Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39303716

RESUMO

Eukaryotic cell function and survival rely on the use of a mitochondrial H+ electrochemical gradient (Δp), which is composed of an inner mitochondrial membrane (IMM) potential (ΔΨmt) and a pH gradient (ΔpH). So far, ΔΨmt has been assumed to be composed exclusively of H+. Here, using a rainbow of mitochondrial and nuclear genetic models, we have discovered that a Na+ gradient equates with the H+ gradient and controls half of ΔΨmt in coupled-respiring mammalian mitochondria. This parallelism is controlled by the activity of the long-sought Na+-specific Na+/H+ exchanger (mNHE), which we have identified as the P-module of complex I (CI). Deregulation of this mNHE function, without affecting the canonical enzymatic activity or the assembly of CI, occurs in Leber's hereditary optic neuropathy (LHON), which has profound consequences in ΔΨmt and mitochondrial Ca2+ homeostasis and explains the previously unknown molecular pathogenesis of this neurodegenerative disease.

2.
Am J Hum Genet ; 110(1): 166-169, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36565700

RESUMO

The risk of Leber hereditary optic neuropathy (LHON) has largely been extrapolated from disease cohorts, which underestimate the population prevalence of pathogenic primary LHON variants as a result of incomplete disease penetrance. Understanding the true population prevalence of primary LHON variants, alongside the rate of clinical disease, provides a better understanding of disease risk and variant penetrance. We identified pathogenic primary LHON variants in whole-genome sequencing data of a well-characterized population-based control cohort and found that the prevalence is far greater than previously estimated, as it occurs in approximately 1 in 800 individuals. Accordingly, we were able to more accurately estimate population risk and disease penetrance in LHON variant carriers, validating our findings by using other large control datasets. These findings will inform accurate counseling in relation to the risk of vision loss in LHON variant carriers and disease manifestation in their family. This Matters Arising paper is in response to Lopez Sanchez et al. (2021), published in The American Journal of Human Genetics. See also the response by Mackey et al. (2022), published in this issue.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/epidemiologia , Atrofia Óptica Hereditária de Leber/genética , Penetrância , Mutação , DNA Mitocondrial/genética , Fatores de Risco
3.
Am J Hum Genet ; 110(1): 170-176, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36565701

RESUMO

Pedigree analysis showed that a large proportion of Leber hereditary optic neuropathy (LHON) family members who carry a mitochondrial risk variant never lose vision. Mitochondrial haplotype appears to be a major factor influencing the risk of vision loss from LHON. Mitochondrial variants, including m.14484T>C and m.11778G>A, have been added to gene arrays, and thus many patients and research participants are tested for LHON mutations. Analysis of the UK Biobank and Australian cohort studies found more than 1 in 1,000 people in the general population carry either the m.14484T>C or the m.11778G>A LHON variant. None of the subset of carriers examined had visual acuity at 20/200 or worse, suggesting a very low penetrance of LHON. Haplogroup analysis of m.14484T>C carriers showed a high rate of haplogroup U subclades, previously shown to have low penetrance in pedigrees. Penetrance calculations of the general population are lower than pedigree calculations, most likely because of modifier genetic factors. This Matters Arising Response paper addresses the Watson et al. (2022) Matters Arising paper, published concurrently in The American Journal of Human Genetics.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Humanos , Penetrância , DNA Mitocondrial/genética , Atrofia Óptica Hereditária de Leber/genética , Austrália/epidemiologia , Mutação/genética , Linhagem
4.
J Biol Chem ; 300(9): 107728, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39214298

RESUMO

Leber's Hereditary Optic Neuropathy (LHON) is a rare, maternally inherited eye disease, predominantly due to the degeneration of retinal ganglion cells (RGCs). It is associated with a mitochondrial DNA (mtDNA) point mutation. Our previous study identified that the m.15927G > A homoplasmic mutation damaged the highly conserved base pairing (28C-42G) in anticodon stem of tRNAThr, caused deficient t6A modification and significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr, and led to mitochondrial dysfunction. Meanwhile, mechanisms underlying mtDNA mutations regulate intracellular signaling related to mitochondrial and cellular integrity are less explored. Here, we manifested that defective nucleotide modification induced by the m.15927G > A mutation interfered with the expression of nuclear genes involved in cytoplasmic proteins essential for oxidative phosphorylation system (OXPHOS), thereby impacting the assemble and integrity of OXPHOS complexes. As a result of these mitochondrial dysfunctions, there was an imbalance in mitochondrial dynamics, particularly distinguished by an increased occurrence of mitochondrial fission. Excessive fission compromised the autophagy process, including the initiation phase, formation, and maturation of autophagosomes. Both Parkin-mediated mitophagy and receptor-dependent mitophagy were significantly impaired in cybrids haboring the m.15927G > A mutation. These changes facilitated intrinsic apoptosis, as indicated by increased cytochrome c release and elevated levels of apoptosis-associated proteins (e.g., BAK, BAX, cleaved caspase 9, cleaved caspase 3, and cleaved PARP) in the mutant cybrids. This study demonstrates that the m.15927G > A mutation contributes to LHON by dysregulating OXPHOS biogenesis, aberrant quality control, increased autophagy, inhibited mitophagy, and abnormal apoptosis.


Assuntos
Mitocôndrias , Mitofagia , Atrofia Óptica Hereditária de Leber , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Homeostase , Processamento Pós-Transcricional do RNA , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Fosforilação Oxidativa , RNA de Transferência de Treonina/metabolismo , RNA de Transferência de Treonina/genética , Dinâmica Mitocondrial , Apoptose , Mutação Puntual , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478578

RESUMO

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Humanos , Doença de Leigh/genética , Atrofia Óptica Hereditária de Leber/genética , Masculino , Feminino , Adulto , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Criança , Adolescente , NADH Desidrogenase/genética , Mutação , Adulto Jovem , Sequenciamento do Exoma , Pré-Escolar
6.
Exp Cell Res ; 439(1): 114075, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710404

RESUMO

Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.


Assuntos
DNA Mitocondrial , Fibroblastos , Galactose , Mutação , Atrofia Óptica Hereditária de Leber , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Galactose/metabolismo , Mutação/genética , Proliferação de Células/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Células Cultivadas , Glucose/metabolismo , Glucose/farmacologia
7.
Am J Hum Genet ; 108(11): 2159-2170, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34670133

RESUMO

We conducted an updated epidemiological study of Leber hereditary optic neuropathy (LHON) in Australia by using registry data to establish the risk of vision loss among different LHON mutations, sex, age at onset, and mitochondrial haplogroup. We identified 96 genetically unrelated LHON pedigrees, including 56 unpublished pedigrees, and updated 40 previously known pedigrees, comprising 620 affected individuals and 4,948 asymptomatic carriers. The minimum prevalence of vision loss due to LHON in Australia in 2020 was one in 68,403 individuals. Although our data confirm some well-established features of LHON, the overall risk of vision loss among those with a LHON mutation was lower than reported previously-17.5% for males and 5.4% for females. Our findings confirm that women, older adults, and younger children are also at risk. Furthermore, we observed a higher incidence of vision loss in children of affected mothers as well as in children of unaffected women with at least one affected brother. Finally, we confirmed our previous report showing a generational fall in prevalence of vision loss among Australian men. Higher reported rates of vision loss in males with a LHON mutation are not supported by our work and other epidemiologic studies. Accurate knowledge of risk is essential for genetic counseling of individuals with LHON mutations. This knowledge could also inform the detection and validation of potential biomarkers and has implications for clinical trials of treatments aimed at preventing vision loss in LHON because an overestimated risk may lead to an underpowered study or a false claim of efficacy.


Assuntos
Atrofia Óptica Hereditária de Leber/epidemiologia , Transtornos da Visão/genética , Adolescente , Adulto , Idoso , Austrália/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Óptica Hereditária de Leber/genética , Prevalência , Adulto Jovem
8.
Biochem Biophys Res Commun ; 721: 150119, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768545

RESUMO

Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.


Assuntos
Fibroblastos , Mitocôndrias , Mitofagia , Mutação , Atrofia Óptica Hereditária de Leber , Humanos , Mitofagia/genética , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Atrofia Óptica Hereditária de Leber/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fosforilação Oxidativa , Células Cultivadas
9.
Ophthalmology ; 131(4): 422-433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923251

RESUMO

PURPOSE: This study aimed to assess the safety, tolerability, and potential efficacy of topical elamipretide in patients affected with Leber hereditary optic neuropathy (LHON). DESIGN: This phase II, prospective, randomized, vehicle-controlled, single-center clinical trial involved administration of elamipretide 1% topical ophthalmic solution to patients with LHON over a 52-week double-masked treatment period, followed by an open-label extension (OLE) for up to 108 additional weeks of treatment. PARTICIPANTS: Twelve patients with LHON were included in this study. Patients aged 18 to 50 years with decreased vision for at least ≥ 1 year and ≤ 10 years, and a genetically confirmed diagnosis of m.11778G>A LHON were eligible for this trial. METHODS: For the first 52 weeks of the study, patients were randomized to 1 of 3 groups: elamipretide in both eyes or elamipretide in 1 eye (left eye and right eye were considered separate groups) and vehicle in the other eye, followed by an OLE in which both eyes were treated with elamipretide. MAIN OUTCOME MEASURES: The primary outcome measure was assessment of adverse events (AEs) from the administration of topical elamipretide, and the primary efficacy end point was change in best-corrected visual acuity (BCVA). Secondary outcome measures included changes in color vision, visual field mean deviation, and electrophysiological outcomes. RESULTS: Elamipretide was well tolerated with the majority of AEs being mild to moderate and resolving spontaneously. The change from baseline in BCVA in elamipretide-treated eyes was not significantly different from the vehicle eyes at any time point. Six of 12 subjects met the criteria for clinically relevant benefit (CRB). In the post hoc analysis, change from baseline in mean deviation in the central visual field was significantly greater in elamipretide-treated eyes versus the vehicle eyes. Compared with baseline, both treatment groups showed improvement in color discrimination and contrast sensitivity in the OLE. CONCLUSIONS: Elamipretide treatment was generally well tolerated, with no serious AEs reported. Although this study did not meet its primary BCVA efficacy end point, improvements across assessments on visual function during the OLE and the post hoc findings of the Humphrey automated visual field central region were encouraging and require further exploration. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
Oligopeptídeos , Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/diagnóstico , Estudos Prospectivos , Soluções Oftálmicas/uso terapêutico , Acuidade Visual
10.
J Inherit Metab Dis ; 47(1): 145-175, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171948

RESUMO

In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.


Assuntos
Sistemas CRISPR-Cas , Doenças Mitocondriais , Humanos , Animais , Camundongos , Edição de Genes , Terapia Genética , DNA Mitocondrial/genética , Endonucleases/genética , Endonucleases/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia
11.
Doc Ophthalmol ; 148(3): 133-143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451375

RESUMO

PURPOSE: Leber hereditary optic neuropathy (LHON) affects retinal ganglion cells causing severe vision loss. Pattern electroretinogram and photopic negative response (PhNR) of the light-adapted (LA) full-field electroretinogram (ERG) are typically affected in LHON. In the present study, we evaluated dark-adapted (DA) and LA oscillatory potentials (OPs) of the flash ERG in genetically characterized LHON patients to dissociate slow from fast components of the response. METHODS: Seven adult patients (mean age = 28.4 ± 5.6) in whom genetic diagnosis confirmed LHON with mtDNA or nuclear DNAJC30 (arLHON) pathogenic variants were compared to 12 healthy volunteers (mean age = 35.0 ± 12.1). Full-field ERGs were recorded from both eyes. Offline digital filters at 50, 75 and 100 Hz low cutoff frequencies were applied to isolate high-frequency components from the original ERG signals. RESULTS: ERG a-waves and b-waves were comparable between LHON patients and controls, while PhNR was significantly reduced (p = 0.009) in LHON patients compared to controls, as expected. OPs derived from DA signals (75 Hz low cutoff frequency) showed reduced peak amplitude for OP2 (p = 0.019). LA OP differences between LHON and controls became significant (OP2: p = 0.047, OP3: p = 0.039 and OP4: p = 0.013) when the 100 Hz low-cutoff frequency filter was applied. CONCLUSIONS: Reduced OPs in LHON patients may represent disturbed neuronal interactions in the inner retina with preserved photoreceptoral (a-wave) to bipolar cell (b-wave) activation. Reduced DA OP2 and high-cutoff LA OP alterations may be further explored as functional measures to characterize LHON status and progression.


Assuntos
Adaptação à Escuridão , Eletrorretinografia , Atrofia Óptica Hereditária de Leber , Estimulação Luminosa , Células Ganglionares da Retina , Humanos , Eletrorretinografia/métodos , Atrofia Óptica Hereditária de Leber/fisiopatologia , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/diagnóstico , Masculino , Adulto , Feminino , Células Ganglionares da Retina/fisiologia , Adulto Jovem , Adaptação à Escuridão/fisiologia , Pessoa de Meia-Idade , Acuidade Visual/fisiologia
12.
Brain ; 145(5): 1624-1631, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148383

RESUMO

The recent description of biallelic DNAJC30 variants in Leber hereditary optic neuropathy (LHON) and Leigh syndrome challenged the longstanding assumption for LHON to be exclusively maternally inherited and broadened the genetic spectrum of Leigh syndrome, the most frequent paediatric mitochondrial disease. Herein, we characterize 28 so far unreported individuals from 26 families carrying a homozygous DNAJC30 p.Tyr51Cys founder variant, 24 manifesting with LHON, two manifesting with Leigh syndrome, and two remaining asymptomatic. This collection of unreported variant carriers confirms sex-dependent incomplete penetrance of the homozygous variant given a significant male predominance of disease and the report of asymptomatic homozygous variant carriers. The autosomal recessive LHON patients demonstrate an earlier age of disease onset and a higher rate of idebenone-treated and spontaneous recovery of vision in comparison to reported figures for maternally inherited disease. Moreover, the report of two additional patients with childhood- or adult-onset Leigh syndrome further evidences the association of DNAJC30 with Leigh syndrome, previously only reported in a single childhood-onset case.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Adulto , Criança , DNA Mitocondrial/genética , Feminino , Humanos , Doença de Leigh/genética , Masculino , Mutação/genética , Atrofias Ópticas Hereditárias , Atrofia Óptica Hereditária de Leber/genética
13.
Can J Neurol Sci ; 50(5): 738-744, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35892476

RESUMO

BACKGROUND: Leber hereditary optic neuropathy (LHON) is a rare but bilaterally blinding disease. Three characteristic disease-causing point mutations, and other less common mutations, are most often found on the mitochondrially encoded genes of NADH-ubiquinone oxidoreductase core subunits (MT-ND). The purpose of this study is to provide an overview of LHON mutations in Southwestern Ontario and to describe the associated demographic and clinical characteristics. METHODS: A retrospective genetic and clinical chart review was performed from January 2015 to 2020. Patients were identified within a mitochondrial mutation database and included if a mutation was detected on the MT-ND1, -ND4, or -ND6 genes. A clinical chart review was done on all available patients. RESULTS: Forty-five of 63 patients identified had classic disease-causing mutations (6.7% m.3460G>A, 44.4% m.11778G>A, and 48.9% m.14484T>C). Several of the remaining 18 patients had rare mutations previously documented in association with LHON. Of the 14 patients with clinical charts accessible for review, 12 had symptomatic disease, and all but one had bilateral optic neuropathies. Nine patients had classic LHON mutations and 3 had possible novel mutations; 7 were males; 9 had final visual acuity ≤ 20/200 in at least one eye; and 6 of those had ≤20/400 in both eyes. CONCLUSIONS: This study adds to the literature on LHON in Canada, and specifically Southwestern Ontario. The demographic and clinical data regarding LHON in this geographic location, as well as possible novel disease-causing mutations, provide important information to aid clinicians in recognizing cases of LHON that may otherwise be disregarded.


Assuntos
Atrofia Óptica Hereditária de Leber , Masculino , Humanos , Feminino , Atrofia Óptica Hereditária de Leber/epidemiologia , Atrofia Óptica Hereditária de Leber/genética , Ontário/epidemiologia , Estudos Retrospectivos , DNA Mitocondrial/genética , Mutação/genética
14.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069388

RESUMO

Leber's hereditary optic neuropathy (LHON) is a common mitochondrial genetic disease, causing irreversible blindness in young individuals. Current treatments are inadequate, and there is no definitive cure. This study evaluates the effectiveness of delivering wildtype human NADH ubiquinone oxidoreductase subunit 4 (hND4) gene using mito-targeted AAV(MTSAAV) to rescue LHOH mice. We observed a declining pattern in electroretinograms amplitudes as mice aged across all groups (p < 0.001), with significant differences among groups (p = 0.023; Control vs. LHON, p = 0.008; Control vs. Rescue, p = 0.228). Inner retinal thickness and intraocular pressure did not change significantly with age or groups. Compared to LHON mice, those rescued with wildtype hND4 exhibited improved retinal visual acuity (0.29 ± 0.1 cy/deg vs. 0.15 ± 0.1 cy/deg) and increased functional hyperemia response (effect of flicker, p < 0.001, effect of Group, p = 0.004; Interaction Flicker × Group, p < 0.001). Postmortem analysis shows a marked reduction in retinal ganglion cell density in the LHON group compared to the other groups (Effect of Group, p < 0.001, Control vs. LHON, p < 0.001, Control vs. Rescue, p = 0.106). These results suggest that MTSAAV-delivered wildtype hND4 gene rescues, at least in part, visual impairment in an LHON mouse model and has the therapeutic potential to treat this disease.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Hereditária de Leber , Humanos , Camundongos , Animais , Idoso , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Doenças Mitocondriais/terapia , Mitocôndrias/genética , Cegueira/genética , Terapia Genética/métodos , Modelos Animais de Doenças , DNA Mitocondrial/genética
15.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674591

RESUMO

Leber Hereditary Optic Neuropathy (LHON) affects a minority of carriers of causative mitochondrial DNA mutations. We investigated a cohort of patients with LHON, including m.11778G>A, m.3460G>A, m.14484T>C and DNAJC30 c.152A>G variants, and their asymptomatic maternal carrier relatives for additional potential associations with vision loss. We assessed visual acuity, optical coherence tomography (OCT) of the peripapillary retinal nerve fibre layer (RNFL), visually evoked potential including P-100 latency, and full mitochondrial genome sequencing. Comparison was made with a reference standard for OCT; European Descent, Heidelberg Engineering ©; and electrophysiology measurements with in-house normative ranges. RNFL was thinned overall in LHON patients (n = 12); median global RNFL −54 µm in the right eye (RE) and −50 µm in the left eye (LE) versus normal, and was found to be normal overall in asymptomatic carriers at +1 µm RE and −2 µm LE (n = 16). In four asymptomatic carriers there was RNFL thinning found either unilaterally or bilaterally; these cases were associated with isolated delay in P-100 latency (25%), delay and reduced visual acuity (50%), or reduced visual acuity without P-100 latency delay (25%). Optic nerve dysfunction was associated with mitochondrial haplogroup H and HV, versus non-H haplogroups, in the asymptomatic carriers (Fisher's exact test, p = 0.05). Our findings suggest that optic nerve abnormalities may be identified in asymptomatic LHON mitochondrial mutation carriers, which may be associated with optic nerve dysfunction. For asymptomatic carriers these findings were associated with mitochondrial haplogroup H and HV.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Retina , Mutação , Nervo Óptico , Transtornos da Visão
16.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139324

RESUMO

Leber hereditary optic neuropathy (LHON) is a rare disorder causing a sudden painless loss of visual acuity in one or both eyes, affecting young males in their second to third decade of life. The molecular background of the LHON is up to 90%, genetically defined by a point mutation in mitochondrial DNA. Recently, an autosomal recessive form of LHON (LHONAR1, arLHON) has been discovered, caused by biallelic variants in the DNAJC30 gene. This study provides the results of the DNAJC30 gene analysis in a large group of 46 Polish patients diagnosed with LHON, together with the clinical characterization of the disease. The c.152A>G (p.Tyr51Cys) substitution in the DNAJC30 gene was detected in all the patients as homozygote or compound heterozygote. Moreover, we identified one novel variant, c.293A>G, p.(Tyr98Cys), as well as two ultra-rare DNAJC30 variants: c.293A>C, p.(Tyr98Ser), identified to date only in one individual affected with LHONAR1, and c.130_131delTC (p.Ser44ValfsTer8), previously described only in two patients with Leigh syndrome. The patients presented here represent the largest group of subjects with DNAJC30 gene mutations described to date. Based on our data, the autosomal recessive form of LHON caused by DNAJC30 gene mutations is more frequent than the mitochondrial form in Polish patients. The results of our study suggest that Sanger sequencing of the single-exon DNAJC30 gene should be a method of choice applied to identify a molecular background of clinically confirmed LHON in Polish patients. This approach will help to reduce the costs of molecular testing.


Assuntos
Proteínas de Choque Térmico HSP40 , Atrofia Óptica Hereditária de Leber , Humanos , Masculino , DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Polônia , Doenças Raras/genética , Proteínas de Choque Térmico HSP40/genética
17.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628761

RESUMO

Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Fibroblastos
18.
Clin Genet ; 102(4): 339-344, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808913

RESUMO

Leber hereditary optic neuropathy is a mitochondrial disease mainly due to pathologic mutations in mitochondrial genes related to the respiratory complex I of the oxidative phosphorylation system. Genetic, physiological, and environmental factors modulate the penetrance of these mutations. We report two patients suffering from this disease and harboring a m.15950G > A mutation in the mitochondrial DNA-encoded gene for the threonine transfer RNA. We also provide evidences supporting the pathogenicity of this mutation.


Assuntos
Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , RNA de Transferência/genética
19.
BMC Neurol ; 22(1): 487, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522697

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a common form of mitochondrial disease. The typical clinical presentation of LHON is subacute, painless loss of vision resulting from bilateral optic nerve atrophy. Moreover, extra-ocular manifestations such as cardiac conduction abnormalities and neurological manifestations such as multiple sclerosis (MS) like disease or parkinsonism are encountered in some patients. Abnormal findings in spinal cord MR imaging or in the cerebrospinal fluid (CSF) have been observed in previous cases of LHON-associated myelopathy. CASE PRESENTATION: We report a male patient with LHON who developed symptoms of myelopathy including gait unsteadiness, enhanced deep tendon reflexes and sensory loss of the lower extremities. Imaging of the brain and spinal cord, CSF analysis, as well as neurography and electromyography did not disclose any abnormalities. The somatosensory evoked potential (SEP) findings were suggestive of dorsal column dysfunction. CONCLUSIONS: The patient case demonstrates that myelopathy associated with LHON can present without abnormal findings in central nervous system MR imaging or in the CSF, and without evidence suggestive of multiple sclerosis or MS-like disease. The dorsal column seems to be particularly vulnerable to myelopathy changes in LHON. Evoked potential investigations may assist in confirming the diagnosis, when clinical features are in line with myelopathy but findings in CSF analysis and central nervous system imaging are normal.


Assuntos
Esclerose Múltipla , Atrofia Óptica Hereditária de Leber , Doenças da Medula Espinal , Humanos , Masculino , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doenças da Medula Espinal/diagnóstico por imagem , Esclerose Múltipla/complicações , DNA Mitocondrial
20.
Neurol Sci ; 43(9): 5581-5592, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35699829

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a common mitochondrial disease. More than 30 variants in the mitochondrial DNA (mtDNA) have been previously described in LHON. However, the pathogenicity of some variants remains unclear. Herein, we report a 19-year-old boy presenting unique LHON plus dystonia syndrome with the rare m.4136A > G and m.4160 T > C variants and elucidate the molecular pathomechanisms of the m.4160 T > C mutation. METHODS: We performed clinical, molecular genetic analysis, and biochemical investigation in the patient's different tissues and cybrid cell lines. RESULTS: The optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) of the patient showed typical pathological changes-a significant decrease in the 17 thickness of the retinal nerve fiber layer (RNFL) and the ganglion cell complex (GCC). Brain magnetic resonance imaging (MRI) found noteworthy abnormal signals in the basal ganglia region. The genetic analysis revealed that the m.4160 T > C variant was heteroplasmic in the blood (80.2%), urine sediment (90.8%), and oral mucosal (81.7%) samples of the patient. In contrast, the m.4136A > G variant was homoplasmic in all available tissues. Biochemical and bioenergetic investigations showed decreased mitochondrial protein levels and mitochondrial respiration deficiency in cybrid cells harboring these variants. CONCLUSIONS: This research provided more comprehensive data to help gain insight into the pathogenicity of the m.4160 T > C variant and broaden our view on the LHON plus phenotype.


Assuntos
Distonia , Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Humanos , Mitocôndrias/patologia , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA