Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441834

RESUMO

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citosol , Dipeptidases , Glutationa , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glutationa/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dipeptidases/metabolismo , Dipeptidases/genética , Citosol/metabolismo , Dipeptídeos/metabolismo , Enxofre/metabolismo
2.
J Biol Chem ; 296: 100173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303633

RESUMO

M17 leucyl aminopeptidases are metal-dependent exopeptidases that rely on oligomerization to diversify their functional roles. The M17 aminopeptidases from Plasmodium falciparum (PfA-M17) and Plasmodium vivax (Pv-M17) function as catalytically active hexamers to generate free amino acids from human hemoglobin and are drug targets for the design of novel antimalarial agents. However, the molecular basis for oligomeric assembly is not fully understood. In this study, we found that the active site metal ions essential for catalytic activity have a secondary structural role mediating the formation of active hexamers. We found that PfA-M17 and Pv-M17 exist in a metal-dependent dynamic equilibrium between active hexameric species and smaller inactive species that can be controlled by manipulating the identity and concentration of metals available. Mutation of residues involved in metal ion binding impaired catalytic activity and the formation of active hexamers. Structural resolution of Pv-M17 by cryoelectron microscopy and X-ray crystallography together with solution studies revealed that PfA-M17 and Pv-M17 bind metal ions and substrates in a conserved fashion, although Pv-M17 forms the active hexamer more readily and processes substrates faster than PfA-M17. On the basis of these studies, we propose a dynamic equilibrium between monomer ↔ dimer ↔ tetramer ↔ hexamer, which becomes directional toward the large oligomeric states with the addition of metal ions. This sophisticated metal-dependent dynamic equilibrium may apply to other M17 aminopeptidases and underpin the moonlighting capabilities of this enzyme family.


Assuntos
Aminopeptidases/química , Manganês/química , Plasmodium falciparum/enzimologia , Plasmodium vivax/enzimologia , Multimerização Proteica , Proteínas de Protozoários/química , Aminopeptidases/genética , Aminopeptidases/metabolismo , Domínio Catalítico , Cátions Bivalentes , Clonagem Molecular , Cobalto/química , Cobalto/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Dipeptídeos/química , Dipeptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Magnésio/química , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Mutação , Plasmodium falciparum/genética , Plasmodium vivax/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
3.
Biochem J ; 478(13): 2697-2713, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34133730

RESUMO

During malarial infection, Plasmodium parasites digest human hemoglobin to obtain free amino acids for protein production and maintenance of osmotic pressure. The Plasmodium M1 and M17 aminopeptidases are both postulated to have an essential role in the terminal stages of the hemoglobin digestion process and are validated drug targets for the design of new dual-target anti-malarial compounds. In this study, we profiled the substrate specificity fingerprints and kinetic behaviors of M1 and M17 aminopeptidases from Plasmodium falciparum and Plasmodium vivax, and the mouse model species, Plasmodium berghei. We found that although the Plasmodium M1 aminopeptidases share a largely similar, broad specificity at the P1 position, the P. falciparum M1 displays the greatest diversity in specificity and P. berghei M1 showing a preference for charged P1 residues. In contrast, the Plasmodium M17 aminopeptidases share a highly conserved preference for hydrophobic residues at the P1 position. The aminopeptidases also demonstrated intra-peptide sequence specificity, particularly the M1 aminopeptidases, which showed a definitive preference for peptides with fewer negatively charged intrapeptide residues. Overall, the P. vivax and P. berghei enzymes had a faster substrate turnover rate than the P. falciparum enzymes, which we postulate is due to subtle differences in structural dynamicity. Together, these results build a kinetic profile that allows us to better understand the catalytic nuances of the M1 and M17 aminopeptidases from different Plasmodium species.


Assuntos
Aminopeptidases/metabolismo , Peptídeos/metabolismo , Plasmodium/enzimologia , Proteínas de Protozoários/metabolismo , Aminopeptidases/classificação , Aminopeptidases/genética , Animais , Biocatálise/efeitos dos fármacos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Leucina/análogos & derivados , Leucina/farmacologia , Malária/parasitologia , Camundongos , Plasmodium/genética , Plasmodium/fisiologia , Plasmodium berghei/enzimologia , Plasmodium berghei/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium vivax/enzimologia , Plasmodium vivax/genética , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por Substrato
4.
J Struct Biol ; 213(3): 107741, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989771

RESUMO

Leucyl aminopeptidase A from Aspergillus oryzae RIB40 (AO-LapA) is an exo-acting peptidase, widely utilised in food debittering applications. AO-LapA is secreted as a zymogen by the host and requires enzymatic cleavage of the autoinhibitory propeptide to reveal its full activity. Scarcity of structural data of zymogen aminopeptidases hampers a better understanding of the details of their molecular action of autoinhibition and how this might be utilised to improve the properties of such enzymes by recombinant methods for more effective bioprocessing. To address this gap in the literature, herein we report high-resolution crystal structures of recombinantly expressed AO-LapA precursor (AO-proLapA), mature LapA (AO-mLapA) and AO-mLapA complexed with reaction product l-leucine (AO-mLapA-Leu), all purified from Pichia pastoris culture supernatant. Our structures reveal a plausible molecular mechanism of LapA catalytic domain autoinhibition by propeptide and highlights the role of intramolecular chaperone (IMC). Our data suggest an absolute requirement for IMC in the maturation of cognate catalytic domain of AO-LapA. This observation is reinforced by our expression and refolding data of catalytic domain only (AO-refLapA) from Escherichia coli inclusion bodies, revealing a limited active conformation. Our work supports the notion that known synthetic aminopeptidase inhibitors and substrates mimic key polar contacts between propeptide and corresponding catalytic domain, demonstrated in our AO-proLapA zymogen crystal structure. Furthermore, understanding the atomic details of the autoinhibitory mechanism of cognate catalytic domains by native propeptides has wider reaching implications toward synthetic production of more effective inhibitors of bimetallic aminopeptidases and other dizinc enzymes that share an analogous reaction mechanism.


Assuntos
Leucil Aminopeptidase , Chaperonas Moleculares , Aminopeptidases/genética , Aminopeptidases/metabolismo , Domínio Catalítico , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Chaperonas Moleculares/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-34174428

RESUMO

This study was carried out to profile key characteristics of intestinal functions and health in wild-caught Ballan wrasse. To describe functional variation along the intestine, samples were collected from four intestinal segments, named from the proximal to the distal segment: IN1, IN2, IN3 and IN4. The sections showed quite similar structure, i.e. regarding mucosal fold height and branching, lamina propria and submucosal width and cellular composition and thickness of the muscle layers. Leucine aminopeptidase and maltase capacity decreased from IN1 to IN4, suggesting a predominant role of IN1 in digestion. Gene expression levels of vitamin C transporter (slc23a1) and fatty acid transporters (cd36 and fabp2) were higher in IN1 than in IN4, indicating a more important role of the proximal intestine regarding transport of vitamins and fatty acids. Higher expression of the gene coding for IgM heavy chain constant region (ighm) was found in IN4 than in IN1, suggesting an important immune function of the distal intestine. Other immune related genes il1b, il6, cd40, showed similar expression in the proximal and the distal part of the intestine. Parasite infection, especially the myxozoan parasite Enteromyxum leei, coincided with infiltration of lymphocytic and eosinophilic granular cells in the submucosa and lamina propria. The present study established reference information necessary for interpretation of results of studies of intestinal functions and health in cultured Ballan wrasse.


Assuntos
Digestão/fisiologia , Perfilação da Expressão Gênica , Imunidade/fisiologia , Intestinos/metabolismo , Perciformes/fisiologia , Animais , Biomarcadores/metabolismo , Colesterol/metabolismo , Feminino , Doenças dos Peixes , Regulação da Expressão Gênica , Hidrólise , Sistema Imunitário , Imunoglobulina M/metabolismo , Leucil Aminopeptidase/metabolismo , Masculino , Mucosa/metabolismo , Noruega , alfa-Glucosidases/metabolismo
6.
Protein Expr Purif ; 167: 105544, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759085

RESUMO

Leucine aminopeptidase (LAP), an exopeptidase that releases amino acid residues, especially leucine, from the N-terminus of polypeptides, is often applied to debitter protein hydrolysate in the food industry. However, there are no thermostable and high activity enzymes that can be used in the food industry. In this study, we obtained the highly active and thermostable leucine aminopeptidases screened from the thermophilic fungi Thermomyces lanuginosus, Talaromyces thermophilus, and Malbranchea cinnamomea. The activity of the recombinant leucine aminopeptidase Thelap was significantly increased to 2771.5 U/mL, as mediated by the CRISPR/Cas9 tool. The recombinant Thelap was easily purified from fermentation broth by Ni-affinity chromatography, and the specific activity of the purified Thelap was increased to 7449.6 U/mg. The recombinant Thelap showed optimal activity at pH 8.5 and 75 °C and remained above 70% of the maximum activity over a wide temperature range (30-80 °C). With regard to temperature stability, Thelap retained more than 90% activity when it was incubated at 65-75 °C for 2 h. K+ and Co2+ increased the enzyme activity of the recombinant Thelap, while Ba2+, Mn2+, Ni2+, Ca2+, Mg2+ and SDS inhibited its enzyme activity, and the inhibition capacity of Mg2+ was the weakest. Upon application in soy protein hydrolysis, Thelap could significantly increase the degree of hydrolysis and remove more hydrophobic amino acids from the N-terminal region of the polypeptide to decrease the bitterness.


Assuntos
Eurotiales/metabolismo , Leucil Aminopeptidase/biossíntese , Aspergillus niger/genética , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expressão Gênica , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Proteínas Recombinantes , Proteínas de Soja/metabolismo
7.
Mol Biol Rep ; 47(2): 1257-1264, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31853767

RESUMO

Leucine aminopeptidase 3 (LAP3) is an important proteolytic enzyme that catalyzes the hydrolysis of leucine residues from the amino termini of protein or peptide substrates and plays a critical role in protein metabolism and growth. In the present study, we investigated the full-length cDNA sequence of the LAP3 gene in Sinonovacula constricta (ScLAP3) using expressed sequence tags and rapid amplification of cDNA ends. The full-length ScLAP3 cDNA was 2885 bp, with a 1560 bp open reading frame encoding 519 amino acids. Sequence analysis revealed that ScLAP3 shared 70.9% identity with LAP3 from the blood clam Tegillarca granosa and 62.0-68.0% with other species. ScLAP3 was expressed in all six tested tissues, with significantly higher expression levels in the foot compared with mantle, adductor muscle, liver, gills, and siphon tissues in adults (P < 0.01). In the eight developmental stages, ScLAP3 expression gradually increased, with significantly higher levels in D-shaped larvae compared with other developmental stages (P < 0.01), suggesting that it may be involved in the formation of certain organs during early development. Association analysis identified three shared single nucleotide polymorphisms (SNPs), c.1073A > G, c.1139C > T and c.1154A > G in exons of ScLAP3 gene from 177 individuals of two groups, one selective strain and one wild population, which had significant effects on growth traits of S. constricta. The results provided candidate genetic markers to assist selective breeding of razor clams toward improved growth.


Assuntos
Bivalves/genética , Leucil Aminopeptidase/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Alelos , Sequência de Aminoácidos , Animais , Bivalves/classificação , Clonagem Molecular , DNA Complementar , Éxons , Expressão Gênica , Frequência do Gene , Genótipo , Filogenia , Análise de Sequência de DNA
8.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290229

RESUMO

Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which involved database search, virtual screening, and design of new potential leucine aminopeptidase inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered through Lipinski's "rule of five," and 25 081 of them were then subjected to molecular docking. Next, three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for the selected group of compounds with the best binding score results. The developed model, calculated by leave-one-out method, showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion, and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro and in vivo studies.


Assuntos
Isoquinolinas/química , Leucil Aminopeptidase/química , Modelos Moleculares , Inibidores de Proteases/química , Relação Quantitativa Estrutura-Atividade , Desenho de Fármacos , Humanos , Leucil Aminopeptidase/antagonistas & inibidores , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteases/farmacologia , Reprodutibilidade dos Testes
9.
J Cell Biochem ; 120(3): 3611-3620, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30417585

RESUMO

Overexpression of leucine aminopeptidase 3 (LAP3) is involved in proliferation, migration, and invasion of several tumor cells and plays a crucial role in tumor metastasis. However, the related mechanism remains unknown. In this study, we used MDA-MB-231 and MCF7 breast cancer cell lines to explore the role of LAP3 in the regulation of cancer cell migration and invasion by employing the natural LAP3 inhibitor bestatin and a lentivirus vector that overexpresses or knocks down LAP3. Bestatin inhibited tumor cell migration and invasion in a dose-dependent manner. Western blot assay showed that bestatin and knockdown of LAP3 upregulated phosphorylation of Hsp27 and downregulated expression of fascin. Phosphorylation of Akt and expression of matrix metalloproteinase-2/9 can also be downregulated. LAP3 overexpression showed the opposite results. Immunohistochemistry analysis was conducted to detect expression levels of LAP3 in breast cancer tissues. High LAP3 expression was correlated with the grade of malignancy. Findings of this study uncovered the molecular mechanism of LAP3 on breast cancer metastasis and indicated that LAP3 may act as a potential antimetastasis therapeutic target.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Transporte/sangue , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Leucil Aminopeptidase/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Proteínas dos Microfilamentos/sangue , Proteínas de Neoplasias/metabolismo , Regulação para Cima , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Feminino , Humanos , Leucil Aminopeptidase/genética , Células MCF-7 , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Proteínas dos Microfilamentos/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-30445227

RESUMO

Bioturbators such as sediment-dwelling marine bivalves are ecosystem engineers that enhance sediment-water exchange and benthic-pelagic coupling. In shallow coastal areas, bivalves are exposed to frequent disturbance and salinity stress that might negatively affect their activity and physiological performance; however, the mechanisms underlying these effects are not fully understood. We investigated the effects of osmotic stress (low and fluctuating salinity) and repeated burrowing on aerobic and contractile capacity of the foot muscle (assessed by the activity of succinate dehydrogenase and myosin ATPase) as well as the levels of organic osmolytes (free amino acids) and biochemical markers of protein synthesis and proteolysis in key osmoregulatory and energy storing tissues (gills and hepatopancreas, respectively) in a common bioturbator, the soft shell clam Mya arenaria. Osmotic stress and exhaustive exercise altered the foot muscle capacity of soft shell clams and had a strong impact on protein and amino acid homeostasis in tissues not directly involved in locomotion. Acclimation to constant low salinity (5 practical salinity units) depleted the whole-body free amino acid pool and affected protein synthesis but not protein breakdown in the gill. In contrast, fluctuating (5-15) salinity increased protein breakdown rate, suppressed protein synthesis, caused oxidative damage to proteins in the gill and selectively depleted whole-body glycine pool. Clams acclimated to normal salinity (15) increased the aerobic capacity of the foot muscle upon repeated burrowing, whereas acclimation to low and fluctuating salinity reduced this adaptive muscle plasticity. Under the normal and low salinity conditions, exhaustive exercise induced protein conservation pathways (indicated by suppression of protein synthesis and catabolism), but this effect was disrupted by fluctuating salinity. These findings indicate that exhaustive exercise and osmotic stress interactively affect whole-body protein homeostasis and functional capacity of the foot muscle in soft shell clams which might contribute to reduced burrowing activity of bivalve bioturbators in osmotically challenging environments such as estuaries and shallow coastal zones.


Assuntos
Bivalves/fisiologia , Músculos/fisiologia , Pressão Osmótica , Proteínas/metabolismo , Aminoácidos/metabolismo , Animais , Bivalves/metabolismo , Brânquias/metabolismo , Músculos/metabolismo , Salinidade
11.
Exp Parasitol ; 186: 1-9, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29329981

RESUMO

Leucine aminopeptidase (LAP, EC: 3.4.11.1) is an important metalloexopeptidase that catalyze the hydrolysis of amino-terminal leucine residues from polypeptides and proteins. In this study, a full length of cDNA encoding leucine aminopeptidase of Taenia pisiformis (TpLAP) was cloned by rapid amplification of cDNA-ends using the polymerase chain reaction (RACE-PCR) method. The full-length cDNA of the TpLAP gene is 1823 bp and contains a 1569 bp ORF encoding 533 amino acids with a putative mass of 56.4 kDa. TpLAP contains two characteristic motifs of the M17LAP family in the C-terminal sequence: the metal binding site 265-[VGKG]-271 and the catalytic domain motif 351-[NTDAEGRL]-357. The soluble GST-TpLAP protein was expressed in Escherichia coli Transetta (DE3) and four specific anti-TpLAP monoclonal antibodies (mAbs) were prepared. In enzymatic assays, the optimal activity was observed at pH 9.5 at 45 °C. GST-TpLAP displayed a hydrolyzing activity for the Leu-pNA substrate with a maximum activity of 46 U/ml. The enzymatic activity was significantly enhanced by Mn2+ and completely inhibited by 20 nM bestatin and 0.15 mM EDTA. The native TpLAP was detected specifically in ES components of adult T. pisiformis by western blotting using anti-TpLAP mAb as a probe. Quantitative real-time PCR revealed that the TpLAP gene was expressed at a high level in adult worm tissues, especially in the gravid proglottids (50.71-fold). Immunolocalization analysis showed that TpLAP was located primarily in the subtegumental parenchyma zone and the uterine wall of adult worms. Our results indicate that TpLAP is a new member of the M17LAP family and can be considered as a stage-differentially expressed protein. These findings might provide new insights into the study of the mechanisms of growth, development and survival of T. pisiformis in the final host and have potential value as an attractive target for drug therapy or vaccine intervention.


Assuntos
Leucil Aminopeptidase/genética , Taenia/enzimologia , Taenia/genética , Sequência de Aminoácidos , Compostos de Anilina/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Western Blotting , Clonagem Molecular , DNA Complementar/isolamento & purificação , DNA Complementar/metabolismo , DNA de Helmintos/isolamento & purificação , DNA de Helmintos/metabolismo , Hibridomas , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Leucil Aminopeptidase/química , Leucil Aminopeptidase/imunologia , Leucil Aminopeptidase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência , Taenia/imunologia , Temperatura
12.
Int J Mol Sci ; 19(4)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614002

RESUMO

Echinococcus granulosus is the causative agent of cystic echinococcosis (CE), a widespread parasitic zoonosis. Leucine aminopeptidases (LAPs) of the M17 peptidase family have important functions in regulating the balance of catabolism and anabolism, cell maintenance, growth and defense. In this study, we presented a bioinformatic characterization and experimentally determined the tissue distribution characteristics of E. granulosus LAP (Eg-LAP), and explored its potential value for diagnosis of CE in sheep based on indirect ELISA. Through fluorescence immunohistochemistry, we found that Eg-LAP was present in the tegument and hooks of PSCs, the whole germinal layer and adult worm parenchymatous tissue. Western blotting results revealed that the recombinant protein could be identified using E. granulosus-infected sheep serum. The diagnostic value of this recombinant protein was assessed by indirect ELISA, and compared with indirect ELISA based on hydatid fluid antigen. The sensitivity and specificity rEgLAP-ELISA were 95.8% (23/24) and 79.09% (87/110), respectively, while using hydatid fluid as antigen showed the values 41.7% (10/24) and 65.45% (72/110). This is the first report concerning leucine aminopeptidase from E. granulosus, and the results showed that Eg-LAP belong to M17 peptidase families, and that it is involved in important biological function of E. granulosus. Furthermore, rEg-LAP is appropriate for diagnosing and monitoring CE in sheep in field. Development of a rapid test using rEg-LAP to diagnose sheep CE deserves further study.


Assuntos
Equinococose/sangue , Echinococcus granulosus/enzimologia , Leucil Aminopeptidase/metabolismo , Animais , Anticorpos/sangue , Anticorpos Anti-Helmínticos/sangue , Echinococcus granulosus/imunologia , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/imunologia , Coelhos , Testes Sorológicos , Ovinos
13.
J Environ Sci (China) ; 69: 12-22, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941247

RESUMO

The increasing production and use of engineered silver nanoparticles (AgNP) in industry and private households are leading to increased concentrations of AgNP in the environment. An ecological risk assessment of AgNP is needed, but it requires understanding the long term effects of environmentally relevant concentrations of AgNP on the soil microbiome. Hence, the aim of this study was to reveal the long-term effects of AgNP on soil microorganisms. The study was conducted as a laboratory incubation experiment over a period of one year using a loamy soil and AgNP concentrations ranging from 0.01 to 1 mg AgNP/kg soil. The short term effects of AgNP were, in general, limited. However, after one year of exposure to 0.01 mg AgNP/kg, there were significant negative effects on soil microbial biomass (quantified by extractable DNA; p = 0.000) and bacterial ammonia oxidizers (quantified by amoA gene copy numbers; p = 0.009). Furthermore, the tested AgNP concentrations significantly decreased the soil microbial biomass, the leucine aminopeptidase activity (quantified by substrate turnover; p = 0.014), and the abundance of nitrogen fixing microorganisms (quantified by nifH gene copy numbers; p = 0.001). The results of the positive control with AgNO3 revealed predominantly stronger effects due to Ag+ ion release. Thus, the increasing toxicity of AgNP during the test period may reflect the long-term release of Ag+ ions. Nevertheless, even very low concentrations of AgNP caused disadvantages for the microbial soil community, especially for nitrogen cycling, and our results confirmed the risks of releasing AgNP into the environment.


Assuntos
Nanopartículas Metálicas/toxicidade , Ciclo do Nitrogênio/genética , Prata/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Microbiologia do Solo , Testes de Toxicidade Crônica
14.
Glob Chang Biol ; 23(10): 4084-4093, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28593723

RESUMO

Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature dependence has not yet been evaluated. Here, we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular ß-glucosidase (ßG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen, and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with ßG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication.


Assuntos
Oceanos e Mares , Fósforo , Temperatura , Bactérias , Processos Heterotróficos , Microbiologia da Água
15.
J Med Primatol ; 46(1): 3-8, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27859398

RESUMO

BACKGROUND: Under the environment of pregnancy, the placenta assumes an important steroidogenic role in the maintenance of pregnancy. METHODS: Urinary placental leucine aminopeptidase (PLAP), estrone-3-glucuronide (E1 G), and pregnanediol-3-glucuronide (PdG) concentrations were compared among five pregnancies (four live births and one stillbirth) in four orangutans. RESULTS: The gestation period of the stillbirth (223 days) was shorter than that of the live births (239-254 days). In females who gave a live birth, average PLAP and E1 G concentrations increased until the delivery. Conversely, in the female who gave a stillbirth, PLAP concentration failed to increase, and E1 G concentration was significantly low in late pregnancy period. Regarding PdG concentrations, there was no significant difference among all pregnancies. CONCLUSIONS: This is the first study reporting a change in urinary PLAP, E1 G, and PdG concentrations during orangutan stillbirth and live birth pregnancies. The findings will assist in developing pregnancy screening tests.


Assuntos
Cistinil Aminopeptidase/análise , Hormônios Esteroides Gonadais/urina , Nascido Vivo/veterinária , Placenta/enzimologia , Pongo pygmaeus/fisiologia , Natimorto/veterinária , Animais , Estrona/análogos & derivados , Estrona/urina , Feminino , Gravidez , Pregnanodiol/análogos & derivados , Pregnanodiol/urina
16.
Bioorg Med Chem ; 24(21): 5302-5314, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624521

RESUMO

We report a study of a series of isoquinoline derivatives, including their synthesis, in vitro microsomal leucine aminopeptidase (LAP) inhibition and antiproliferative activity on cancer cell lines. Among fourteen tested compounds, one (compound 3b) was determined to have good activity against LAP and significant antiproliferative activity against HL-60 human promyelocytic leukemia, Burkitt's lymphoma Raji, camptothecin resistant CEM/C2 leukemia cells with mutated catalytic site of topoisomerase I, its parental cell line CCRF/CEM and LoVo colon cancer. Its influence on the cell cycle was also observed. Moreover, we have confirmed that antiproliferative activity towards cancer cells is due to LAP inhibition. Docking simulation based on positioning compound 3b into the LAP active site was performed to explore the possible binding mode. The compound was able to form hydrogen bonds with Gly362 and coordinate zinc ions, which was previously suggested to be essential for inhibitory activity. Compound 3b was also characterized with a good selectivity index for cancer versus normal mammalian cells. Toxicological studies involving examination of skin sensitization, acute skin irritation/corrosion, acute dermal toxicity, acute oral toxicity and acute eye irritation/corrosion established that compound 3b is safe for use.


Assuntos
Antineoplásicos/farmacologia , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-Atividade
17.
Biochem Biophys Res Commun ; 450(1): 561-7, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24928393

RESUMO

Adipocyte-derived leucine aminopeptidase (A-LAP) is a novel member of the M1 family of zinc metallopeptidases, which has been reported to play a crucial role in angiogenesis. In the present study, we conducted a target-based screening of natural products and synthetic chemical libraries using the purified enzyme to search novel inhibitors of A-LAP. Amongst several hits isolated, a natural product purpurin was identified as one of the most potent inhibitors of A-LAP from the screening. In vitro enzymatic analyses demonstrated that purpurin inhibited A-LAP activity in a non-competitive manner with a Ki value of 20 M. In addition, purpurin showed a strong selectivity toward A-LAP versus another member of M1 family of zinc metallopeptidase, aminopeptidase N (APN). In angiogenesis assays, purpurin inhibited the vascular endothelial growth factor (VEGF)-induced invasion and tube formation of human umbilical vein endothelial cells (HUVEC). Moreover, purpurin inhibited in vivo angiogenesis in zebrafish embryo without toxicity. These data demonstrate that purpurin is a novel specific inhibitor of A-LAP and could be developed as a new anti-angiogenic agent.


Assuntos
Adipócitos/enzimologia , Antraquinonas/farmacologia , Células Endoteliais/fisiologia , Leucil Aminopeptidase/antagonistas & inibidores , Leucil Aminopeptidase/metabolismo , Neovascularização Fisiológica/fisiologia , Peixe-Zebra/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Animais , Neovascularização Fisiológica/efeitos dos fármacos
18.
Int J Biol Macromol ; 268(Pt 1): 131778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657929

RESUMO

Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to ß-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.


Assuntos
Sequência de Aminoácidos , Clonagem Molecular , Leucil Aminopeptidase , Leucil Aminopeptidase/química , Leucil Aminopeptidase/metabolismo , Leucil Aminopeptidase/genética , Animais , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Cinética , Estabilidade Enzimática , Temperatura , Filogenia , Ixodidae/enzimologia , Ixodidae/genética
19.
Talanta ; 275: 126151, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678927

RESUMO

This article discusses the importance of early tumor detection, particularly in liver cancer, and the role of leucine aminopeptidase (LAP) as a potential marker for liver cancer diagnosis and prognosis assessment. The article highlights the limitations of current tumor markers and the need for new markers and multi-marker approaches to improve accuracy. The authors introduce a novel near-infrared fluorescent probe, NTAP, designed for LAP detection. They describe the synthesis of the probe and evaluate its spectral properties, including the LOD was 0.0038 U/mL, and QY was 0.32 %. The kinetic properties of NTAP, such as the relationship between LAP concentration (0-0.08 U/mL), reaction time (3 min), and fluorescence excitation spectra (475 nm) and emission spectra (715 nm) are investigated. The article also discusses the stability and selectivity of the probe and its ability to detect LAP in complex samples. Cellular imaging experiments demonstrate the NATP specificity and selectivity in detecting LAP activity and its inhibition. Animal models of liver and lung metastasis are used to evaluate the probe's imaging capabilities, showing its ability to accurately locate and detect metastatic lesions. The article concludes by emphasizing the potential applications of the NTAP probe in early tumor diagnosis, treatment monitoring, and the study of tumor metastasis mechanisms.


Assuntos
Corantes Fluorescentes , Leucil Aminopeptidase , Metástase Neoplásica , Animais , Humanos , Camundongos , Progressão da Doença , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Raios Infravermelhos , Leucil Aminopeptidase/metabolismo , Leucil Aminopeptidase/análise , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Imagem Óptica
20.
EFSA J ; 22(4): e8717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634009

RESUMO

The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the genetically modified Aspergillus oryzae strain NZYM-BU by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in five food manufacturing processes. Dietary exposure to the food enzyme TOS was estimated to be up to 1.508 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 4,928 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3,268. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that the food enzyme does not give rise to safety concerns under the intended conditions of use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA