre- and postsynaptic sites through either ionotropic or metabotropic actions. KARs can be activated by kainate, a potent neurotoxin, which induces acute convulsions. Here, we report that the acute convulsive effect of kainate mostly depends on GluK2/GluK5 containing KARs. By contrast, the acute convulsive activity of pilocarpine and pentylenetetrazol is not alleviated in the absence of KARs. Unexpectedly, the genetic inactivation of GluK2 rather confers increased susceptibility to acute pilocarpine-induced seizures. The mechanism involves an enhanced excitability of GluK2-/- CA3 pyramidal cells compared with controls upon pilocarpine application. Finally, we uncover that the absence of GluK2 increases pilocarpine modulation of Kv7/M currents. Taken together, our findings reveal that GluK2-containing KARs can control the excitability of hippocampal circuits through interaction with the neuromodulatory cholinergic system.


Assuntos
Ácido Caínico , Pilocarpina , Receptores de Ácido Caínico , Região CA1 Hipocampal/metabolismo , Colinérgicos/farmacologia , Deleção de Genes , Humanos , Pilocarpina/toxicidade , Células Piramidais/metabolismo , Receptores de Ácido Caínico/genética , Convulsões/induzido quimicamente , Convulsões/genética , Receptor de GluK2 Cainato
17.
Pharmacology ; 108(2): 138-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36516801

RESUMO

INTRODUCTION: Voltage-gated Kv7/M potassium channels play an essential role in the control of membrane potential and neuronal excitability. Fangchinoline, a bisbenzylisoquinoline alkaloid, displays extensive biological activities including antitumor, anti-inflammatory, and antihypertension effects. In this study, we investigated the effects of fangchinoline on Kv7/M channels. METHODS: A perforated whole-cell patch technique was used to record Kv7 currents from HEK293 cells and M-type currents from mouse dorsal root ganglion (DRG) neurons. RESULTS: Fangchinoline inhibited Kv7.2/Kv7.3 currents in a concentration-dependent manner, with an IC50 of 9.5 ± 1.2 µM. Fangchinoline significantly inhibited Kv7.1, Kv7.2, Kv7.3, Kv7.4, and Kv7.3/Kv7.5 channels without selective effects. Furthermore, fangchinoline significantly slowed the activation of Kv7.1-Kv7.5 channels and inhibited native M-channel currents of DRG neurons. CONCLUSION: Taken together, our findings indicate that fangchinoline concentration-dependently inhibited Kv7/M channel currents.


Assuntos
Benzilisoquinolinas , Humanos , Camundongos , Animais , Células HEK293 , Potenciais da Membrana , Benzilisoquinolinas/farmacologia , Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3
18.
Arch Pharm (Weinheim) ; 356(2): e2200473, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395379

RESUMO

KV 7 channel openers have proven their therapeutic value in the treatment of pain as well as epilepsy and, moreover, they hold the potential to expand into additional indications with unmet medical needs. However, the clinically validated but meanwhile discontinued KV 7 channel openers flupirtine and retigabine bear an oxidation-sensitive triaminoraryl scaffold, which is suspected of causing adverse drug reactions via the formation of quinoid oxidation products. Here, we report the design and synthesis of nicotinamide analogs and related compounds that remediate the liability in the chemical structure of flupirtine and retigabine. Optimization of a nicotinamide lead structure yielded analogs with excellent KV 7.2/3 opening activity, as evidenced by EC50 values approaching the single-digit nanomolar range. On the other hand, weighted KV 7.2/3 opening activity data including inactive compounds allowed for the establishment of structure-activity relationships and a plausible binding mode hypothesis verified by docking and molecular dynamics simulations.


Assuntos
Aminopiridinas , Canais de Potássio KCNQ , Canais de Potássio KCNQ/metabolismo , Relação Estrutura-Atividade , Aminopiridinas/química
19.
Arch Pharm (Weinheim) ; 356(5): e2200585, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36748851

RESUMO

For the characterization of Kv 7.2/3 channel activators, several analytical methods are available that vary in effort and cost. In addition to the technically elaborate patch-clamp method, which serves as a reference method, there exist several medium to high-throughput screening methods including a rubidium efflux flame-atomic absorption spectrometry (F-AAS) assay and a commercial thallium uptake fluorescence-based assay. In this study, the general suitability of a graphite furnace atomic absorption spectrometry (GF-AAS)-based rubidium efflux assay as a screening method for Kv 7.2/3 channel activators was demonstrated. With flupirtine serving as a reference compound, 16 newly synthesizedcompounds and the known Kv 7.2/3 activator retigabine were first classified as either active or inactive by using the GF-AAS-based rubidium (Rb) efflux assay. Then, the results were compared with a thallium (Tl) uptake fluorescence-based fluorometric imaging plate reader (FLIPR) potassium assay. Overall, 16 of 17 compounds were classified by the GF-AAS-based assay in agreement with their channel-activating properties determined by the more expensive Tl uptake, fluorescence-based assay. Thus, the performance of the GF-AAS-based Rb assay for primary drug screening of Kv 7.2/3-activating compounds was clearly demonstrated, as documented by the calculated Z'-factor of the GF-AAS-based method. Moreover, method development included optimization of the coating of the microtiter plates and the washing procedure, which extended the range of this assay to poorly adherent cells such as the HEK293 cells used in this study.


Assuntos
Grafite , Rubídio , Humanos , Espectrofotometria Atômica/métodos , Tálio , Células HEK293 , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569725

RESUMO

Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr-/-). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr-/- mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr-/- mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr-/- mice, resembling animals and humans suffering from PAH.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Artéria Pulmonar , Animais , Humanos , Camundongos , Ratos , Canais de Potássio KCNQ/metabolismo , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Artéria Pulmonar/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA