Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 154(1): 209-221.e6, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513838

RESUMO

BACKGROUND: Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE: We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS: LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 µg/m3, 24-hour equivalent) or moderate (100 µg/m3, 24-hour equivalent) concentrations of LFS PM (10 µm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS: Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS: We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.


Assuntos
Asma , Camundongos Endogâmicos BALB C , Material Particulado , Fumaça , Animais , Feminino , Fumaça/efeitos adversos , Asma/fisiopatologia , Asma/etiologia , Masculino , Camundongos , Material Particulado/efeitos adversos , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/fisiopatologia , Incêndios Florestais , Modelos Animais de Doenças
2.
Ecol Appl ; 34(4): e2973, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616644

RESUMO

The combined effects of Indigenous fire stewardship and lightning ignitions shaped historical fire regimes, landscape patterns, and available resources in many ecosystems globally. The resulting fire regimes created complex fire-vegetation dynamics that were further influenced by biophysical setting, disturbance history, and climate. While there is increasing recognition of Indigenous fire stewardship among western scientists and managers, the extent and purpose of cultural burning is generally absent from the landscape-fire modeling literature and our understanding of ecosystem processes and development. In collaboration with the Karuk Tribe Department of Natural Resources, we developed a transdisciplinary Monte Carlo simulation model of cultural ignition location, frequency, and timing to simulate spatially explicit cultural ignitions across a 264,399-ha landscape within Karuk Aboriginal Territory in northern California. Estimates of cultural ignition parameters were developed with Tribal members and knowledge holders using existing interviews, historical maps, ethnographies, recent ecological studies, contemporary maps, and generational knowledge. Spatial and temporal attributes of cultural burning were explicitly tied to the ecology of specific cultural resources, fuel receptivity, seasonal movement patterns, and spiritual practices. Prior to colonization, cultural burning practices were extensive across the study landscape with an estimated 6972 annual ignitions, averaging approximately 6.5 ignitions per Indigenous fire steward per year. The ignition characteristics we document align closely with data on historical fire regimes and vegetation but differ substantially from the location and timing of contemporary ignitions. This work demonstrates the importance of cultural burning for developing and maintaining the ecosystems present at the time of colonization and underscores the need to work collaboratively with Indigenous communities to restore ecocultural processes in these systems.


Assuntos
Incêndios , California , Conservação dos Recursos Naturais , Cultura , Ecossistema
3.
Respirology ; 28(11): 1023-1035, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37712340

RESUMO

Landscape fires are increasing in frequency and severity globally. In Australia, extreme bushfires cause a large and increasing health and socioeconomic burden for communities and governments. People with asthma are particularly vulnerable to the effects of landscape fire smoke (LFS) exposure. Here, we present a position statement from the Thoracic Society of Australia and New Zealand. Within this statement we provide a review of the impact of LFS on adults and children with asthma, highlighting the greater impact of LFS on vulnerable groups, particularly older people, pregnant women and Aboriginal and Torres Strait Islander peoples. We also highlight the development of asthma on the background of risk factors (smoking, occupation and atopy). Within this document we present advice for asthma management, smoke mitigation strategies and access to air quality information, that should be implemented during periods of LFS. We promote clinician awareness, and the implementation of public health messaging and preparation, especially for people with asthma.


Assuntos
Asma , Fumaça , Incêndios Florestais , Adulto , Idoso , Criança , Feminino , Humanos , Gravidez , Asma/epidemiologia , Asma/etiologia , Asma/terapia , Austrália/epidemiologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Nova Zelândia/epidemiologia , Fumaça/efeitos adversos , Efeitos Psicossociais da Doença , Saúde Pública
4.
BMC Pregnancy Childbirth ; 22(1): 919, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482359

RESUMO

BACKGROUND: Little is known about the physical and mental health impact of exposure to landscape fire smoke in women with asthma. This study examined the health impacts and information-seeking behaviours of women with asthma exposed to the 2019/2020 Australian fires, including women who were pregnant. METHODS: Women with asthma were recruited from the Breathing for Life Trial in Australia. Following the landscape fire exposure period, self-reported data were collected regarding symptoms (respiratory and non-respiratory), asthma exacerbations, wellbeing, quality of life, information seeking, and landscape fire smoke exposure mitigation strategies. Participants' primary residential location and fixed site monitoring was used to geolocate and estimate exposure to landscape fire-related fine Particulate Matter (PM2.5). RESULTS: The survey was completed by 81 pregnant, 70 breastfeeding and 232 non-pregnant and non-breastfeeding women with asthma. Participants had a median daily average of 17 µg/m3 PM2.5 and 105 µg/m3 peak PM2.5 exposure over the fire period (October 2019 to February 2020). Over 80% of participants reported non-respiratory and respiratory symptoms during the fire period and 41% reported persistent symptoms. Over 82% reported asthma symptoms and exacerbations of asthma during the fire period. Half the participants sought advice from a health professional for their symptoms. Most (97%) kept windows/doors shut when inside and 94% stayed indoors to minimise exposure to landscape fire smoke. Over two in five (43%) participants reported that their capacity to participate in usual activities was reduced due to prolonged smoke exposure during the fire period. Participants reported greater anxiety during the fire period than after the fire period (mean (SD) = 53(13) versus 39 (13); p < 0.001). Two in five (38%) pregnant participants reported having concerns about the effect of fire events on their pregnancy. CONCLUSION: Prolonged landscape fire smoke exposure during the 2019/2020 Australian fire period had a significant impact on the health and wellbeing of women with asthma, including pregnant women with asthma. This was despite most women taking actions to minimise exposure to landscape fire smoke. Effective and consistent public health messaging is needed during landscape fire events to guard the health of women with asthma.


Assuntos
Qualidade de Vida , Gravidez , Feminino , Humanos , Austrália/epidemiologia
5.
BMC Public Health ; 22(1): 2274, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471306

RESUMO

BACKGROUND: Smoke from wildfires is a growing public health risk due to the enormous amount of smoke-related pollution that is produced and can travel thousands of kilometers from its source. While many studies have documented the physical health harms of wildfire smoke, less is known about the effects on mental health and well-being. Understanding the effects of wildfire smoke on mental health and well-being is crucial as the world enters a time in which wildfire smoke events become more frequent and severe. We conducted a scoping review of the existing information on wildfire smoke's impact on mental health and well-being and developed a model for understanding the pathways in which wildfire smoke may contribute to mental health distress. METHODS: We conducted searches using PubMed, Medline, Embase, Google, Scopus, and ProQuest for 1990-2022. These searches yielded 200 articles. Sixteen publications met inclusion criteria following screening and eligibility assessment. Three more publications from the bibliographies of these articles were included for a total of 19 publications. RESULTS: Our review suggests that exposure to wildfire smoke may have mental health impacts, particularly in episodes of chronic and persistent smoke events, but the evidence is inconsistent and limited. Qualitative studies disclose a wider range of impacts across multiple mental health and well-being domains. The potential pathways connecting wildfire smoke with mental health and well-being operate at multiple interacting levels including individual, social and community networks, living and working conditions, and ecological levels. CONCLUSIONS: Priorities for future research include: 1) applying more rigorous methods; 2) differentiating between mental illness and emotional well-being; 3) studying chronic, persistent or repeated smoke events; 4) identifying the contextual factors that set the stage for mental health and well-being effects, and 5) identifying the causal processes that link wildfire smoke to mental health and well-being effects. The pathways model can serve as a basis for further research and knowledge synthesis on this topic. Also, it helps public health, community mental health, and emergency management practitioners mitigate the mental health and well-being harms of wildfire smoke.


Assuntos
Poluição por Fumaça de Tabaco , Incêndios Florestais , Humanos , Saúde Mental , Exposição Ambiental/efeitos adversos , Saúde Pública
6.
Ecotoxicol Environ Saf ; 240: 113673, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636233

RESUMO

BACKGROUND: Exposure to landscape fire smoke (LFS) is linked to child mortality and birthweight. It is unknown whether gestational exposure to LFS affects child survival rate. We aimed to link under-five death (U5D) to gestational LFS exposure by performing a causal mediation analysis based on birthweight. METHOD: We conducted a sibling-matched case-control study of children under 5 years of age who were affiliated with the same mothers from Demographic and Health Surveys in 54 low- and middle-income countries, during the period from 2000 to 2014. LFS exposure was quantified as the surface concentration of fine particulate matter (PM2.5) attributable to landscape fires, estimated using a global atmospheric model. Three pairwise associations between fire-sourced PM2.5, birthweight, and U5D were assessed using fixed-effects regressions. We used a bootstrap-based mediation test of regression coefficients to examine whether the LFS-birthweight-U5D pathway was statistically significant. We also conducted three pairwise exposure-response functions using nonlinear models and used them to estimate the pathway-specific disease burden from 2000 to 2014. RESULTS: After adjustments for multiple confounders, each 1-µg/m3 increase in gestational exposure to fire-sourced PM2.5 was associated with a reduction of 2.179 (95% confidence interval [CI]: -3.777, -0.580) g in birthweight. Each 1-g birthweight reduction was associated with a 0.072% (95% CI: 0.065%, 0.078%) increase in U5D. Furthermore, each increase in exposure to fire-sourced PM2.5 was associated with a 2.853% (95% CI: 0.835%, 4.911%) increase in U5D; 7.294% (95% CI: 0.710%, 24.254%) of the linkage was explained by LFS-attributable birthweight reduction. Based on the estimated exposure-response functions, from 2000 to 2014, global exposure to fire-sourced PM2.5 contributed a mean birthweight reduction of 10.30 (95% CI: 2.93, 19.47) g, contributing to 60,350 (18,111, 106,619) premature U5Ds annually. CONCLUSION: In low- and middle-income countries, gestational exposure to LFS can increase mortality during infancy; appropriate interventions are needed to promote health in childhood.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Peso ao Nascer , Estudos de Casos e Controles , Criança , Pré-Escolar , Países em Desenvolvimento , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Promoção da Saúde , Humanos , Análise de Mediação , Material Particulado/análise , Medição de Risco
7.
J Environ Manage ; 304: 114255, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942550

RESUMO

Wildfire sizes and proportions burned with high severity effects are increasing in seasonally dry forests, especially in the western USA. A critical need in efforts to restore or maintain these forest ecosystems is to determine where fuel build-up caused by fire exclusion reaches thresholds that compromise resilience to fire. Empirical studies identifying drivers of fire severity patterns in actual wildfires can be confounded by co-variation of vegetation and topography and the stochastic effects of weather and rarely consider long-term changes in fuel caused by fire exclusion. To overcome these limitations, we used a spatially explicit fire model (FlamMap) to compare potential fire behavior by topographic position in Lassen Volcanic National Park (LAVO), California, a large (43,000 ha), mountainous, unlogged landscape with extensive historical and contemporary fuels data. Fuel loads were uniformly distributed and incrementally increased across the landscape, meaning variation in fire behavior within each simulation was due to topography and among simulations, to fuels. We analyzed changes in fire line intensity (FLI) and crown fire potential as surface and canopy fuels increased from historical to contemporary levels and with percentile and actual wildfire weather conditions. Sensitivity to the influence of fuel build-up on fire behavior varied by topographic position. Steep slopes and ridges were most sensitive. At lower surface fuel loads, under pre-exclusion and contemporary canopy conditions, fire behavior was comparable and remained surface-type. As fuels increased, FLI and passive crown fire increased on steep slopes and ridgetops but remained largely unchanged on gentle slopes. Topographic variability in fire behavior was greatest with intermediate fuels. At higher surface fuel loads, under contemporary canopy fuels, passive crown fire dominated all topographic positions. With LAVO's current surface fuels, the area with potential for passive crown fire during actual fire weather increased from 6% pre-exclusion to 34% due to canopy fuel build-up. For topographically diverse landscapes, the results highlight where contemporary fire characteristics are most likely to deviate from historical patterns and may help managers prioritize locations for prescribed burning and managed wildfire to increase fire resilience in fuel rich landscapes.


Assuntos
Ecossistema , Incêndios Florestais , California , Florestas , Tempo (Meteorologia)
8.
Sensors (Basel) ; 20(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322056

RESUMO

Extreme fires in the peatlands of South East (SE) Asia are arguably the world's greatest biomass burning events, resulting in some of the worst ambient air pollution ever recorded (PM10 > 3000 µg·m-3). The worst of these fires coincide with El Niño related droughts, and include huge areas of smouldering combustion that can persist for months. However, areas of flaming surface vegetation combustion atop peat are also seen, and we show that the largest of these latter fires appear to be the most radiant and intensely smoke-emitting areas of combustion present in such extreme fire episodes. Fire emissions inventories and early warning of the air quality impacts of landscape fire are increasingly based on the fire radiative power (FRP) approach to fire emissions estimation, including for these SE Asia peatland fires. "Top-down" methods estimate total particulate matter emissions directly from FRP observations using so-called "smoke emission coefficients" [Ce; g·MJ-1], but currently no discrimination is made between fire types during such calculations. We show that for a subset of some of the most thermally radiant peatland fires seen during the 2015 El Niño, the most appropriate Ce is around a factor of three lower than currently assumed (~16.8 ± 1.6 g·MJ-1 vs. 52.4 g·MJ-1). Analysis indicates that this difference stems from these highly radiant fires containing areas of substantial flaming combustion, which changes the amount of particulate matter emitted per unit of observable fire radiative heat release in comparison to more smouldering dominated events. We also show that even a single one of these most radiant fires is responsible for almost 10% of the overall particulate matter released during the 2015 fire event, highlighting the importance of this fire type to overall emission totals. Discriminating these different fires types in ways demonstrated herein should thus ultimately improve the accuracy of SE Asian fire emissions estimates derived using the FRP approach, and the air quality modelling which they support.

9.
Environ Health ; 15(1): 116, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887618

RESUMO

Landscape fires can produce large quantities of smoke that degrade air quality in both remote and urban communities. Smoke from these fires is a complex mixture of fine particulate matter and gases, exposure to which is associated with increased respiratory and cardiovascular morbidity and mortality. The public health response to short-lived smoke events typically advises people to remain indoors with windows and doors closed, but does not emphasize the use of portable air cleaners (PAC) to create private or public clean air shelters. High efficiency particulate air filters and electrostatic precipitators can lower indoor concentrations of fine particulate matter and improve respiratory and cardiovascular outcomes. We argue that PACs should be at the forefront of the public health response to landscape fire smoke events.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Filtração/instrumentação , Incêndios , Exposição Ambiental/prevenção & controle , Habitação , Humanos , Fumaça
10.
Sci Total Environ ; 884: 163849, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137369

RESUMO

Landscape fires are a natural component of the Earth System. However, they are of growing global concern due to climate change exacerbating their multiple impacts on biodiversity, ecosystems, carbon storage, human health, economies, and wider society. Temperate regions are predicted to be at greatest risk of increasing fire activity due to climate change, where fires can seriously impact important ecosystems for biodiversity and carbon storage, such as peatlands and forests. There is insufficient literature on the background prevalence, distribution, and drivers of fires in these regions, especially within Europe, to assess and mitigate their risks. Using a global database of fire patches based on the MODIS FireCCI51 product, we address this knowledge gap by quantifying the current prevalence and size of fires in Polesia, a 150,000 km2 area comprising a mosaic of peatland, forest, and agricultural habitats in northern Ukraine and southern Belarus. Between 2001 and 2019, fires burned 31,062 km2 of land, and were most frequent in spring and autumn. Although most fires started in agricultural land, fires disproportionately affected natural and semi-natural land cover types, particularly in protected areas. Over one fifth of protected land burned. Coniferous forests were the most common land cover type in protected areas, but fires mostly occurred in meadows, open peatlands (especially fen and transition mires), and native deciduous forests. These land cover types were highly susceptible to fires under low soil moisture conditions, but the risk of fire was low under average or higher soil moisture conditions. Restoring and maintaining natural hydrological regimes could be an effective nature-based solution to increase the resilience of fire-vulnerable ecosystems and support global biodiversity and carbon storage commitments under the United Nations Framework Conventions on Climate Change and Convention on Biological Diversity.


Assuntos
Ecossistema , Incêndios , Humanos , Pradaria , Florestas , Solo , Carbono
11.
Int Breastfeed J ; 18(1): 13, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823615

RESUMO

BACKGROUND: The 2019/2020 Australian landscape fires (bushfires) resulted in prolonged extreme air pollution; little is known about the effects on breastfeeding women and their infants. This study aimed to examine the impact of prolonged landscape fires on infant feeding methods and assess the concentration of polycyclic aromatic hydrocarbons (PAHs) and elements in breast milk samples. METHODS: From May - December 2020, women with asthma, who were feeding their infants during the fires, were recruited from an existing cohort. Data on infant feeding and maternal concern during the fires were retrospectively collected. Breast milk samples were collected from a sample of women during the fire period and compared with samples collected outside of the fire period for levels of 16 PAHs (gas chromatography coupled with mass spectrometry), and 20 elements (inductively coupled plasma-mass spectrometry). RESULTS: One-hundred-and-two women who were feeding infants completed the survey, and 77 provided 92 breast milk samples. Two women reported concern about the impact of fire events on their infant feeding method, while four reported the events influenced their decision. PAHs were detected in 34% of samples collected during, versus no samples collected outside, the fire period (cross-sectional analysis); specifically, fluoranthene (median concentration 0.015 mg/kg) and pyrene (median concentration 0.008 mg/kg) were detected. Women whose samples contained fluoranthene and pyrene were exposed to higher levels of fire-related fine particulate matter and more fire days, versus women whose samples had no detectable fluoranthene and pyrene. Calcium, potassium, magnesium, sodium, sulphur, and copper were detected in all samples. No samples contained chromium, lead, nickel, barium, or aluminium. No statistically significant difference was observed in the concentration of elements between samples collected during the fire period versus outside the fire period. CONCLUSIONS: Few women had concerns about the impact of fire events on infant feeding. Detection of fluoranthene and pyrene in breast milk samples was more likely during the 2019/2020 Australian fire period; however, levels detected were much lower than levels expected to be related to adverse health outcomes.


Assuntos
Asma , Hidrocarbonetos Policíclicos Aromáticos , Lactente , Feminino , Humanos , Leite Humano/química , Aleitamento Materno , Estudos Transversais , Estudos Retrospectivos , Austrália , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos/análise
12.
J Allergy Clin Immunol Pract ; 11(10): 3107-3115.e2, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329954

RESUMO

BACKGROUND: Individuals with asthma experienced severe and prolonged symptoms after the Australian 2019 to 2020 landscape fire. Many of these symptoms, such as throat irritation, occur in the upper airway. This suggests that laryngeal hypersensitivity contributes to persistent symptoms after smoke exposure. OBJECTIVE: This study examined the relationship between laryngeal hypersensitivity and symptoms, asthma control, and health impacts on individuals exposed to landscape fire smoke. METHOD: The study was a cross-sectional survey of 240 participants in asthma registries who were exposed to smoke during the 2019 to 2020 Australian fire. The survey, completed between March and May 2020, included questions about symptoms, asthma control, and health care use, as well as the Laryngeal Hypersensitivity Questionnaire. Daily concentration levels of particulate matter less than or equal to 2.5 µm in diameter were measured over the 152-day study period. RESULTS: The 49 participants with laryngeal hypersensitivity (20%) had significantly more asthma symptoms (96% vs 79%; P = .003), cough (78% vs 22%; P < .001), and throat irritation (71% vs 38%; P < .001) during the fire period compared with those without laryngeal hypersensitivity. Participants with laryngeal hypersensitivity had greater health care use (P ≤ .02), more time off work (P = .004), and a reduced capacity to participate in usual activities (P < .001) during the fire period, as well as poorer asthma control during the follow-up (P = .001). CONCLUSIONS: Laryngeal hypersensitivity is associated with persistent symptoms, reports of lower asthma control, and increased health care use in adults with asthma who were exposed to landscape fire smoke. Management of laryngeal hypersensitivity before, during, or immediately after landscape fire smoke exposure might reduce the symptom burden and health impact.


Assuntos
Asma , Hipersensibilidade , Laringe , Transtornos Respiratórios , Adulto , Humanos , Estudos Transversais , Austrália/epidemiologia , Asma/epidemiologia
13.
Environ Int ; 171: 107665, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493611

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) produced by landscape fires is thought to be more toxic than that from non-fire sources. However, the effects of "fire-sourced" PM2.5 on acute respiratory infection (ARI) are unknown. METHODS: We combined Demographic and Health Survey (DHS) data from 48 countries with gridded global estimates of PM2.5 concentrations from 2003 to 2014. The proportions of fire-sourced PM2.5 were assessed by a chemical transport model using a variety of PM2.5 source data. We tested for associations between ARI and short-term exposure to fire- and "non-fire-sourced" PM2.5 using a bidirectional case-crossover analysis. The robustness and homogeneity of the associations were examined by sensitivity analyses. We also established a nonlinear exposure-response relationship between fire- and non-fire-sourced PM2.5 and ARI using a two-dimensional spline function. RESULTS: The study included 36,432 children under 5 years who reported ARI symptoms. Each 1 µg/m3 increment of fire-sourced PM2.5 was associated with a 3.2 % (95 % confidence interval [CI] 0.2, 6.2) increment in the risk of ARI. This effect was comparable to that of each ∼5 µg/m3 increment in PM2.5 from non-fire sources (3.1 %; 95 % CI 2.4, 3.7). The association between ARI and total PM2.5 concentration was significantly mediated by the proportion of fire-sourced particles. Nonlinear analysis showed that the risk of ARI was increased by both fire- and non-fire-sourced PM2.5, but especially by the former. CONCLUSIONS: PM2.5 produced by landscape fire was more strongly associated to ARI among children under 5 years than that from non-fire sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Infecções Respiratórias , Humanos , Criança , Pré-Escolar , Material Particulado/análise , Fumaça/efeitos adversos , Estudos Cross-Over , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Países em Desenvolvimento , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
14.
Environ Entomol ; 51(5): 871-884, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130330

RESUMO

Landscape fire activity is changing in many regions because of climate change. Smoke emissions from landscape fires contain many harmful air pollutants, and beyond the potential hazard posed to human health, these also have ecological impacts. Insects play essential roles in most ecosystems worldwide, and some work suggests they may also be sensitive to smoke exposure. There is therefore a need for a comprehensive review of smoke impacts on insects. We systematically reviewed the scientific literature from 1930 to 2022 to synthesize the current state of knowledge of the impacts of smoke exposure from landscape fires on the development, behavior, and mortality of insects. We found: (1) 42 relevant studies that met our criteria, with 29% focused on the United States of America and 19% on Canada; (2) of these, 40 insect species were discussed, all of which were sensitive to smoke pollution; (3) most of the existing research focuses on how insect behavior responds to landscape fire smoke (LFS); (4) species react differently to smoke exposure, with for example some species being attracted to the smoke (e.g., some beetles) while others are repelled (e.g., some bees). This review consolidates the current state of knowledge on how smoke impacts insects and highlights areas that may need further investigation. This is particularly relevant since smoke impacts on insect communities will likely worsen in some areas due to increasing levels of biomass burning resulting from the joint pressures of climate change, land use change, and more intense land management involving fire.


Assuntos
Poluentes Atmosféricos , Incêndios , Humanos , Estados Unidos , Animais , Ecossistema , Poluentes Atmosféricos/análise , Mudança Climática , Insetos
15.
Artigo em Inglês | MEDLINE | ID: mdl-33525316

RESUMO

Many Australians are intermittently exposed to landscape fire smoke from wildfires or planned (prescribed) burns. This study aimed to investigate effects of outdoor smoke from planned burns, wildfires and a coal mine fire by assessing biomarkers of inflammation in an exposed and predominantly older population. Participants were recruited from three communities in south-eastern Australia. Concentrations of fine particulate matter (PM2.5) were continuously measured within these communities, with participants performing a range of health measures during and without a smoke event. Changes in biomarkers were examined in response to PM2.5 concentrations from outdoor smoke. Increased levels of FeNO (fractional exhaled nitric oxide) (ß = 0.500 [95%CI 0.192 to 0.808] p < 0.001) at a 4 h lag were associated with a 10 µg/m3 increase in PM2.5 levels from outdoor smoke, with effects also shown for wildfire smoke at 4, 12, 24 and 48-h lag periods and coal mine fire smoke at a 4 h lag. Total white cell (ß = -0.088 [-0.171 to -0.006] p = 0.036) and neutrophil counts (ß = -0.077 [-0.144 to -0.010] p = 0.024) declined in response to a 10 µg/m3 increase in PM2.5. However, exposure to outdoor smoke resulting from wildfires, planned burns and a coal mine fire was not found to affect other blood biomarkers.


Assuntos
Poluentes Atmosféricos , Incêndios , Poluentes Atmosféricos/análise , Austrália , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/análise , Material Particulado/toxicidade , Fumaça/efeitos adversos , Fumaça/análise , Austrália do Sul
16.
Sci Total Environ ; 677: 68-83, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31051384

RESUMO

Fire regimes are shifting or are expected to do so under global change. Current fire suppression is not able to control all wildfires, and its capability to do so might be compromised under harsher climate conditions. Alternative fire management strategies may allow to counteract predicted fire trends, but we lack quantitative tools to evaluate their potential effectiveness at the landscape scale. Here, we sought to quantify changes in fire regimes induced after the implementation of different fire management strategies. We developed and applied a new version of the model MEDFIRE in Catalonia (Mediterranean region of ~32,000 km2 in NE Spain). We first projected burnt area from 2016 to 2100 resulting from climate change under the Representative Concentration Pathway 8.5 scenario of HadGEM-CC model and under current fire suppression levels. We then evaluated the impacts of four fire management strategies: 'Let it burn', fixed effort of prescribed burning with two different spatial allocations, and adaptive prescribed burning dynamically adjusting efforts according to recent past fires. Results predicted the emergence of novel climates associated with similar barometric configurations to current conditions but with higher temperatures (i.e. hot wind events). These novel climates led to an increase in burnt area, which was partially counteracted by negative fire-vegetation feedbacks. All prescribed burning scenarios decreased the amount of high-intensity fires and extreme fire events. The 'Let it burn' strategy, although less costly, was not able to reduce the extent of high-intensity fires. The adaptive prescribed burning scenario resulted in the most cost-efficient strategy. Our results provide quantitative evidence of fire management effectiveness, and bring to light key insights that could guide the design of fire policies fit for future novel climate conditions. We propose adaptive landscape management focused on the reduction of fire negative impacts rather than on the elimination of this disturbance from the system.

17.
Environ Int ; 99: 208-212, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27887782

RESUMO

BACKGROUND: Emergency ambulance dispatches (EAD) are a novel outcome for evaluating the public health impacts of air pollution. We assessed the relationships between ambient particulate matter (PM) from all sources, PM from landscape fire smoke (LFS), and EADs likely to be associated with cardiorespiratory problems in the Sydney greater metropolitan region for an 11-year period from 2004 to 2015. METHODS: EAD codes are assigned at the time of the call to emergency services using standard computer assisted algorithms. We assessed EADs coded as: breathing problems, chest pain, stroke or cerebrovascular accident (stroke), cardiac or respiratory arrest and death (arrest), and heart or defibrillator problems (other heart problems). Using a daily times series study design with a generalized linear Poisson regression model we quantified the association between EAD and daily PM2.5 from all sources (PM2.5,all) and PM2.5 primarily due to LFS (PM2.5,LFS). RESULTS: Increases of 10µg·m-3 in PM2.5,all were positively associated with same day EAD for breathing problems (RR=1.03, 95% CI 1.02 to 1.04), arrest (RR=1.03, 95% CI 1.00 to 1.06), and chest pain (RR=1.01 CI 1.00 to 1.02) but not with other outcomes. Increases of 10µg·m-3 PM2.5,LFS were also positively associated with breathing problems on the same day (RR=1.04, 95% CI 1.02 to 1.05) and other heart problems at lag of two days (RR=1.05, 95% CI 1.01 to 1.09). CONCLUSIONS: Emergency dispatches for breathing problems are associated with PM2.5,all and PM2.5,LFS and provide a sensitive end point for continued research and surveillance activities investigating the impacts of daily fluctuations in ambient PM2.5.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Ambulâncias/estatística & dados numéricos , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental , Material Particulado/efeitos adversos , Doenças Respiratórias/epidemiologia , Fumaça/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Incêndios , Humanos , New South Wales/epidemiologia , Doenças Respiratórias/induzido quimicamente
18.
Artigo em Inglês | MEDLINE | ID: mdl-27216506

RESUMO

Air pollution from landscape fires, domestic fires and fossil fuel combustion is recognized as the single most important global environmental risk factor for human mortality and is associated with a global burden of disease almost as large as that of tobacco smoking. The shift from a reliance on biomass to fossil fuels for powering economies, broadly described as the pyric transition, frames key patterns in human fire usage and landscape fire activity. These have produced distinct patters of human exposure to air pollution associated with the Agricultural and Industrial Revolutions and post-industrial the Earth global system-wide changes increasingly known as the Anthropocene. Changes in patterns of human fertility, mortality and morbidity associated with economic development have been previously described in terms of demographic, epidemiological and nutrition transitions, yet these frameworks have not explicitly considered the direct consequences of combustion emissions for human health. To address this gap, we propose a pyrohealth transition and use data from the Global Burden of Disease (GBD) collaboration to compare direct mortality impacts of emissions from landscape fires, domestic fires, fossil fuel combustion and the global epidemic of tobacco smoking. Improving human health and reducing the environmental impacts on the Earth system will require a considerable reduction in biomass and fossil fuel combustion.This article is part of the themed issue 'The interaction of fire and mankind'.


Assuntos
Poluição do Ar/efeitos adversos , Saúde Ambiental , Incêndios , Fumaça/efeitos adversos , Combustíveis Fósseis , Humanos , Madeira
19.
Artigo em Inglês | MEDLINE | ID: mdl-27216526

RESUMO

Fire positively and negatively affects food webs across all trophic levels and guilds and influences a range of ecological processes that reinforce fire regimes, such as nutrient cycling and soil development, plant regeneration and growth, plant community assembly and dynamics, herbivory and predation. Thus we argue that rather than merely describing spatio-temporal patterns of fire regimes, pyrodiversity must be understood in terms of feedbacks between fire regimes, biodiversity and ecological processes. Humans shape pyrodiversity both directly, by manipulating the intensity, severity, frequency and extent of fires, and indirectly, by influencing the abundance and distribution of various trophic guilds through hunting and husbandry of animals, and introduction and cultivation of plant species. Conceptualizing landscape fire as deeply embedded in food webs suggests that the restoration of degraded ecosystems requires the simultaneous careful management of fire regimes and native and invasive plants and animals, and may include introducing new vertebrates to compensate for extinctions that occurred in the recent and more distant past.This article is part of the themed issue 'The interaction of fire and mankind'.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Incêndios , Cadeia Alimentar , África , Austrália , Ecossistema , Modelos Biológicos , Estados Unidos
20.
Front Plant Sci ; 5: 590, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25414710

RESUMO

By definition fire prone ecosystems have highly combustible plants, leading to the hypothesis, first formally stated by Mutch in 1970, that community flammability is the product of natural selection of flammable traits. However, proving the "Mutch hypothesis" has presented an enormous challenge for fire ecologists given the difficulty in establishing cause and effect between landscape fire and flammable plant traits. Individual plant traits (such as leaf moisture content, retention of dead branches and foliage, oil rich foliage) are known to affect the flammability of plants but there is no evidence these characters evolved specifically to self-immolate, although some of these traits may have been secondarily modified to increase the propensity to burn. Demonstrating individual benefits from self-immolation is extraordinarily difficult, given the intersection of the physical environmental factors that control landscape fire (fuel production, dryness and ignitions) with community flammability properties that emerge from numerous traits of multiple species (canopy cover and litter bed bulk density). It is more parsimonious to conclude plants have evolved mechanisms to tolerate, but not promote, landscape fire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA