Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.908
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(8): 1353-1365, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931048

RESUMO

Copy-number variants and structural variants (CNVs/SVs) drive many neurodevelopmental-related disorders. While many neurodevelopmental-related CNVs/SVs give rise to complex phenotypes, the overlap in phenotypic presentation between independent CNVs can be extensive and provides a motivation for shared approaches. This confluence at the level of clinical phenotype implies convergence in at least some aspects of the underlying genomic mechanisms. With this perspective, our Commission on Novel Technologies for Neurodevelopmental CNVs asserts that the time has arrived to approach neurodevelopmental-related CNVs/SVs as a class of disorders that can be identified, investigated, and treated on the basis of shared mechanisms and/or pathways (e.g., molecular, neurological, or developmental). To identify common etiologic mechanisms among uncommon neurodevelopmental-related disorders and to potentially identify common therapies, it is paramount for teams of scientists, clinicians, and patients to unite their efforts. We bring forward novel, collaborative, and integrative strategies to translational CNV/SV research that engages diverse stakeholders to help expedite therapeutic outcomes. We articulate a clear vision for piloted roadmap strategies to reduce patient/caregiver burden and redundancies, increase efficiency, avoid siloed data, and accelerate translational discovery across CNV/SV-based syndromes.


Assuntos
Transtornos do Neurodesenvolvimento , Defesa do Paciente , Variações do Número de Cópias de DNA/genética , Genoma , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/terapia , Fenótipo
2.
Nano Lett ; 24(12): 3661-3669, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408021

RESUMO

The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.

3.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G398-G410, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290993

RESUMO

Major esophageal disorders involve obstructive transport of bolus to the stomach, causing symptoms of dysphagia and impaired clearing of the refluxed gastric contents. These may occur due to mechanical constriction of the esophageal lumen or loss of relaxation associated with deglutitive inhibition, as in achalasia-like disorders. Recently, immune inflammation has been identified as an important cause of esophageal strictures and the loss of inhibitory neurotransmission. These disorders are also associated with smooth muscle hypertrophy and hypercontractility, whose cause is unknown. This review investigated immune inflammation in the causation of smooth muscle changes in obstructive esophageal bolus transport. Findings suggest that smooth muscle hypertrophy occurs above the obstruction and is due to mechanical stress on the smooth muscles. The mechanostressed smooth muscles release cytokines and other molecules that may recruit and microlocalize mast cells to smooth muscle bundles, so that their products may have a close bidirectional effect on each other. Acting in a paracrine fashion, the inflammatory cytokines induce genetic and epigenetic changes in the smooth muscles, leading to smooth muscle hypercontractility, hypertrophy, and impaired relaxation. These changes may worsen difficulty in the esophageal transport. Immune processes differ in the first phase of obstructive bolus transport, and the second phase of muscle hypertrophy and hypercontractility. Moreover, changes in the type of mechanical stress may change immune response and effect on smooth muscles. Understanding immune signaling in causes of obstructive bolus transport, type of mechanical stress, and associated smooth muscle changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.NEW & NOTEWORTHY Esophageal disorders such as esophageal stricture or achalasia, and diffuse esophageal spasm are associated with smooth muscle hypertrophy and hypercontractility, above the obstruction, yet the cause of such changes is unknown. This review suggests that smooth muscle obstructive disorders may cause mechanical stress on smooth muscle, which then secretes chemicals that recruit, microlocalize, and activate mast cells to initiate immune inflammation, producing functional and structural changes in smooth muscles. Understanding the immune signaling in these changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.


Assuntos
Acalasia Esofágica , Transtornos da Motilidade Esofágica , Humanos , Mastócitos , Manometria , Músculo Liso , Inflamação , Citocinas , Hipertrofia
4.
BMC Plant Biol ; 24(1): 252, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589797

RESUMO

BACKGROUND: This study explores the impact of various light spectra on the photosynthetic performance of strawberry plants subjected to salinity, alkalinity, and combined salinity/alkalinity stress. We employed supplemental lighting through Light-emitting Diodes (LEDs) with specific wavelengths: monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3 ratio), and white/yellow (400-700 nm), all at an intensity of 200 µmol m-2 S-1. Additionally, a control group (ambient light) without LED treatment was included in the study. The tested experimental variants were: optimal growth conditions (control), alkalinity (40 mM NaHCO3), salinity (80 mM NaCl), and a combination of salinity/alkalinity. RESULTS: The results revealed a notable decrease in photosynthetic efficiency under both salinity and alkalinity stresses, especially when these stresses were combined, in comparison to the no-stress condition. However, the application of supplemental lighting, particularly with the red and blue/red spectra, mitigated the adverse effects of stress. The imposed stress conditions had a detrimental impact on both gas exchange parameters and photosynthetic efficiency of the plants. In contrast, treatments involving blue, red, and blue/red light exhibited a beneficial effect on photosynthetic efficiency compared to other lighting conditions. Further analysis of JIP-test parameters confirmed that these specific light treatments significantly ameliorated the stress impacts. CONCLUSIONS: In summary, the utilization of blue, red, and blue/red light spectra has the potential to enhance plant resilience in the face of salinity and alkalinity stresses. This discovery presents a promising strategy for cultivating plants in anticipation of future challenging environmental conditions.


Assuntos
Fragaria , Resiliência Psicológica , Iluminação/métodos , Salinidade , Luz
5.
Small ; 20(29): e2400234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38426650

RESUMO

Investigations concerning the glyoxylate moiety as a photocleavable functional group for visible light photoinitiators, particularly in the initiation of free radical photopolymerization remain limited. This study introduces nine innovative carbazole-based ethyl glyoxylate derivatives (CEGs), which are synthesized and found to exhibit excellent photoinitiation abilities as monocomponent photoinitiating systems. Notably, these structures demonstrate robust absorption in the near-UV/visible range, surpassing the commercial photoinitiators. Moreover, the newly developed glyoxylate derivatives show higher acrylate function conversions compared to a benchmark photoinitiator (MBF) in free radical photopolymerization. Elucidation of the photoinitiation mechanism of CEGs is achieved through a comprehensive analysis involving the decarboxylation reaction and electron spin resonance spin trapping. Furthermore, their practical utility is confirmed during direct laser writing and 3D printing processes, enabling the successful fabrication of 3D printed objects. This study introduces pioneering concepts and effective strategies in the molecular design of novel photoinitiators, showcasing their potential for highly advantageous applications in 3D printing.

6.
Small ; 20(31): e2308968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38477693

RESUMO

Silver (Ag) metal-based structures are promising building blocks for next-generation photonics and electronics owing to their unique characteristics, such as high reflectivity, surface plasmonic resonance effects, high electrical conductivity, and tunable electron transport mechanisms. However, Ag structures exhibit poor sustainability in terms of device performance because harsh chemicals, particularly S2- ions present in the air, can damage their structures, lowering their optical and electrical properties. Here, the surface chemistry of Ag structures with (3-mercaptopropyl)trimethoxysilane (MPTS) ligands at room temperature and under ambient conditions is engineered to prevent deterioration of their optical and electrical properties owing to S2- exposure. Regardless of the dimensions of the Ag structures, the MPTS ligands can be applied to each dimension (0D, 1D, and 3D). Consequently, highly sustainable plasmonic effects (Δλ < 2 nm), Fabry-Perot cavity resonance structures (Δλ < 2 nm), reflectors (ΔRReflectance < 0.5%), flexible electrodes (ΔRelectrical < 0.1 Ω), and strain gauge sensors (ΔGF < 1), even in S2- exposing conditions is achieved. This strategy is believed to significantly contribute to environmental pollution reduction by decreasing the volume of electronic waste.

7.
Small ; 20(25): e2309926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196153

RESUMO

As one type of recent emerging lead-free perovskites, Cs2ZrCl6 nanocrystals are widely concerned, benefiting from the eminent designability, high X-ray cutoff efficiency, and favorable stability. Improving the luminescence performance of Cs2ZrCl6 nanocrystals has great importance to cater for practical applications. In view of the surface defects frequently formed by the liquid phase method, the particle morphology and surface quality of this material are expected to be regulated if certain intervention is made in the synthesis process. In the work, differing from normal cell lattice modulation based on the ion doping, the grain size and surface morphology of Cs2ZrCl6 nanocrystals are optimized via adding a certain amount of InCl3 to the synthetic solution. The surface defects are restored to inhibit the defect-induced non-radiative transition, resulting in the improvement of the luminescence properties. Moreover, a flexible Cs2ZrCl6@polydimethylsiloxane film with excellent heat, water, and bending resistance and a light-emitting diode (LED) device are fabricated, exhibiting excellent application potential for X-ray imaging and blue LED.

8.
Small ; 20(25): e2307774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200683

RESUMO

Tin (Sn)-based perovskites are being investigated in many optoelectronic applications given their similar valence electron configuration to that of lead-based perovskites and the potential environmental hazards of lead-based perovskites. However, the formation of high-quality Sn-based perovskite films faces several challenges, mainly due to the easy oxidation of Sn2+ to Sn4+ and the fast crystallization rate. Here, to develop an environmentally friendly process for Sn-based perovskite fabrication, a series of natural antioxidants are studied as additives and ascorbic acid (VitC) is found to have a superior ability to inhibit the oxidation problem. A common cyclic molecule, 18-Crown-6, is further added as a second additive, which synergizes with VitC to significantly reduce the nonradiative recombination pathways in the PEA2SnI4 film. This synergistic effect greatly improves the performance of 2D red Sn-based PeLED, with a maximum external quantum efficiency of 1.87% (≈9 times that of the pristine device), a purer color, and better bias stability. This work demonstrates the potential of the dual-additive approach in enhancing the performance of 2D Sn-based PeLEDs, while the use of these environmentally friendly additives contributes to their future sustainability.

9.
Planta ; 260(3): 69, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127837

RESUMO

MAIN CONCLUSION: Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.


Assuntos
Antocianinas , Frutas , Luz , Vitis , Vitis/efeitos da radiação , Vitis/metabolismo , Vitis/genética , Antocianinas/metabolismo , Frutas/efeitos da radiação , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pigmentação/efeitos da radiação
10.
HIV Med ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279040

RESUMO

OBJECTIVES: Klick is a clinic-specific, digitally supported outpatient pathway of care for people living with HIV (PLWH). It involves a smartphone application (app) for PLWH to self-manage their care, navigate access to the clinic and communicate with their healthcare provider. We present a patient evaluation of Klick. METHODS: Patients use Klick to book/reschedule appointments, view laboratory results, request medication, access remote nurse-delivered consultations and communicate with clinicians. In October 2022, Klick was evaluated by PLWH through a questionnaire and interviews. RESULTS: Between August 2020 and April 2024, 5859 patients had registered to use Klick; during April 2024 alone, 2509 (43%) used Klick. In October 2022, 1661 PLWH were invited to complete surveys, of whom 362 (22%) responded. These respondents were 95% (340/358) male and 84% (298/354) white, and 63% (227/359) were in the age range 41-60 years. Respondents felt Klick was easy to use (average score 4.3/5), and 92% thought having a clinic-specific app was important/very important. Respondents valued the following app features as important/very important - online booking (93%); viewable results (94%); prescription requests (90%) - and rated their experience of using them highly - 91% for e-booking and 91% for viewable results. A total of 93% said they would recommend Klick to friends and 82% rated Klick as above average/excellent. CONCLUSIONS: PLWH reported high levels of satisfaction using a clinic-specific mHealth app to manage their HIV care and demonstrated sustained active use. Klick was rated easy to use, as helping to meet healthcare needs and as providing a superior experience for some aspects of care. Other HIV clinics or services managing chronic conditions could benefit from the adoption of personalized digital solutions to enhance patient care.

11.
Photosynth Res ; 159(2-3): 153-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37204684

RESUMO

Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 µmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.


Assuntos
Artemisia , Ácido Clorogênico/análogos & derivados , Artemisia/metabolismo , Fluorescência , Ácido Gálico , Clorofila/metabolismo , Paclitaxel
12.
Ann Surg Oncol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133448

RESUMO

BACKGROUND: Guidelines now recommend universal germline genetic testing (GGT) for all pancreatic ductal adenocarcinoma (PDAC) patients. Testing provides information on actionable pathogenic variants and guides management of patients and family. Since traditional genetic counseling (GC) models are time-intensive and GC resources are sparse, new approaches are needed to comply with guidelines without overwhelming available resources. METHODS: A novel protocol was developed for physician-led GGT. Completed test kits were delivered to the GC team, who maintained a prospective database and mailed all orders. If results revealed pathogenic variants for PDAC, patients were offered comprehensive GC, whereas negative and variant of uncertain significance (VUS) test results were reported to patients via brief calls. RESULTS: During protocol implementation between January 2020 and December 2022, 310 (81.5%) patients underwent GGT, with a physician compliance rate of 82.6% and patient compliance rate of 98.7%. Of 310 patients tested, 44 (14.2%) patients had detection of pathogenic variants, while 83 (26.8%) patients had VUS. Pathogenic variants included BRCA1/BRCA2/PALB2 (n = 18, 5.8%), ATM (n = 9, 2.9%), CFTR (n = 4, 1.3%), EPCAM/MLH1/MSH2/MSH6/PMS2 (n = 3, 1.0%), and CDKN2A (n = 2, 0.7%). The GC team successfully contacted all patients with pathogenic variants to discuss results and offer comprehensive GC. CONCLUSION: Our novel protocol facilitated GGT with excellent compliance despite limited GC resources. This framework for GGT allocates GC resources to those patients who would benefit most from GC. As we continue to expand the program, we seek to implement methods to ensure compliance with cascade testing of high-risk family members.

13.
Plant Cell Environ ; 47(5): 1575-1591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38269615

RESUMO

The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.


Assuntos
Flores , Triticum , Flores/fisiologia , Triticum/fisiologia , Perfilação da Expressão Gênica , Grão Comestível/genética , Fertilidade , Transcriptoma/genética
14.
J Exp Bot ; 75(18): 5655-5666, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38829698

RESUMO

Whether green light promotes or represses plant growth is an unresolved but important question, warranting a global meta-analysis of published data. We collected 136 datasets from 48 publications on 17 crop species, and calculated the green light effect for a range of plant traits. For each trait the effect was calculated as the ratio between the trait value attained under a red/blue background light plus green, divided by the value attained under the background light only, both having the same light intensity. Generally, green light strongly increased intrinsic water use efficiency (15%), the shoot-to-root ratio (13%), and decreased stomatal conductance (-15%). Moreover, green light increased fresh weight to a small extent (4%), but not plant dry weight, resulting in a reduced dry matter content (-2%). Hence, green light is similarly effective at increasing biomass as red and blue light. Green light also showed to increase leaf area (7%) and specific leaf area (4%; i.e. thinner leaves). Furthermore, effects of green light were species-dependent, with positive effects on biomass for lettuce and microgreens, and negative effects in basil and tomato. Our data suggest that future research should focus on the role of green light in modulating water loss, its putative role as a shade signal, and the causes for its species-specific effects on crop biomass.


Assuntos
Biomassa , Luz , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Luz Verde , Luz Azul
15.
J Exp Bot ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814918

RESUMO

Medicinal plants (MPs) are valued for their contributions to human health. However, the growing demand for MPs and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled environment cropping systems, such as vertical farms, offer a transformative approach to MP production. By enabling precise control over environment factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in MPs. This review explores the potential of controlled environment systems for enhancing MP production. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of MP. Next, we propose strategies based on plant physiology to manipulate environment conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.

16.
Chemistry ; 30(32): e202400372, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38716721

RESUMO

Perovskite light-emitting diodes (PeLEDs) have gained significant attention due to their promising optoelectronic properties and potential applications in the fields of lighting and display devices. Despite their potential, PeLEDs face challenges related to stability, high turn-on voltage, and low external quantum efficiency (EQE) which has restricted their broad acceptance. Most research efforts have predominantly focused on refining the properties of the perovskite films. However, it is becoming more apparent that interfacial layers and device architecture are crucial for achieving stability and high efficiency, making them indispensable components in PeLED development. This perspective highlights remarkable advancements in PeLED devices, with a primary focus on modifying adjacent layers interfacing with the perovskite film.

17.
Diabet Med ; 41(4): e15246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37873612

RESUMO

The recent clearance by the United States Food and Drug Administration of Tidepool Loop sets an important precedent within the medical device landscape. For the first time, an automated insulin delivery mobile application-based on an algorithm initially designed and developed by users -has been recognised as safe and effective by a regulatory body. The aim of this paper is twofold: firstly, we map out the regulatory pathways and processes that were navigated by Tidepool, the non-profit behind Tidepool Loop, in order to make this landmark moment possible. Secondly, we set out potential approvals processes in the European Union and United Kingdom with a view to examining the challenges to obtaining regulatory clearance for Tidepool Loop in these jurisdictions. In so doing, we highlight the significant differences, not only between the United States and European systems but also between the European Union and Great Britain systems. We conclude by arguing that the complexity encountered when seeking to introduce an innovative solution in different regulatory systems has the potential to act as a disincentive to open source developers from seeking regulatory approvals for such technologies in the future.


Assuntos
Insulina , Estados Unidos , Humanos , União Europeia , Reino Unido , Insulina/uso terapêutico , United States Food and Drug Administration
18.
Chemphyschem ; 25(16): e202400320, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38725280

RESUMO

In pursuit of enhancing white light quality for solid-state lighting (SSL) applications, an attempt has been made to design novel imidazo-bipyridyl ligands as an ancillary ligand to obtain multiple emissions (mimic sunlight) in the Eu-complex. By strategically modifying the phenanthroline core with imidazo-bipyridyl incorporation with 1 or 2-Napthyl groups at the C1 position, the excitation spectral line is successfully shifted from Ultraviolet (UV) to near UV/visible spectrum (where the LED emission occurs). The ligands showed greenish blue emission in solid and solution. Density Functional Theory (DFT) calculations were utilized to understand the energy transfer processes from ligand to Eu ion in the Eu complexes. The analysis revealed that the energy transfer is incomplete, primarily attributed to the proximity of triplet state energy levels to the resonance level of Eu(III) ions as reflected in solvatochromism. These complexes exhibit a unique dual emissive behavior (emitting multi-color) including white light across various solvents. These complexes hold great promise as single-component white light-emissive materials, with potential applications in white light-emitting diodes (WLED). The fabricated white LED showed an excellent color rendering index (CRI ~93 %). Beyond lighting, this distinctive property opens avenues for temperature sensing ([Eu(DBM)31-Naph] shows the highest sensitivity of Sr=10.97 %, and [Eu(DBM)32-Naph] shows the highest sensitivity of Sr=5.5 % at 333 K) and vapoluminescent (acid-base on-off-on luminescence) studies. This research pioneers the development of these complexes as potential single-component materials for superior white LEDs, underlining their multifaceted utility in cutting-edge lighting and sensing technologies.

19.
Nitric Oxide ; 145: 1-7, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309328

RESUMO

Nitric oxide (NO), as a vital cellular signalling molecule in physiological processes, has been found to play an important role in various biological functions. In this study, we rationally designed three NO donors by tethering nitrobenzene derivatives to three fluorescent chromophores. NX-NO was found to release NO and exhibit a high fluorescence turn-on signal ratio upon exposure to LED yellow light. Additionally, it had excellent photo-stability and good inhibitory activity against cancer cell proliferation, and was successfully applied to cell imaging. Moreover, we detected the release of NO and fluorescence response in the blood of a mouse, suggesting its potential therapeutic application in living organisms.


Assuntos
Corantes Fluorescentes , Doadores de Óxido Nítrico , Camundongos , Animais , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico , Fluorescência , Proliferação de Células
20.
Eur J Neurol ; 31(10): e16350, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39145716

RESUMO

BACKGROUND: Functional neurological disorder (FND) is a common cause of neurological disability. Despite recent advances in pathophysiological understanding and treatments, application of this knowledge to clinical practice is variable and limited. OBJECTIVE: Our aim was to provide an expert overview of the state of affairs of FND practice across Europe, focusing on education and training, access to specialized care, reimbursement and disability policies, and academic and patient-led representation of people with FND. METHODS: We conducted a survey across Europe, featuring one expert per country. We asked experts to compare training and services for people with FND to those provided to people with multiple sclerosis (MS). RESULTS: Responses from 25 countries revealed that only five included FND as a mandatory part of neurological training, while teaching about MS was uniformly included. FND was part of final neurology examinations in 3/17 countries, unlike MS that was included in all 17. Seventeen countries reported neurologists with an interest in FND but the estimated mean ratio of FND-interested neurologists to MS neurologists was 1:20. FND coding varied, with psychiatric coding for FND impacting treatment access and disability benefits in the majority of countries. Twenty countries reported services refusing to see FND patients. Eight countries reported an FND special interest group or network; 11 reported patient-led organizations. CONCLUSIONS: FND is largely a marginal topic within European neurology training and there is limited access to specialized care and disability benefits for people with FND across Europe. We discuss how this issue can be addressed at an academic, healthcare and patient organization level.


Assuntos
Política de Saúde , Humanos , Europa (Continente) , Doenças do Sistema Nervoso/terapia , Neurologia/educação , Neurologistas , Esclerose Múltipla/terapia , Acessibilidade aos Serviços de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA