Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.892
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(10): 2537-2564, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989548

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
2.
Cell ; 184(22): 5559-5576.e19, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34678143

RESUMO

Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Glicogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Glicogênio Fosforilase/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transição de Fase , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinase 3/metabolismo , Proteínas de Sinalização YAP/metabolismo
3.
Immunity ; 57(10): 2344-2361.e7, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39321806

RESUMO

As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.


Assuntos
Interleucinas , Evasão Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Macrófagos Associados a Tumor , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Interleucinas/metabolismo , Interleucinas/imunologia , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Evasão Tumoral/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Reprogramação Celular/imunologia , Reprogramação Celular/genética , Neoplasias Hepáticas/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos CD36/metabolismo , Antígenos CD36/genética , Imunoterapia/métodos
4.
EMBO J ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210147

RESUMO

Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ), are the main transcriptional downstream effectors of the Hippo pathway. Decreased Hippo pathway activity leads to nuclear translocation of YAP/TAZ where they interact with TEAD transcription factors to induce target gene expression. Unrestrained YAP/TAZ activity can lead to excessive growth and tumor formation in a short time, underscoring the evolutionary need for tight control of these two transcriptional coactivators. Here, we report that the AP-1 component JUN acts as specific repressor of YAP/TAZ at joint target sites to decrease YAP/TAZ activity. This function of JUN is independent of its heterodimeric AP-1 partner FOS and the canonical AP-1 function. Since expression of JUN is itself induced by YAP/TAZ, our work identifies a JUN-dependent negative feedback loop that buffers YAP/TAZ activity at joint genomic sites. This negative feedback loop gets disrupted in liver cancer to unlock the full oncogenic potential of YAP/TAZ. Our results thus demonstrate an additional layer of control for the interplay of YAP/TAZ and AP-1.

5.
EMBO J ; 42(11): e112126, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36919851

RESUMO

The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Via de Sinalização Hippo , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Carcinoma Hepatocelular/genética , Proteínas de Sinalização YAP , Neoplasias Hepáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
6.
EMBO J ; 41(23): e111550, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314841

RESUMO

Phosphoglycerate dehydrogenase (PHGDH) is a key serine biosynthesis enzyme whose aberrant expression promotes various types of tumors. Recently, PHGDH has been found to have some non-canonical functions beyond serine biosynthesis, but its specific mechanisms in tumorigenesis remain unclear. Here, we show that PHGDH localizes to the inner mitochondrial membrane and promotes the translation of mitochondrial DNA (mtDNA)-encoded proteins in liver cancer cells. Mechanistically, we demonstrate that mitochondrial PHGDH directly interacts with adenine nucleotide translocase 2 (ANT2) and then recruits mitochondrial elongation factor G2 (mtEFG2) to promote mitochondrial ribosome recycling efficiency, thereby promoting mtDNA-encoded protein expression and subsequent mitochondrial respiration. Moreover, we show that treatment with a mitochondrial translation inhibitor or depletion of mtEFG2 diminishes PHGDH-mediated tumor growth. Collectively, our findings uncover a previously unappreciated function of PHGDH in tumorigenesis acting via promotion of mitochondrial translation and bioenergetics.


Assuntos
Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Humanos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Serina , Neoplasias Hepáticas/genética , Carcinogênese , DNA Mitocondrial
7.
EMBO Rep ; 25(3): 1361-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332150

RESUMO

Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Sirtuínas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo
8.
Mol Cell Proteomics ; 23(2): 100707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154692

RESUMO

Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples. One of the primary challenges associated with this technology is the relatively low rate of phosphopeptide identification during data analysis. This limitation hampers the full realization of the potential offered by shotgun phosphoproteomics. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19% to 46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Fosforilação , Fosfopeptídeos/metabolismo , Proteômica
9.
J Biol Chem ; 300(3): 105707, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309505

RESUMO

Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.


Assuntos
Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Neoplasias Hepáticas , Proteínas Nucleares , Fatores de Transcrição , Proteases Específicas de Ubiquitina , Humanos , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genes Supressores de Tumor , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
10.
Genes Cells ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39357875

RESUMO

Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCFFBXL3) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.

11.
J Virol ; : e0118724, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297647

RESUMO

Human Na+-taurocholate cotransporting polypeptide (hNTCP) is predominantly expressed in hepatocytes, maintaining bile salt homeostasis and serving as a receptor for hepatitis B virus (HBV). hNTCP expression is downregulated during hepatocellular carcinoma (HCC) development. In this study, we investigated the molecular mechanisms underlying hNTCP dysregulation using HCC tissues and cell lines, and primary human hepatocytes (PHHs). Firstly, we observed a significant reduction of hNTCP in HCC tumors compared to adjacent and normal tissues. Additionally, hNTCP mRNA levels were markedly lower in HepG2 cells compared to PHHs, which was corroborated at the protein level by immunoblotting. Sanger sequencing confirmed identical sequences for hNTCP promoter, exons, and mRNA coding sequences between PHH and HepG2 cells, indicating no mutations or splicing alterations. We then assessed the epigenetic status of hNTCP. The hNTCP promoter, with low CG content, showed no significant methylation differences between PHH and HepG2 cells. Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) revealed a loss of activating histone posttranslational modification (PTM) H3K27ac near the hNTCP transcription start site (TSS) in HepG2 cells. This loss was also confirmed in HCC tumor cells compared to adjacent and background cells. Treating HepG2 cells with histone deacetylase inhibitors enhanced H3K27ac accumulation and glucocorticoid receptor (GR) binding at the hNTCP TSS, significantly increasing hNTCP mRNA and protein levels, and rendering the cells susceptible to HBV infection. In summary, histone PTM-related epigenetic mechanisms play a critical role in hNTCP dysregulation in liver cancer cells, providing insights into hepatocarcinogenesis and its impact on chronic HBV infection. IMPORTANCE: HBV is a hepatotropic virus that infects human hepatocytes expressing the viral receptor hNTCP. Without effective antiviral therapy, chronic HBV infection poses a high risk of liver cancer. However, most liver cancer cell lines, including HepG2 and Huh7, do not support HBV infection due to the absence of hNTCP expression, and the mechanism underlying this defect remains unclear. This study demonstrates a significant reduction of hNTCP in hepatocellular carcinoma samples and HepG2 cells compared to normal liver tissues and primary human hepatocytes. Despite identical hNTCP genetic sequences, epigenetic analyses revealed a loss of the activating histone modification H3K27ac near the hNTCP transcription start site in cancer cells. Treatment with histone deacetylase inhibitors restored H3K27ac levels, reactivated hNTCP expression, and rendered HepG2 cells susceptible to HBV infection. These findings highlight the role of epigenetic modulation in hNTCP dysregulation, offering insights into hepatocarcinogenesis and its implications for chronic HBV infection.

12.
FASEB J ; 38(17): e70029, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39215630

RESUMO

Immunotherapies have significantly improved the prognosis of patients with advanced hepatocellular carcinoma (HCC), although more than 70% of patients still do not respond to this first-line treatment. Many new combination strategies are currently being explored, which drastically increases the need for preclinical models that would allow large-scale testing of new immunotherapies and their combinations. We developed several in ovo (in the egg) human liver cancer models, based on human tumor xenografts of different liver cancer cell lines on the chicken embryo's chorioallantoic membrane. We characterized the angiogenesis, as well as the collagen accumulation and tumor immune microenvironment, and tested atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) treatment. Our results show the involvement of chicken immune cells in tumor growth, reproducing a classical non-inflamed "cold" as well as inflamed "hot" tumor status, depending on the in ovo liver cancer model. The treatment by atezolizumab and bevacizumab was highly efficient in the "hot" tumor model PLC/PRF/5 in ovo with the reduction of tumor size by 76% (p ≤ .0001) compared with the control, whereas the efficacy was limited in the "cold" Hep3B in ovo tumor. The contribution of the anti-PD-L1 blockade to the anti-tumoral effect in the PLC/PRF/5 in ovo model was demonstrated by the efficacy of atezolizumab monotherapy (p = .0080, compared with the control). To conclude, our study provides a detailed characterization and rational arguments that could help to partially replace conventional laboratory animals with a more ethical model, suited to the current needs of preclinical research of new immunotherapies for liver cancer.


Assuntos
Anticorpos Monoclonais Humanizados , Bevacizumab , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Embrião de Galinha , Bevacizumab/uso terapêutico , Bevacizumab/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Membrana Corioalantoide/efeitos dos fármacos , Modelos Animais de Doenças
13.
J Pathol ; 264(3): 318-331, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39329419

RESUMO

Telomerase reverse transcriptase (TERT) gene aberration is detectable in >80% of cases with hepatocellular carcinoma (HCC). TERT reactivation is essential for cellular immortalization because it stabilizes telomere length, although the role of TERT in hepatocarcinogenesis remains unelucidated. To elucidate the significance of aberrant TERT expression in hepatocytes in inflammation-associated hepatocarcinogenesis, we generated Alb-Cre;TertTg mice, which overexpress TERT in the liver and examined their phenotype during chronic inflammation. Based on transcriptome data from the liver tissue of Alb-Cre;TertTg mice, we examined the role of TERT in hepatocarcinogenesis in vitro. We also evaluated the relationship between TERT and cell-cycle-related molecules, including p21, in HCC samples. The liver tumor development rate was increased by TERT overexpression during chronic inflammation, especially in the absence of p53 function. Gene set enrichment analysis of liver tissues revealed that gene sets related to TNF-NFκB signaling, cell cycle, and apoptosis were upregulated in Alb-Cre;TertTg liver. A luciferase reporter assay and immunoprecipitation revealed that TERT interacted with NFκB p65 and enhanced NFκB promoter activity. On the other hand, TERT formed protein complexes with p21, cyclin A2, and cyclin E and promoted ubiquitin-mediated degradation of p21, specifically in the G1 phase. In the clinical HCC samples, TERT was highly expressed but p21 was conversely downregulated, and TERT expression was associated with the upregulation of molecules related to the cell cycle. Taken together, the aberrant upregulation of TERT increased NFκB promoter activity and promoted cell cycle progression via p21 ubiquitination, leading to hepatocarcinogenesis. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Neoplasias Hepáticas , Telomerase , Regulação para Cima , Animais , Humanos , Masculino , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/enzimologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/enzimologia , Camundongos Transgênicos , Proteólise , Transdução de Sinais , Telomerase/metabolismo , Telomerase/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
14.
J Pathol ; 263(1): 32-46, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362598

RESUMO

Cholangiolocarcinoma (CLC) is a primary liver carcinoma that resembles the canals of Hering and that has been reported to be associated with stem cell features. Due to its rarity, the nature of CLC remains unclear, and its pathological classification remains controversial. To clarify the positioning of CLC in primary liver cancers and identify characteristics that could distinguish CLC from other liver cancers, we performed integrated analyses using whole-exome sequencing (WES), immunohistochemistry, and a retrospective review of clinical information on eight CLC cases and two cases of recurrent CLC. WES demonstrated that CLC includes IDH1 and BAP1 mutations, which are characteristic of intrahepatic cholangiocarcinoma (iCCA). A mutational signature analysis showed a pattern similar to that of iCCA, which was different from that of hepatocellular carcinoma (HCC). CLC cells, including CK7, CK19, and EpCAM, were positive for cholangiocytic differentiation markers. However, the hepatocytic differentiation marker AFP and stem cell marker SALL4 were completely negative. The immunostaining patterns of CLC with CD56 and epithelial membrane antigen were similar to those of the noncancerous bile ductules. In contrast, mutational signature cluster analyses revealed that CLC formed a cluster associated with mismatch-repair deficiency (dMMR), which was separate from iCCA. Therefore, to evaluate MMR status, we performed immunostaining of four MMR proteins (PMS2, MSH6, MLH1, and MSH2) and detected dMMR in almost all CLCs. In conclusion, CLC had highly similar characteristics to iCCA but not to HCC. CLC can be categorized as a subtype of iCCA. In contrast, CLC has characteristics of dMMR tumors that are not found in iCCA, suggesting that it should be treated distinctly from iCCA. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Encefálicas , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Colorretais , Neoplasias Hepáticas , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia
15.
Exp Cell Res ; 434(1): 113865, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052337

RESUMO

The combination of chemotherapy and phototherapy has emerged as a promising therapeutic approach for enhancing the efficacy of cancer treatment and mitigating drug resistance. Salinomycin (SAL), a polyether antibiotic, exhibits potent cytotoxicity against chemotherapy-resistant cancer cells. IR780 iodide, a novel photosensitive reagent with excellent near-infrared (NIR) light absorption and photothermal conversion abilities, is suitable for use in photothermal therapy for cancers. However, both SAL and IR780 exhibit hydrophobic properties that limit their clinical applicability. Upconversion nanoparticles (UCNPs) are an emerging class of fluorescent probe materials capable of emitting high-energy photons upon excitation by low-energy NIR light. The UCNPs not only function as nanocarriers for drug delivery but also serve as light transducers to activate photosensitizers for deep-tissue photodynamic therapy. Here, to enhance the targeting and bioavailability of hydrophobic drugs in liver cancer stem cells (LCSCs), we employ distearoyl phosphorethanolamine-polyethylene glycol (DSPE-PEG) to encapsulate SAL and IR780 on the surface of UCNPs. Cell viability was evaluated using the CCK-8 assay. Cell migration was assessed by the Transwell Boyden Chamber. The activation of the mitogen-activated protein kinase (MAPK) signaling pathway was measured via western blot. The results demonstrated successful loading of both IR780 and SAL onto the UCNPs, and the SAL and IR780-loaded UCNPs (UISP) exhibited a robust photothermal effect under NIR light irradiation. The UISP effectively inhibited the viability of HCCLM3 and LCSCs. Under NIR light irradiation, the UISP further suppressed HCCLM3 viability but had no impact on LCSC viability; however, it could further inhibit LCSC migration. Meanwhile, under NIR light irradiation, the UISP persistently activated the MAPK pathway more significantly in LCSCs. These findings suggest that exposure to NIR light results in persistent activation of the MAPK pathway by UISP, thereby influencing the biological behavior of LCSCs and enhancing their therapeutic efficacy against liver cancer.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Nanopartículas/química , Fígado , Células-Tronco Neoplásicas , Transdução de Sinais , Linhagem Celular Tumoral
16.
Mol Ther ; 32(10): 3260-3287, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39113358

RESUMO

Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.


Assuntos
Neoplasias Hepáticas , Terapia de Alvo Molecular , Compostos de Fenilureia , Piridinas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Sorafenibe/uso terapêutico , Sorafenibe/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Quinolinas/uso terapêutico , Ensaios Clínicos como Assunto , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Anilidas/uso terapêutico
17.
Mol Ther ; 32(1): 140-151, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37980543

RESUMO

Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer caused by a dominant recurrent fusion of the heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). Current therapies such as chemotherapy and radiation have limited efficacy, and new treatment options are needed urgently. We have previously shown that FLC tumors are dependent on the fusion kinase DNAJB1::PRKACA, making the oncokinase an ideal drug target. mRNA degrading modalities such as antisense oligonucleotides or small interfering RNAs (siRNAs) provide an opportunity to specifically target the fusion junction. Here, we identify a potent and specific siRNA that inhibits DNAJB1::PRKACA expression. We found expression of the asialoglycoprotein receptor in FLC to be maintained at sufficient levels to effectively deliver siRNA conjugated to the GalNAc ligand. We observe productive uptake and siRNA activity in FLC patient-derived xenografts (PDX) models in vitro and in vivo. Knockdown of DNAJB1::PRKACA results in durable growth inhibition of FLC PDX in vivo with no detectable toxicities. Our results suggest that this approach could be a treatment option for FLC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , RNA de Cadeia Dupla , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo
18.
Biochem J ; 481(18): 1173-1186, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39171361

RESUMO

Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor that plays a key role in drug metabolism. Recently, PXR was found to attenuate the development of liver cancer by suppressing epithelial-mesenchymal transition (EMT) in liver cancer cells in a mouse model of two-stage chemical carcinogenesis. To elucidate the role of PXR in the EMT of liver cancer cells, we focused on its role in hepatic stellate cells (HSCs), which are components of the tumor microenvironment in hepatocellular carcinoma (HCC). Human HSC-derived LX-2 cells stably expressed destabilization domain (DD)-fused human PXR (hPXR-LX2 cells). Human HCC-derived HepG2 cells were transfected with the EMT marker VIM promoter-regulated reporter plasmid and co-cultured with hPXR-LX2 cells or treated with hPXR-LX2-derived conditioned medium (CM). Co-culture or CM treatment increased reporter activity in HepG2 cells. This induction was attenuated upon PXR activation in hPXR-LX2 cells by treatment with the DD-stabilizing chemical Shield-1 and the human PXR ligand rifampicin. PXR activation in hPXR-LX2 cells exhibited inhibition of TGF-ß1-induced transdifferentiation, supported by observations of morphological changes and protein or mRNA levels of the transdifferentiation markers COL1A1 and FN1. PXR activation in hPXR-LX2 cells also attenuated the mRNA levels of the key transdifferentiation factor, POSTN. Treatment of hPXR-LX2 cells with recombinant POSTN restored the PXR-mediated suppression of transdifferentiation. Reporter assays with the POSTN promoter showed that PXR inhibited the NF-κB-mediated transcription of POSTN. Consequently, PXR activation in HSCs is expected to inhibit transdifferentiation by down-regulating POSTN expression, thereby suppressing EMT of liver cancer cells.


Assuntos
Moléculas de Adesão Celular , Transdiferenciação Celular , Regulação para Baixo , Células Estreladas do Fígado , Receptor de Pregnano X , Humanos , Receptor de Pregnano X/metabolismo , Receptor de Pregnano X/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Transdiferenciação Celular/efeitos dos fármacos , Células Hep G2 , Regulação para Baixo/efeitos dos fármacos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Periostina
19.
Proc Natl Acad Sci U S A ; 119(39): e2202157119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122209

RESUMO

CTNNB1, encoding ß-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated ß-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in ß-catenin mutant cell lines and livers. Oncogenic ß-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of ß-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed ß-catenin mutant cell proliferation and tumor formation. Therefore, ß-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of ß-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for ß-catenin mutant liver cancer.


Assuntos
Neoplasias Hepáticas , Pirimidinas , beta Catenina , Animais , Ácido Aspártico , Carcinogênese , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Sistemas de Liberação de Medicamentos , Ligases , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Nucleotídeos , Fosfatos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/biossíntese , beta Catenina/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044553

RESUMO

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Assuntos
Neoplasias Hepáticas , Proteínas R-SNARE , Sinaptotagmina I , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Proteico , Proteínas R-SNARE/metabolismo , Sinaptotagmina I/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA