RESUMO
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Assuntos
Evolução Biológica , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/metabolismo , Humanos , Células Quimiorreceptoras/metabolismoRESUMO
The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.
Assuntos
Medula Espinal/citologia , Medula Espinal/metabolismo , Sinapses , Animais , Axônios/metabolismo , Dendritos/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Mecanorreceptores/metabolismo , Camundongos , Biologia Molecular/métodos , Vias Neurais , Percepção do TatoRESUMO
Dietary fibers, including chitin, have a major impact on gastrointestinal (GI) physiology and immunity. Two recent articles, by Parrish et al. and Kim et al., credit depletion of dietary fibers or supplementation with chitin, with negative and positive effects, respectively, on the immune system of the murine digestive tract. This has relevant implications for food allergies and systemic metabolism.
Assuntos
Fibras na Dieta , Verrucomicrobia , Humanos , Animais , Camundongos , Verrucomicrobia/metabolismo , Trato Gastrointestinal , Quitina/metabolismoRESUMO
In the mammalian somatosensory system, polymodality is defined as the competence of some neurons to respond to multiple forms of energy (e.g., mechanical and thermal). This ability is thought to be an exclusive property of nociceptive neurons (polymodal C-fiber nociceptors) and one of the pillars of nociceptive peripheral plasticity. The current study uncovered a completely different neuronal sub-population with polymodal capabilities on the opposite mechanical modality spectrum (tactile). We have observed that several tactile afferents (1/5) can respond to cold in non-nociceptive ranges. These cells' mechanical thresholds and electrical properties are similar to any low-threshold mechano-receptors (LT), conducting in a broad range of velocities (Aδ to Aß), lacking CGRP and TRPM8 receptors. Due to its density, cold-response range, speed, and response to injury (or lack thereof), we speculate on its role in controlling reflexive behaviors (wound liking and rubbing) and modulation of nociceptive spinal cord integration. Further studies are required to understand the mechanisms behind this neuron's polymodality, central architecture, and impact on pain perception.
Assuntos
Temperatura Baixa , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Animais , Nociceptores/metabolismo , Nociceptores/fisiologia , Masculino , Tato/fisiologia , Neurônios Aferentes/fisiologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
We recently used Nav1.8-ChR2 mice in which Nav1.8-expressing afferents were optogenetically tagged to classify mechanosensitive afferents into Nav1.8-ChR2-positive and Nav1.8-ChR2-negative mechanoreceptors. We found that the former were mainly high threshold mechanoreceptors (HTMRs), while the latter were low threshold mechanoreceptors (LTMRs). In the present study, we further investigated whether the properties of these mechanoreceptors were altered following tissue inflammation. Nav1.8-ChR2 mice received a subcutaneous injection of saline or Complete Freund's Adjuvant (CFA) in the hindpaws. Using the hind paw glabrous skin-tibial nerve preparation and the pressure-clamped single-fiber recordings, we found that CFA-induced hind paw inflammation lowered the mechanical threshold of many Nav1.8-ChR2-positive Aß-fiber mechanoreceptors but heightened the mechanical threshold of many Nav1.8-ChR2-negative Aß-fiber mechanoreceptors. Spontaneous action potential impulses were not observed in Nav1.8-ChR2-positive Aß-fiber mechanoreceptors but occurred in Nav1.8-ChR2-negative Aß-fiber mechanoreceptors with a lower mechanical threshold in the saline goup, and a higher mechanical threshold in the CFA group. No significant change was observed in the mechanical sensitivity of Nav1.8-ChR2-positive and Nav1.8-ChR2-negative Aδ-fiber mechanoreceptors and Nav1.8-ChR2-positive C-fiber mechanoreceptors following hind paw inflammation. Collectively, inflammation significantly altered the functional properties of both Nav1.8-ChR2-positive and Nav1.8-ChR2-negative Aß-fiber mechanoreceptors, which may contribute to mechanical allodynia during inflammation.
Assuntos
Mecanorreceptores , Pele , Camundongos , Animais , Pele/inervação , Hiperalgesia , Fibras Nervosas Amielínicas/fisiologia , InflamaçãoRESUMO
The extracellular matrix (ECM) plays critical roles in cytoskeletal support, biomechanical transduction and biochemical signal transformation. Tumor-associated macrophage (TAM) function is regulated by matrix stiffness in solid tumors and is often associated with poor prognosis. ECM stiffness-induced mechanical cues can activate cell membrane mechanoreceptors and corresponding mechanotransducers in the cytoplasm, modulating the phenotype of TAMs. Currently, tuning TAM polarization through matrix stiffness-induced mechanical stimulation has received increasing attention, whereas its effect on TAM fate has rarely been summarized. A better understanding of the relationship between matrix stiffness and macrophage function will contribute to the development of new strategies for cancer therapy. In this review, we first introduced the overall relationship between macrophage polarization and matrix stiffness, analyzed the changes in mechanoreceptors and mechanotransducers mediated by matrix stiffness on macrophage function and tumor progression, and finally summarized the effects of targeting ECM stiffness on tumor prognosis to provide insight into this new field.
Assuntos
Macrófagos , Macrófagos Associados a Tumor , Membrana Celular , Citoplasma , Matriz ExtracelularRESUMO
The attenuation of sensory inputs via various methods has been demonstrated to impair balance control and alter locomotor behavior during human walking; however, the effects of attenuating foot sole sensation under distinct areas of the foot sole on lower extremity motor output remains poorly understood. Thus, the purpose of this study was to attenuate cutaneous feedback via regional hypothermia under five different areas of the foot sole and investigate the resultant modulation of kinematic and muscle activity during level walking. Electromyography from eight lower leg muscles, kinematics, and location of center of pressure was recorded from 48 healthy young adults completing walking trials with normal and reduced cutaneous sensation from bilateral foot soles. The results of this study highlight the modulatory response of the tibialis anterior in terminal stance (propulsion and toe-off) and medial gastrocnemius muscle throughout the entire stance phase of gait. The topographical organization of foot sole skin in response to the attenuation of cutaneous feedback from different areas of the foot sole significantly modified locomotor activity. Furthermore, the locomotor response to cutaneous attenuation under the same regions that we previously facilitated with tactile feedback do not oppose each other, suggesting different physiological changes to foot sole skin generate unique gait behaviors.
Assuntos
Articulação do Tornozelo , Marcha , Adulto Jovem , Humanos , Articulação do Tornozelo/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Pé/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Tato , Fenômenos BiomecânicosRESUMO
Previous research exploring the effects of tactile feedback in standing balance protocols may have generated results that misrepresent the modulatory capabilities of cutaneous afference on generating motor output responses. The neurosensory mechanism of textured foot orthoses to maximize the activation of cutaneous mechanoreceptors is through repetitive foot sole skin indentation. Thus, the purpose of this experimental protocol was to investigate muscular activity amplitude changes during the stance phase of gait, specifically when walking on level ground and when stepping onto a raised wedge, and while wearing textured foot orthoses compared to orthoses without texture. Twenty-one healthy young adults were fit to a standardized neutral running shoe and completed five level and wedged walking trials wearing both orthoses. Kinematic, kinetic and electromyography (EMG) data were recorded from eight lower limb muscles. The results of this study revealed EMG suppression of lower leg musculature during stance when walking in textured foot orthoses, and this was most pronounced when lower leg musculature is typically most active. The addition of texture in foot orthoses design, spanning the entire length of the foot sole, appears to be a clear mechanism to modulate neurosensory feedback with intent to suppress EMG of shank musculature during gait.
Assuntos
Eletromiografia , Órtoses do Pé , Músculo Esquelético , Caminhada , Humanos , Masculino , Adulto Jovem , Feminino , Caminhada/fisiologia , Adulto , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos/fisiologia , Perna (Membro)/fisiologia , Marcha/fisiologia , Retroalimentação Sensorial/fisiologiaRESUMO
As one of the most promising electronic devices in the post-Moore era, nanoscale vacuum field emission transistors (VFETs) have garnered significant attention due to their unique electron transport mechanism featuring ballistic transport within vacuum channels. Existing research on these nanoscale vacuum channel devices has primarily focused on structural design for logic circuits. Studies exploring their application potential in other vital fields, such as sensors based on VFET, are more limited. In this study, for the first time, the design of a vacuum field emission transistor (VFET) coupled with a piezoelectric microelectromechanical (MEMS) sensing unit is proposed as the artificial mechanoreceptor for sensing purposes. With a negative threshold voltage similar to an N-channel depletion-mode metal oxide silicon field effect transistor, the proposed VFET has its continuous current tuned by the piezoelectric potential generated by the sensing unit, amplifying the magnitude of signals resulting from electromechanical coupling. Simulations have been conducted to validate the feasibility of such a configuration. As indictable from the simulation results, the proposed piezoelectric VFET exhibits high sensitivity and an electrically adjustable measurement range. Compared to the traditional combination of piezoelectric MEMS sensors and solid-state field effect transistors (FETs), the piezoelectric VFET design has a significantly reduced power consumption thanks to its continuous current that is orders of magnitude smaller. These findings reveal the immense potential of piezoelectric VFET in sensing applications, building up the basis for using VFETs for simple, effective, and low-power pre-amplification of piezoelectric MEMS sensors and broadening the application scope of VFET in general.
RESUMO
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.
Assuntos
Calcineurina , Insuficiência Cardíaca , Canais de Cátion TRPV , Remodelação Ventricular , Animais , Camundongos , Calcineurina/metabolismo , Células Cultivadas , Fibrose , Insuficiência Cardíaca/metabolismo , Isoproterenol , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Remodelação Ventricular/genéticaRESUMO
In 1998, I was asked by the American Physiological Society to review a book written by Dr. Michael de Burgh Daly, Peripheral Arterial Chemoreceptors and Respiratory-Cardiovascular Integration. Inspired by this work, I came to appreciate how researchers in the later stages of their careers and who provide a detailed review of their experimental approach might effectively contribute to science, especially to the benefit of young scientists (Yu J. The Physiologist 41: 231, 1998.). This article is written in that vein. Over several decades of intensive investigation of cardiopulmonary reflexes, focused on the sensory receptors, my colleagues and I advanced a novel multiple-sensor theory (MST) to explain the role of the vagal mechanosensory system. Described here is our research journey through various stages of developing MST and the process of how the problem was identified, approached, and tackled. MST redefines conventional mechanosensor doctrines and is supported by new studies that clarify a century of research data. It entails reinterpretation of many established findings. Hopefully, this article will benefit young scientists, such as graduate and postdoctoral students in the cardiopulmonary sensory research field.
Assuntos
Coração , Nervo Vago , Humanos , Nervo Vago/fisiologia , Pulmão/fisiologia , Reflexo/fisiologia , Células QuimiorreceptorasRESUMO
Arthropods and in particular insects show a great variety of different exoskeletal sensors. For most arthropods, spatial orientation and gravity perception is not fully understood. In particular, the interaction of the different sensors is still a subject of ongoing research. A disadvantage of most of the experimental methods used to date to study the spatial orientation of arthropods in behavioral experiments is that the body or individual body parts are fixed partly in a non-natural manner. Therefore, often only the movement of individual body segments can be used to evaluate the experiments. We here present a novel experimental method to easily study 3D-escape movements in insects and analyze whole-body reaction. The animals are placed in a transparent container, filled with a lightweight substrate and rotating around two axes. To verify our setup, house crickets (Acheta domesticus) with selectively manipulated gravity-perceiving structures were analyzed. The spatial orientation behavior was quantified by measuring the time individuals took to escape toward the surface and the angular deviation toward the gravitational vector. These experiments confirm earlier results and therefore validated our experimental setup. Our new approach thus allows to investigate several comprehensive questions regarding the spatial orientation of insects and other animals.
Assuntos
Artrópodes , Orientação Espacial , Animais , Percepção Espacial/fisiologia , Insetos/fisiologia , MovimentoRESUMO
AIMS: The central nervous system (CNS) regulates lower urinary tract reflexes using information from sensory afferents; however, the mechanisms of this process are not well known. Pressure and volume were measured at the onset of the guarding and micturition reflexes across a range of infusion rates to provide insight into what the CNS is gauging to activate reflexes. METHODS: Female Sprague Dawley rats were anesthetized with urethane for open outlet cystometry. A set of 10 infusion rates (ranging 0.92-65.5 mL/h) were pseudo-randomly distributed across 30 single-fill cystometrograms. Bladder pressure and external urethral sphincter electromyography were used for the determination of the onset of the micturition and guarding reflexes, respectively. The bladder volume at the onset of both reflexes was estimated from the total infusion rate during a single fill. RESULTS: In response to many single-fill cystometrograms, there was an increased volume the bladder could store without a significant increase in pressure. Volume was adjusted for this effect for the analysis of how pressure and volume varied with infusion rate at the onset of the micturition and guarding reflexes. In 25 rats, the micturition reflex was evoked at similar volumes across all infusion rates, whereas the pressure at micturition reflex onset increased with increasing infusion rates. In 11 rats, the guarding reflex was evoked at similar pressures across infusion rates, but the volume decreased with increasing infusion rates. CONCLUSIONS: These results suggest that the CNS is interpreting volume from the bladder to activate the micturition reflex and pressure from the bladder to activate the guarding reflex.
Assuntos
Bexiga Urinária , Micção , Ratos , Feminino , Animais , Micção/fisiologia , Ratos Sprague-Dawley , Reflexo/fisiologia , Uretra/fisiologiaRESUMO
Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.
Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Insensibilidade Congênita à Dor , Animais , Humanos , Camundongos , Mecanorreceptores , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Insensibilidade Congênita à Dor/genética , SódioRESUMO
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Assuntos
Proteínas Hedgehog , Queratinas , Proteínas Hedgehog/metabolismo , Queratinas/genética , Prega Vocal/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismoRESUMO
Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.
Assuntos
Neoplasias , Humanos , Diferenciação Celular , Proliferação de Células , Sinais (Psicologia) , Canais IônicosRESUMO
Peripheral mechanoreceptor-based treatments such as acupuncture and chiropractic manipulation have shown success in modulating the mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) of the midbrain and projecting to the nucleus accumbens (NAc) of the striatum. We have previously shown that mechanoreceptor activation via whole-body vibration (WBV) ameliorates neuronal and behavioral effects of chronic ethanol exposure. In this study, we employ a similar paradigm to assess the efficacy of WBV as a preventative measure of neuronal and behavioral effects of morphine withdrawal in a Wistar rat model. We demonstrate that concurrent administration of WBV at 80 Hz with morphine over a 5-day period significantly reduced adaptations in VTA GABA neuronal activity and NAc DA release and modulated expression of δ-opioid receptors (DORs) on NAc cholinergic interneurons (CINs) during withdrawal. We also observed a reduction in behavior typically associated with opioid withdrawal. WBV represents a promising adjunct to current intervention for opioid use disorder (OUD) and should be examined translationally in humans.
Assuntos
Terapia por Acupuntura , Morfina , Humanos , Ratos , Animais , Ratos Wistar , Vibração/uso terapêutico , InterneurôniosRESUMO
BACKGROUND: Proprioception is an essential sensory function of the body. Proprioception is defined as one's awareness of their body's position and movement through space. It contributes to both the conscious and unconscious awareness of limb and trunk position and movement. The purpose of this review is to provide an evidence-based review of proprioception and conditions that interfere with proprioceptive acuity. PURPOSE: The purpose of this review is to provide an evidence-based review of proprioception and conditions that interfere with proprioceptive acuity. STUDY DESIGN: This narrative literature review examines studies that determine proprioceptive systems and their implication for rehabilitation. METHODS: Relevant study data were extracted as part of this review. RESULTS: Types of proprioceptive interventions can include active or passive movement training, somatosensory stimulation training, force reproduction, and somatosensory discrimination training. Joint position sense error is the most widely used objective measure of proprioception. CONCLUSIONS: Therapists should consider using a standardized measure to ascertain proprioceptive deficits in their patients following upper extremity injury or disease to determine the deficits and measure change. There are a variety of interventions that can be used in hand rehabilitation to restore proprioceptive acuity, and active movement interventions have been found to be the most effective.
RESUMO
The ctenophore Mnemiopsis leidyi A. Agassiz, 1865 responds to gentle mechanical stimulus with intense luminescence; however, the mechanism of this phenomenon is unknown. We searched for possible mechanosensitive receptors that initiate signal transduction resulting in photoprotein luminescence. The three orthologous genes of mouse (5z96) and drosophila (5vkq) TRPC-proteins, such as ML234550a-PA (860 a.a.), ML03701a-PA (828 a.a.), and ML038011a-PA (1395 a.a.), were found in the M. leidyi genome. The latter protein contains a long ankyrin helix consisting of 16 ANK domains. Study of the annotated domains and the network of interactions between the interactome proteins suggests that the ML234550a-PA and ML03701a-PA proteins carry out cytoplasmic transduction, but ML038011a-PA provides intranuclear transduction of mechanical signals. Spatial reconstruction of the studied proteins revealed differences in their structure, which may be related to various functions of these proteins in the cell. The question of which of these proteins is involved in the initiation of luminescence after mechanical stimulation is discussed.
Assuntos
Ctenóforos , Animais , Camundongos , Ctenóforos/genética , Luminescência , Proteínas Luminescentes/genética , Transdução de Sinais , GenomaRESUMO
Low threshold mechanoreceptors (LTMRs) are important for environmental exploration, social interaction, and tactile discrimination. Whisker hair follicles are mechanical sensory organs in non-primate mammals that are functionally equivalent to human fingertips. Several functional types of LTMRs have been identified in rodent whisker hair follicles, including rapidly adapting (RA), slow adapting type 1 (SA1), and slowly adapting type 2 (SA2) LTMRs. Properties of these LTMRs have not been fully characterized. In the present study, we have used pressure-clamped single-fiber recording technique to record impulses of RA, SA1, and SA2 LTMRs in mouse whisker hair follicles, and tested effects of 5-HT, Cd2+, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and Ba2+ on the LTMR impulses. We show that 5-HT at 2 mM suppresses SA1 impulses but has no effects on RA and SA2 impulses. Cd2+ at 100 µM suppresses both SA1 and SA2 impulses but has no effects on RA impulses. TEA at 10 mM has no effects on RA and SA1 impulses but increased SA2 impulses. However, TEA at 1 mM and 200 µM decreases SA2 impulses. 4-AP at 1 mM suppresses both SA1 and SA2 impulses but has no effects on RA impulses. Ba2+ at 5 mM increases both RA and SA1 impulses but suppresses SA2 impulses. Collectively, RA, SA1, and SA2 LTMRs show distinct pharmacological properties, suggesting that these LTMRs may use different mechanisms to tune their mechanical signaling.