Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ophthalmol Sci ; 3(2): 100259, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36578904

RESUMO

Purpose: To evaluate the diagnostic accuracy of machine learning (ML) techniques applied to radiomic features extracted from OCT and OCT angiography (OCTA) images for diabetes mellitus (DM), diabetic retinopathy (DR), and referable DR (R-DR) diagnosis. Design: Cross-sectional analysis of a retinal image dataset from a previous prospective OCTA study (ClinicalTrials.govNCT03422965). Participants: Patients with type 1 DM and controls included in the progenitor study. Methods: Radiomic features were extracted from fundus retinographies, OCT, and OCTA images in each study eye. Logistic regression, linear discriminant analysis, support vector classifier (SVC)-linear, SVC-radial basis function, and random forest models were created to evaluate their diagnostic accuracy for DM, DR, and R-DR diagnosis in all image types. Main Outcome Measures: Area under the receiver operating characteristic curve (AUC) mean and standard deviation for each ML model and each individual and combined image types. Results: A dataset of 726 eyes (439 individuals) were included. For DM diagnosis, the greatest AUC was observed for OCT (0.82, 0.03). For DR detection, the greatest AUC was observed for OCTA (0.77, 0.03), especially in the 3 × 3 mm superficial capillary plexus OCTA scan (0.76, 0.04). For R-DR diagnosis, the greatest AUC was observed for OCTA (0.87, 0.12) and the deep capillary plexus OCTA scan (0.86, 0.08). The addition of clinical variables (age, sex, etc.) improved most models AUC for DM, DR and R-DR diagnosis. The performance of the models was similar in unilateral and bilateral eyes image datasets. Conclusions: Radiomics extracted from OCT and OCTA images allow identification of patients with DM, DR, and R-DR using standard ML classifiers. OCT was the best test for DM diagnosis, OCTA for DR and R-DR diagnosis and the addition of clinical variables improved most models. This pioneer study demonstrates that radiomics-based ML techniques applied to OCT and OCTA images may be an option for DR screening in patients with type 1 DM. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

2.
Heliyon ; 9(1): e12753, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597482

RESUMO

Background: Misconceptions about adverse side effects are thought to influence public acceptance of the Coronavirus disease 2019 (COVID-19) vaccines negatively. To address such perceived disadvantages of vaccines, a novel machine learning (ML) approach was designed to generate personalized predictions of the most common adverse side effects following injection of six different COVID-19 vaccines based on personal and health-related characteristics. Methods: Prospective data of adverse side effects following COVID-19 vaccination in 19943 participants from Iran and Switzerland was utilized. Six vaccines were studied: The AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2, and the mRNA-1273 vaccine. The eight side effects were considered as the model output: fever, fatigue, headache, nausea, chills, joint pain, muscle pain, and injection site reactions. The total input parameters for the first and second dose predictions were 46 and 54 features, respectively, including age, gender, lifestyle variables, and medical history. The performances of multiple ML models were compared using Area Under the Receiver Operating Characteristic Curve (ROC-AUC). Results: The total number of people receiving the first dose of the AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2, and mRNA-1273 were 6022, 7290, 5279, 802, 277, and 273, respectively. For the second dose, the numbers were 2851, 5587, 3841, 599, 242 and 228. The Logistic Regression model for predicting different side effects of the first dose achieved ROC-AUCs of 0.620-0.686, 0.685-0.716, 0.632-0.727, 0.527-0.598, 0.548-0.655, 0.545-0.712 for the AZD1222, Sputnik V, BBIBP-CorV, COVAXIN, BNT162b2 and mRNA-1273 vaccines, respectively. The second dose models yielded ROC-AUCs of 0.777-0.867, 0.795-0.848, 0.857-0.906, 0.788-0.875, 0.683-0.850, and 0.486-0.680, respectively. Conclusions: Using a large cohort of recipients vaccinated with COVID-19 vaccines, a novel and personalized strategy was established to predict the occurrence of the most common adverse side effects with high accuracy. This technique can serve as a tool to inform COVID-19 vaccine selection and generate personalized factsheets to curb concerns about adverse side effects.

3.
Clin Transl Radiat Oncol ; 39: 100595, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36880063

RESUMO

Background and purpose: A popular Normal tissue Complication (NTCP) model deployed to predict radiotherapy (RT) toxicity is the Lyman-Burman Kutcher (LKB) model of tissue complication. Despite the LKB model's popularity, it can suffer from numerical instability and considers only the generalized mean dose (GMD) to an organ. Machine learning (ML) algorithms can potentially offer superior predictive power of the LKB model, and with fewer drawbacks. Here we examine the numerical characteristics and predictive power of the LKB model and compare these with those of ML. Materials and methods: Both an LKB model and ML models were used to predict G2 Xerostomia on patients following RT for head and neck cancer, using the dose volume histogram of parotid glands as the input feature. Model speed, convergence characteristics and predictive power was evaluated on an independent training set. Results: We found that only global optimization algorithms could guarantee a convergent and predictive LKB model. At the same time our results showed that ML models remained unconditionally convergent and predictive, while staying robust to gradient descent optimization. ML models outperform LKB in Brier score and accuracy but compare to LKB in ROC-AUC. Conclusion: We have demonstrated that ML models can quantify NTCP better than or as well as LKB models, even for a toxicity that the LKB model is particularly well suited to predict. ML models can offer this performance while offering fundamental advantages in model convergence, speed, and flexibility, and so could offer an alternative to the LKB model that could potentially be used in clinical RT planning decisions.

4.
Eur J Radiol Open ; 10: 100459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36561422

RESUMO

Purpose: To assess the potential of radiomic features in comparison to dual-energy CT (DECT) material decomposition to objectively stratify abdominal lymph node metastases. Materials and methods: In this retrospective study, we included 81 patients (m, 57; median age, 65 (interquartile range, 58.7-73.3) years) with either lymph node metastases (n = 36) or benign lymph nodes (n = 45) who underwent contrast-enhanced abdominal DECT between 06/2015-07/2019. All malignant lymph nodes were classified as unequivocal according to RECIST criteria and confirmed by histopathology, PET-CT or follow-up imaging. Three investigators segmented lymph nodes to extract DECT and radiomics features. Intra-class correlation analysis was applied to stratify a robust feature subset with further feature reduction by Pearson correlation analysis and LASSO. Independent training and testing datasets were applied on four different machine learning models. We calculated the performance metrics and permutation-based feature importance values to increase interpretability of the models. DeLong test was used to compare the top performing models. Results: Distance matrices and t-SNE plots revealed clearer clusters using a combination of DECT and radiomic features compared to DECT features only. Feature reduction by LASSO excluded all DECT features of the combined feature cohort. The top performing radiomic features model (AUC = 1.000; F1 = 1.000; precision = 1.000; Random Forest) was significantly superior to the top performing DECT features model (AUC = 0.942; F1 = 0.762; precision = 0.800; Stochastic Gradient Boosting) (DeLong < 0.001). Conclusion: Imaging biomarkers have the potential to stratify unequivocal lymph node metastases. Radiomics models were superior to DECT material decomposition and may serve as a support tool to facilitate stratification of abdominal lymph node metastases.

5.
Clin Transl Radiat Oncol ; 39: 100590, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36935854

RESUMO

Head and neck radiotherapy induces important toxicity, and its efficacy and tolerance vary widely across patients. Advancements in radiotherapy delivery techniques, along with the increased quality and frequency of image guidance, offer a unique opportunity to individualize radiotherapy based on imaging biomarkers, with the aim of improving radiation efficacy while reducing its toxicity. Various artificial intelligence models integrating clinical data and radiomics have shown encouraging results for toxicity and cancer control outcomes prediction in head and neck cancer radiotherapy. Clinical implementation of these models could lead to individualized risk-based therapeutic decision making, but the reliability of the current studies is limited. Understanding, validating and expanding these models to larger multi-institutional data sets and testing them in the context of clinical trials is needed to ensure safe clinical implementation. This review summarizes the current state of the art of machine learning models for prediction of head and neck cancer radiotherapy outcomes.

6.
Gastro Hep Adv ; 1(2): 194-209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174369

RESUMO

BACKGROUND AND AIMS: The SARS-CoV-2 pandemic has overwhelmed the treatment capacity of the health care systems during the highest viral diffusion rate. Patients reaching the emergency department had to be either hospitalized (inpatients) or discharged (outpatients). Still, the decision was taken based on the individual assessment of the actual clinical condition, without specific biomarkers to predict future improvement or deterioration, and discharged patients often returned to the hospital for aggravation of their condition. Here, we have developed a new combined approach of omics to identify factors that could distinguish coronavirus disease 19 (COVID-19) inpatients from outpatients. METHODS: Saliva and blood samples were collected over the course of two observational cohort studies. By using machine learning approaches, we compared salivary metabolome of 50 COVID-19 patients with that of 270 healthy individuals having previously been exposed or not to SARS-CoV-2. We then correlated the salivary metabolites that allowed separating COVID-19 inpatients from outpatients with serum biomarkers and salivary microbiota taxa differentially represented in the two groups of patients. RESULTS: We identified nine salivary metabolites that allowed assessing the need of hospitalization. When combined with serum biomarkers, just two salivary metabolites (myo-inositol and 2-pyrrolidineacetic acid) and one serum protein, chitinase 3-like-1 (CHI3L1), were sufficient to separate inpatients from outpatients completely and correlated with modulated microbiota taxa. In particular, we found Corynebacterium 1 to be overrepresented in inpatients, whereas Actinomycetaceae F0332, Candidatus Saccharimonas, and Haemophilus were all underrepresented in the hospitalized population. CONCLUSION: This is a proof of concept that a combined omic analysis can be used to stratify patients independently from COVID-19.

7.
JHEP Rep ; 4(10): 100560, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36119721

RESUMO

Background & Aims: Liver disease carries significant healthcare burden and frequently requires a combination of blood tests, imaging, and invasive liver biopsy to diagnose. Distinguishing between inflammatory liver diseases, which may have similar clinical presentations, is particularly challenging. In this study, we implemented a machine learning pipeline for the identification of diagnostic gene expression biomarkers across several alcohol-associated and non-alcohol-associated liver diseases, using either liver tissue or blood-based samples. Methods: We collected peripheral blood mononuclear cells (PBMCs) and liver tissue samples from participants with alcohol-associated hepatitis (AH), alcohol-associated cirrhosis (AC), non-alcohol-associated fatty liver disease, chronic HCV infection, and healthy controls. We performed RNA sequencing (RNA-seq) on 137 PBMC samples and 67 liver tissue samples. Using gene expression data, we implemented a machine learning feature selection and classification pipeline to identify diagnostic biomarkers which distinguish between the liver disease groups. The liver tissue results were validated using a public independent RNA-seq dataset. The biomarkers were computationally validated for biological relevance using pathway analysis tools. Results: Utilizing liver tissue RNA-seq data, we distinguished between AH, AC, and healthy conditions with overall accuracies of 90% in our dataset, and 82% in the independent dataset, with 33 genes. Distinguishing 4 liver conditions and healthy controls yielded 91% overall accuracy in our liver tissue dataset with 39 genes, and 75% overall accuracy in our PBMC dataset with 75 genes. Conclusions: Our machine learning pipeline was effective at identifying a small set of diagnostic gene biomarkers and classifying several liver diseases using RNA-seq data from liver tissue and PBMCs. The methodologies implemented and genes identified in this study may facilitate future efforts toward a liquid biopsy diagnostic for liver diseases. Lay summary: Distinguishing between inflammatory liver diseases without multiple tests can be challenging due to their clinically similar characteristics. To lay the groundwork for the development of a non-invasive blood-based diagnostic across a range of liver diseases, we compared samples from participants with alcohol-associated hepatitis, alcohol-associated cirrhosis, chronic hepatitis C infection, and non-alcohol-associated fatty liver disease. We used a machine learning computational approach to demonstrate that gene expression data generated from either liver tissue or blood samples can be used to discover a small set of gene biomarkers for effective diagnosis of these liver diseases.

8.
One Health ; 13: 100358, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934797

RESUMO

BACKGROUND: Mapping the spatial distribution of the dengue vector Aedes (Ae.) aegypti and accurately predicting its abundance are crucial for designing effective vector control strategies and early warning tools for dengue epidemic prevention. Socio-ecological and landscape factors influence Ae. aegypti abundance. Therefore, we aimed to map the spatial distribution of female adult Ae. aegypti and predict its abundance in northeastern Thailand based on socioeconomic, climate change, and dengue knowledge, attitude and practices (KAP) and/or landscape factors using machine learning (ML)-based system. METHOD: A total of 1066 females adult Ae. aegypti were collected from four villages in northeastern Thailand during January-December 2019. Information on household socioeconomics, KAP regarding climate change and dengue, and satellite-based landscape data were also acquired. Geographic information systems (GIS) were used to map the household-based spatial distribution of female adult Ae. aegypti abundance (high/low). Five popular supervised learning models, logistic regression (LR), support vector machine (SVM), k-nearest neighbor (kNN), artificial neural network (ANN), and random forest (RF), were used to predict females adult Ae. aegypti abundance (high/low). The predictive accuracy of each modeling technique was calculated and evaluated. Important variables for predicting female adult Ae. aegypti abundance were also identified using the best-fitted model. RESULTS: Urban areas had higher abundance of female adult Ae. aegypti compared to rural areas. Overall, study respondents in both urban and rural areas had inadequate KAP regarding climate change and dengue. The average landscape factors per household in urban areas were rice crop (47.4%), natural tree cover (17.8%), built-up area (13.2%), permanent wetlands (21.2%), and rubber plantation (0%), and the corresponding figures for rural areas were 12.1, 2.0, 38.7, 40.1 and 0.1% respectively. Among all assessed models, RF showed the best prediction performance (socioeconomics: area under curve, AUC = 0.93, classification accuracy, CA = 0.86, F1 score = 0.85; KAP: AUC = 0.95, CA = 0.92, F1 = 0.90; landscape: AUC = 0.96, CA = 0.89, F1 = 0.87) for female adult Ae. aegypti abundance. The combined influences of all factors further improved the predictive accuracy in RF model (socioeconomics + KAP + landscape: AUC = 0.99, CA = 0.96 and F1 = 0.95). Dengue prevention practices were shown to be the most important predictor in the RF model for female adult Ae. aegypti abundance in northeastern Thailand. CONCLUSION: The RF model is more suitable for the prediction of Ae. aegypti abundance in northeastern Thailand. Our study exemplifies that the application of GIS and machine learning systems has significant potential for understanding the spatial distribution of dengue vectors and predicting its abundance. The study findings might help optimize vector control strategies, future mosquito suppression, prediction and control strategies of epidemic arboviral diseases (dengue, chikungunya, and Zika). Such strategies can be incorporated into One Health approaches applying transdisciplinary approaches considering human-vector and agro-environmental interrelationships.

9.
Clin Transl Radiat Oncol ; 27: 15-23, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33392398

RESUMO

PURPOSE: Margin-negative (R0) resection is the only potentially curative treatment for patients with pancreatic ductal adenocarcinoma (PDAC). Pre-operative multi-agent chemotherapy alone (MAC) or MAC followed by pre-operative radiotherapy (MAC + RT) may be used to improve resectability and potentially survival. However, the optimal pre-operative regimen is unknown. METHODS: Patients with non-metastatic PDAC from 2006 to 2016 who received pre-operative MAC or MAC + RT before oncologic resection were identified in the National Cancer Database. Univariable and multivariable (MVA) associates with R0 resection were identified with logistic regression, and survival was analyzed secondarily with the Kaplan Meier method and Cox regression analysis. RESULTS: 4,599 patients were identified (MAC: 3,109, MAC + RT: 1,490). Compared to those receiving MAC, patients receiving MAC + RT were more likely to have cT3-4 disease (76% vs 64%, p < 0.001) and cN + disease (33% vs 29%, p = 0.010), but were less likely to have ypT3-4 disease (59% vs 74%, p < 0.001) and ypN + disease (32% vs 55%, p < 0.001) and more likely to have a pathologic complete response (5% vs 2%, p < 0.001) and R0 resection (86% vs 80%, p < 0.001). On MVA, MAC + RT (OR 1.58, 95% CI 1.33-1.89, p < 0.001), evaluation at an academic center (OR 1.33, 95% CI 1.14-1.56, p < 0.001), and female sex (OR 1.43, 95% CI 1.23-1.67, p < 0.001) were associated with higher odds of R0 resection, while cT3-4 disease (OR 0.81, 95% CI 0.68-0.96, p = 0.013) was associated with lower odds of R0 resection. CONCLUSION: For patients with localized PDAC who receive pre-operative MAC, the addition of pre-operative RT was associated with improved rates of R0 resection and pathologic response.

10.
EClinicalMedicine ; 42: 101212, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34873584

RESUMO

BACKGROUND: Identifying and testing individuals likely to have SARS-CoV-2 is critical for infection control, including post-vaccination. Vaccination is a major public health strategy to reduce SARS-CoV-2 infection globally. Some individuals experience systemic symptoms post-vaccination, which overlap with COVID-19 symptoms. This study compared early post-vaccination symptoms in individuals who subsequently tested positive or negative for SARS-CoV-2, using data from the COVID Symptom Study (CSS) app. METHODS: We conducted a prospective observational study in 1,072,313 UK CSS participants who were asymptomatic when vaccinated with Pfizer-BioNTech mRNA vaccine (BNT162b2) or Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) between 8 December 2020 and 17 May 2021, who subsequently reported symptoms within seven days (N=362,770) (other than local symptoms at injection site) and were tested for SARS-CoV-2 (N=14,842), aiming to differentiate vaccination side-effects per se from superimposed SARS-CoV-2 infection. The post-vaccination symptoms and SARS-CoV-2 test results were contemporaneously logged by participants. Demographic and clinical information (including comorbidities) were recorded. Symptom profiles in individuals testing positive were compared with a 1:1 matched population testing negative, including using machine learning and multiple models considering UK testing criteria. FINDINGS: Differentiating post-vaccination side-effects alone from early COVID-19 was challenging, with a sensitivity in identification of individuals testing positive of 0.6 at best. Most of these individuals did not have fever, persistent cough, or anosmia/dysosmia, requisite symptoms for accessing UK testing; and many only had systemic symptoms commonly seen post-vaccination in individuals negative for SARS-CoV-2 (headache, myalgia, and fatigue). INTERPRETATION: Post-vaccination symptoms per se cannot be differentiated from COVID-19 with clinical robustness, either using symptom profiles or machine-derived models. Individuals presenting with systemic symptoms post-vaccination should be tested for SARS-CoV-2 or quarantining, to prevent community spread. FUNDING: UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Chronic Disease Research Foundation, Zoe Limited.

11.
Comput Struct Biotechnol J ; 19: 5008-5018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589181

RESUMO

Knowing metastasis is the primary cause of cancer-related deaths, incentivized research directed towards unraveling the complex cellular processes that drive the metastasis. Advancement in technology and specifically the advent of high-throughput sequencing provides knowledge of such processes. This knowledge led to the development of therapeutic and clinical applications, and is now being used to predict the onset of metastasis to improve diagnostics and disease therapies. In this regard, predicting metastasis onset has also been explored using artificial intelligence approaches that are machine learning, and more recently, deep learning-based. This review summarizes the different machine learning and deep learning-based metastasis prediction methods developed to date. We also detail the different types of molecular data used to build the models and the critical signatures derived from the different methods. We further highlight the challenges associated with using machine learning and deep learning methods, and provide suggestions to improve the predictive performance of such methods.

12.
Comput Struct Biotechnol J ; 19: 2833-2850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025952

RESUMO

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

13.
World Neurosurg X ; 2: 100012, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31218287

RESUMO

BACKGROUND: Machine learning (ML) is the application of specialized algorithms to datasets for trend delineation, categorization, or prediction. ML techniques have been traditionally applied to large, highly dimensional databases. Gliomas are a heterogeneous group of primary brain tumors, traditionally graded using histopathologic features. Recently, the World Health Organization proposed a novel grading system for gliomas incorporating molecular characteristics. We aimed to study whether ML could achieve accurate prognostication of 2-year mortality in a small, highly dimensional database of patients with glioma. METHODS: We applied 3 ML techniques (artificial neural networks [ANNs], decision trees [DTs], and support vector machines [SVMs]) and classical logistic regression (LR) to a dataset consisting of 76 patients with glioma of all grades. We compared the effect of applying the algorithms to the raw database versus a database where only statistically significant features were included into the algorithmic inputs (feature selection). RESULTS: Raw input consisted of 21 variables and achieved performance of accuracy/area (C.I.) under the curve of 70.7%/0.70 (49.9-88.5) for ANN, 68%/0.72 (53.4-90.4) for SVM, 66.7%/0.64 (43.6-85.0) for LR, and 65%/0.70 (51.6-89.5) for DT. Feature selected input consisted of 14 variables and achieved performance of 73.4%/0.75 (62.9-87.9) for ANN, 73.3%/0.74 (62.1-87.4) for SVM, 69.3%/0.73 (60.0-85.8) for LR, and 65.2%/0.63 (49.1-76.9) for DT. CONCLUSIONS: We demonstrate that these techniques can also be applied to small, highly dimensional datasets. Our ML techniques achieved reasonable performance compared with similar studies in the literature. Although local databases may be small versus larger cancer repositories, we demonstrate that ML techniques can still be applied to their analysis; however, traditional statistical methods are of similar benefit.

14.
J Clin Exp Hepatol ; 3(4): 281-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25755515

RESUMO

BACKGROUND: Interleukin-1ß (IL-1ß) is an important member of the family of the proinflammatory cytokines that modulate outcome of hepatitis B virus (HBV) infection. OBJECTIVES: This study was designed to investigate the relationship between the polymorphic genotypes of the interleukin-1ß (IL-1ß) promoter region and the interleukin-1 receptor antagonist gene (IL-1RN) and disease outcome in HBV-infected individuals. METHODS: DNA was extracted from 395 study subjects including HBV carriers with varying clinical presentations, as well as healthy controls and spontaneously recovered cases (SRC). Polymorphisms in IL-1ß (at position -511) and IL-1RN (variable nucleotide tandem repeats, VNTR) were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR based assay respectively. RESULTS: Among the study subjects, different IL-1ß (at position -511) (CC, CT and TT) and IL-1RN (1/1, 1/2, 2/2 and 1/3) polymorphic genotypes were found at variable proportions. Logistic regression analysis revealed, no notable difference at the level of IL-1ß promoter (P = 0.244; OR = 0.78; 95% CI = 0.52-1.18) or IL-1RN genotype polymorphism (P = 0.840; OR = 1.03; 95% CI = 0.78-1.36) among the HBV carriers and controls or SRC cases. Pairwise proportion testing showed, IL-1ß -511 genotype CC was significantly higher among asymptomatic carriers (ASC) in comparison with liver cirrhosis (LC) patients (P value = 0.028) and healthy control group (P-value = 0.036). IL-1RN genotype 2/2 was considerably higher in LC group than SRC as well as control group. Combinations of IL-1ß (-511) and IL-1RN polymorphisms were associated with disease progression, such as CC-1/2 with ASC and TT-2/2 with LC. CONCLUSION: IL-1ß polymorphisms are found to be associated with disease severity. Different polymorphic combinations are associated with degree of disease severity. Overall this is the first report from Eastern India, which shows association of IL-1ß polymorphisms with HBV-related hepatic complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA