Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.847
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 46, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971771

RESUMO

BACKGROUND: Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS: The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 µg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS: The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.


Assuntos
Endófitos , Germinação , Ácidos Indolacéticos , Ocimum basilicum , Sementes , Thymus (Planta) , Ocimum basilicum/microbiologia , Thymus (Planta)/química , Ácidos Indolacéticos/metabolismo , Endófitos/fisiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Germinação/efeitos dos fármacos , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605293

RESUMO

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerância ao Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte de Íons , Carbono/metabolismo , Solo , Fatores de Transcrição/genética
3.
BMC Plant Biol ; 24(1): 466, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807068

RESUMO

BACKGROUND: Nanotechnology has demonstrated its vital significance in all aspects of daily life. Our research was conducted to estimate the potential of primed seed with chitosan nanoparticles in seed growth and yield by inducing plant secondary metabolism of Pancratium maritimum L. one of the important medicinal plants. Petri dish and pot experiments were carried out. Seeds of Pancratium maritimum L. were soaked in Nano solution (0.1, 0.5, 1 mg/ ml) for 4, 8, 12 h. Germination parameters (germination percentage, germination velocity, speed of germination, germination energy, germination index, mean germination time, seedling shoot and root length, shoot root ratio, seedling vigor index, plant biomass and water content), alkaloids and antioxidant activity of Pancratium maritimum L. were recorded and compared between coated and uncoated seeds. RESULTS: Our results exhibited that chitosan nanopriming had a positive effect on some growth parameters, while it fluctuated on others. However, the data showed that most germination parameters were significantly affected in coated seeds compared to uncoated seeds. GC-MS analysis of Pancratium maritimum L. with different nanopriming treatments showed that the quantity of alkaloids decreased, but the amount of pancratistatin, lycorine and antioxidant content increased compared with the control. CONCLUSIONS: Applying chitosan nanoparticles in priming seeds might be a simple and effective way to improve the quantity of secondary metabolites of Pancratium maritimum L. valuable medicinal plant.


Assuntos
Quitosana , Germinação , Nanopartículas , Sementes , Quitosana/farmacologia , Germinação/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Alcaloides/metabolismo , Antioxidantes/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Amaryllidaceae/crescimento & desenvolvimento , Amaryllidaceae/metabolismo
4.
Planta ; 259(5): 108, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555562

RESUMO

MAIN CONCLUSION: From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.


Assuntos
Plantas Medicinais , Desenvolvimento Sustentável
5.
Mass Spectrom Rev ; 42(4): 1358-1396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35238411

RESUMO

Metabolomics is an area of intriguing and growing interest. Since the late 1990s, when the first Omic applications appeared to study metabolite's pool ("metabolome"), to understand new aspects of the global regulation of cellular metabolism in biology, there have been many evolutions. Currently, there are many applications in different fields such as clinical, medical, agricultural, and food. In our opinion, it is clear that developments in metabolomics analysis have also been driven by advances in mass spectrometry (MS) technology. As natural complex products (NCPs) are increasingly used around the world as medicines, food supplements, and substance-based medical devices, their analysis using metabolomic approaches will help to bring more and more rigor to scientific studies and industrial production monitoring. This review is intended to emphasize the importance of metabolomics as a powerful tool for studying NCPs, by which significant advantages can be obtained in terms of elucidation of their composition, biological effects, and quality control. The different approaches of metabolomic analysis, the main and basic techniques of multivariate statistical analysis are also briefly illustrated, to allow an overview of the workflow associated with the metabolomic studies of NCPs. Therefore, various articles and reviews are illustrated and commented as examples of the application of MS-based metabolomics to NCPs.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Espectrometria de Massas/métodos , Análise Multivariada , Controle de Qualidade
6.
J Exp Bot ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767602

RESUMO

Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time- and labour-consuming. Transcription factor (TF)-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) TFs are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB TFs and summarises the research progress concerning MYB TFs involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB TFs regulate multiple synthase genes to mediate active ingredient biosynthesis. This study will serve as a reference for the in-depth analysis of the MYB TF family in medicinal plants.

7.
J Exp Bot ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652155

RESUMO

Medicinal plants are integral to traditional medicine systems world-wide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasising the meticulous choice of explants, e.g. embryonic/meristematic tissues; plant growth regulators, e.g. synthetic cytokinins; and use of novel regeneration-enabling methods to deliver morphogenic genes e.g. GRF/GIF chimeras and nanoparticles, which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.

8.
J Exp Bot ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814918

RESUMO

Medicinal plants (MPs) are valued for their contributions to human health. However, the growing demand for MPs and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled environment cropping systems, such as vertical farms, offer a transformative approach to MP production. By enabling precise control over environment factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in MPs. This review explores the potential of controlled environment systems for enhancing MP production. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of MP. Next, we propose strategies based on plant physiology to manipulate environment conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.

9.
Arch Biochem Biophys ; 758: 110079, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969195

RESUMO

Streptococcus oralis an opportunistic bacterium has been reported to be involved in various blood borne infections like subacute bacterial endocarditis, septicemia, bacterial meningitis and in some cases dental caries too. Among various targets the peptide deformylase, of S.oralis appears to be most potent druggable target as it is involved in protein synthesis is opted for the current study. Due to unavailability of PDB structure of peptide deformylase from S. oralis the study initiates with homology modelling of the protein and 6OW2 of S pneumoniae is considered as the template. Thereafter, Molecular docking, Molecular dynamic simulation, ADME analysis, and MMPBSA analysis was carried out to explore the inhibitory potential of phyto-constituents as potential inhibitors for Peptide deformylase from S.oralis. Actinonin was considered as reference drug. Among 2370 phyto compounds the best observations were recorded for A1-Barrigenol (IMPHY010984) with binding affinity of -8.5 kcal/mol. Calculated RMSD, RMSF, Binding Free Energy for IMPHY010984 averaged at about 0.10 ± 0.03 nm, 0.08 ± 0.05 nm, 131 ± 21 kJ/mol respectively whereas the RMSD, RMSF, Binding Free Energy recorded for reference drug averaged at about 0.19 ± 0.04 nm, 0.11 ± 0.08 nm, -94 ± 18 kJ/mol respectively. Based on in silico observations IMPHY010984 is proved out as superior candidate over reference drug. The study reflects the potential of IMPHY010984 as prophylactic therapeutics for S.oralis.

10.
Pharmacol Res ; 202: 107138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467241

RESUMO

Cancer incidence and mortality rates are increasing worldwide. Cancer treatment remains a real challenge for African countries, especially in sub-Saharan Africa where funding and resources are very limited. High costs, side effects and drug resistance associated with cancer treatment have encouraged scientists to invest in research into new herbal cancer drugs. In order to identify potential anticancer plants for drug development, this review aims to collect and summarize anticancer activities (in vitro/in vivo) and molecular mechanisms of sub-Saharan African medicinal plant extracts against cancer cell lines. Scientific databases such as ScienceDirect, Google Scholar and PubMed were used to search for research articles published from January 2013 to May 2023 on anticancer medicinal plants in sub-Saharan Africa. The data were analyzed to highlight the cytotoxicity and molecular mechanisms of action of these listed plants. A total of 85 research papers covering 204 medicinal plant species were selected for this review. These plants come from 57 families, the most dominant being the plants of the family Amaryllidaceae (16), Fabaceae (14), Annonaceae (10), Asteraceae (10). Plant extracts exert their anticancer activity mainly by inducing apoptosis and stopping the cell cycle of cancer cells. Several plant extracts from sub-Saharan Africa therefore have strong potential for the search for original anticancer phytochemicals. Chemoproteomics, multi-omics, genetic editing technology (CRISPR/Cas9), combined therapies and artificial intelligence tools are cutting edge emerging technologies that facilitate the discovery and structural understanding of anticancer molecules of medicinal plants, reveal their direct targets, explore their therapeutic uses and molecular bases.


Assuntos
Neoplasias , Plantas Medicinais , Humanos , Plantas Medicinais/química , Inteligência Artificial , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fitoterapia , África Subsaariana , Neoplasias/tratamento farmacológico
11.
Pharmacol Res ; 200: 107076, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237646

RESUMO

Sciatica characterized by irritation, inflammation, and compression of the lower back nerve, is considered one of the most common back ailments globally. Currently, the therapeutic regimens for sciatica are experiencing a paradigm shift from the conventional pharmacological approach toward exploring potent phytochemicals from medicinal plants. There is a dire need to identify novel phytochemicals with anti-neuropathic potential. This review aimed to identify the potent phytochemicals from diverse medicinal plants capable of alleviating neuropathic pain associated with sciatica. This review describes the pathophysiology of sciatic nerve pain, its cellular mechanisms, and the pharmacological potential of various plants and phytochemicals using animal-based models of sciatic nerve injury-induced pain. Extensive searches across databases such as Medline, PubMed, Web of Science, Scopus, ScienceDirect, and Google Scholar were conducted. The findings highlights 39 families including Lamiaceae, Asteraceae, Fabaceae, and Apocyanaceae and Cucurbitaceae, effectively treating sciatic nerve injury-induced pain. Flavonoids made up 53% constituents, phenols and terpenoids made up 15%, alkaloids made up 13%, and glycosides made up 6% to be used in neuorpathic pain. Phytochemicals derived from various medicinal plants can serve as potential therapeutic targets for both acute and chronic sciatic injury-induced neuropathic pain.


Assuntos
Neuralgia , Plantas Medicinais , Neuropatia Ciática , Ciática , Animais , Humanos , Plantas Medicinais/química , Ciática/tratamento farmacológico , Ciática/etiologia , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuropatia Ciática/tratamento farmacológico , Inflamação/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química
12.
Am J Bot ; 111(4): e16308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581167

RESUMO

PREMISE: Better understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross-cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use-metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine- or phenylalanine-dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. METHODS: We compiled a list of medicinal species in select tyrosine- or phenylalanine-dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a "hot nodes" approach. To test potential non-metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). RESULTS: We hypothesized families with tyrosine-enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine-enriched metabolism. Instead, wide-ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. CONCLUSIONS: Our results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor.


Assuntos
Caryophyllales , Plantas Medicinais , Caryophyllales/metabolismo , Caryophyllales/genética , Plantas Medicinais/metabolismo , Medicina Tradicional , Filogenia , Tirosina/metabolismo , Betalaínas/metabolismo , Fenilalanina/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 43(6): 813-823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128923

RESUMO

Diet is a well-known modifiable risk factor for cardiovascular diseases, which are the leading cause of death worldwide. However, our current understanding of the human diet is still limited in terms of fully capturing the role of dietary compounds in the intraspecies and interspecies biochemical networks that determine our health. This is due, in part, to a lack of detailed information on the presence of small molecules in food (molecular weight ≤1000 daltons), their amounts, and their interactions with known protein targets. As a result, our ability to develop a mechanistic understanding of how food chemicals impact our health is limited. In recent years, the Foodome project has tackled several aspects of this challenging universe, leveraging the expertise of a diverse group of scientific communities, from computer science to epidemiology. Here, we review the most recent efforts of the Foodome project in mapping the chemical complexity of food and predicting its effect on human health. Leveraging the network medicine framework applied to Amla-a medicinal plant-we offer a rationale for future research on the mechanism of action of food bioactive small molecules, whose designing principles could inspire next-generation drug discovery and combinations.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Dieta
14.
Fish Shellfish Immunol ; 146: 109369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220122

RESUMO

Damiana (Turnera diffusa Willd) was evaluated in vitro for antioxidant and antibacterial activities against Staphylococcus aureus and Streptococcus pyogenes (as a preliminary screening assessment) by high-performance thin-layer chromatography (HPTLC)-Direct bioautography. A study was performed in vivo to evaluate the effects of Damiana enriched diets at 0.5 % on immune parameters in mucus and serum and gene expression in Almaco Jack (Seriola rivoliana) intestine after two and four weeks; an infection with Aeromonas hydrophila at 1x107 colony forming units (CFU) followed and an ex vivo study was carried out using head-kidney leukocytes. Ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays showed high antioxidant activities in Damiana leaves; even in the ABTS assay, Damiana at 300 µg/mL showed similar activity to ascorbic acid - the standard control. Damiana exhibited strong in vitro antimicrobial activity against S. aureus and S. pyogenes. In vivo studies showed a strong enhancement of myeloperoxidase, nitric oxide, superoxide dismutase, and catalase activities in mucus and serum of S. rivoliana supplemented with Damiana; their immunological response enhanced after infection with A. hydrophila. IL-1ß, TNF-α, and IL-10 gene expressions upregulated in the fish intestine challenged with the bacterium. Piscidin and macrophage (MARCO) receptor gene expression up-regulated at week 4 and down-regulated after infection. Intestinal histology results confirm that Damiana not cause inflammation or damage. Finally, the ex vivo study confirmed the immunostimulant and protective effects of Damiana through increased phagocytic, respiratory burst, myeloperoxidase activities and nitric oxide generation before and upon the bacterial encounter. These results support the idea that Damiana has the potential as an immunostimulant additive for diets in aquaculture by enhancing immune parameters and protecting Almaco Jack against A. hydrophila infections upon four weeks of supplementation.


Assuntos
Benzotiazóis , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ácidos Sulfônicos , Turnera , Animais , Turnera/química , Antioxidantes/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/metabolismo , Suplementos Nutricionais/análise , Dieta , Peroxidase/metabolismo , Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas/veterinária , Ração Animal/análise
15.
Mol Biol Rep ; 51(1): 448, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536526

RESUMO

Arthritis is a common illness that affects joints and it may result in inflammation and pain. Even though arthritis usually affects older people, it can also affect children, adults, and both genders. Numerous arthritic mouse models have been developed but the CIA model of rheumatoid arthritis (RA) has received the most attention. With the use of steroids, DMARDs, and NSAIDs, therapy objectives such as reduced disease incidence and better pain management are achieved. Long-term usage of these therapeutic approaches may have negative side effects. Herbal medications are the source of several medicinal substances. Studies have explored the potential benefits of medicinal plants in treating RA. These benefits include up-regulating antioxidant potential, inhibiting cartilage degradation, down-regulating inflammatory cytokines such as NF-kB, IL-6, and TNF-α, and suppressing oxidative stress. In this review, we systematically discuss the role of traditional medicinal plants in rheumatoid arthritis (RA) disease treatment. The role of different medicinal plants such as Curcuma longa, Syzygium aromaticum, Zingiber officinale and Withania somnifera, against arthritis is discussed in this review.


Assuntos
Artrite Experimental , Artrite Reumatoide , Plantas Medicinais , Camundongos , Animais , Criança , Humanos , Feminino , Masculino , Idoso , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Artrite Experimental/tratamento farmacológico
16.
Appl Microbiol Biotechnol ; 108(1): 200, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326604

RESUMO

The plants of the genus Salacia L. are the storehouse of several bioactive compounds, and are involved in treating human diseases and disorders. Hitherto, a number of reports have been published on in vitro biotechnology as well as microbial involvement in the improvement of Salacia spp. The present review provides comprehensive insights into biotechnological interventions such as tissue culture for plant propagation, in vitro cultures, and endophytic microbes for up-scaling the secondary metabolites and biological potential of Salacia spp. Other biotechnological interventions such as molecular markers and bio-nanomaterials for up-grading the prospective of Salacia spp. are also considered. The in vitro biotechnology of Salacia spp. is largely focused on plant regeneration, callus culture, cell suspension culture, somatic embryogenesis, and subsequent ex vitro establishment of the in vitro-raised plantlets. The compiled information on tissue cultural strategies, involvement of endophytes, molecular markers, and nanomaterials will assist the advanced research related to in vitro manipulation, domestication, and commercial cultivation of elite clones of Salacia spp. Moreover, the genetic diversity and other molecular-marker based assessments will aid in designing conservation policies as well as support upgrading and breeding initiatives for Salacia spp. KEY POINTS: • Salacia spp. plays a multifaceted role in human health and disease management. • Critical and updated assessment of tissue culture, endophytic microbes, metabolites, molecular markers, and bio-nanomaterials of Salacia spp. • Key shortcomings and future research directions for Salacia biotechnology.


Assuntos
Salacia , Humanos , Biotecnologia , Plantas , Técnicas de Cultura de Células , Endófitos
17.
BMC Vet Res ; 20(1): 166, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689300

RESUMO

BACKGROUND: Traditional medical practices have been used to maintain animal health for millennia and have been passed down orally from generation to generation. In Ethiopia also, plants are the primary means by which the indigenous people in remote areas treat the illnesses of their animals. The present study was therefore, carried out to document the type and distribution of medicinal plants of the county. METHODS: To collect ethnobotanical information, a total of 205 informants (133 men and 72 women) were selected. Among these 121 traditional medicine practitioners, while the remaining 84 were selected through a systematic random sampling method. Ethnobotanical data were collected between January 2023 and August 2023 through semi-structured interviews, participant observation, guided filed walks and focus group discussions. Using descriptive statistics, the ethnobotanical data were analyzed for the Informant Consensus Factor (ICF) and Fidelity Level (FL) values, preference, and direct matrix rankings. SPSS 26.0 and PAST 4.11 software were used in data analysis. RESULTS: Totally, 78 ethnoveterinary medicinal plants distributed in 36 families were identified in the study area. Asteraceae was the dominant family with 9 species (14%), followed by Euphorbiaceae with 8 species (12%). Herbs 42(56%), wild collected 62 (66%), and leaf part (52%) made the highest share of the plant species. Hordeum vulgare L. had the highest fidelity level (FL = 98%) for treating bone fractures. Blackleg, bloat, and endoparsistes each had the highest values of the consensus factor among the informants (ICF = 1). According to preference ranking, Withania somnifera was the most potent remedy for treating blackleg. Knowledge of medicinal plants was shared through storytelling within families. CONCLUSION: In the study area, there is broad access to traditional medicinal plants that can treat ailments in animals. Conservation efforts should be prioritized to protect medicinal plants from threats such as agricultural expansion, drought, and development. Further research should be conducted to explore the potential of different medicinal plants for treating common livestock ailments.


Assuntos
Etnobotânica , Gado , Medicinas Tradicionais Africanas , Plantas Medicinais , Etiópia , Humanos , Masculino , Feminino , Animais , Fitoterapia/veterinária , Adulto , Pessoa de Meia-Idade , Idoso
18.
BMC Vet Res ; 20(1): 27, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243346

RESUMO

BACKGROUND: Epizootic lymphangitis is an infectious and chronically debilitating disease of the equines. Histoplasma capsulatum var. farciminosum, a thermally dimorphic fungi, is the causative agent for the disease. In Ethiopia, the disease significantly affects carthorses, posing threats to animal welfare, and resulting in substantial economic losses. Limited availability of widely accessible antifungals in addition to the chronic nature of the disease is the major challenge against management of epizootic lymphangitis. This study aimed to assess the in vitro efficacy of specific local medicinal plant extracts against the mycelial phase development of H. capsulatum var. farciminosum in southern Ethiopia. The leaves of Xanthium strumarium, Kanda (Family Rubiaceae), Croton macrostachyus (Bisana in Amharic), and Centella Asiatica (Echere waye as a local name in Zeyissegna) that are traditionally used for the treatment of different skin ailments were collected and extracted for the in vitro trial. RESULTS: The study revealed that methanol extracts of Xanthium strumarium, Kanda, Croton macrostachyus, and Centella Asiatica, at minimum inhibitory concentrations of 1.25 mg/ml, 2.5 mg/ml, 2.5 mg/ml, and 5 mg/ml, respectively, inhibited the growth of H. capsulatum var. farciminosum. CONCLUSION: This in vitro finding could serve as significant preliminary data in the exploration of effective alternative treatment options for epizootic lymphangitis. This study provides a crucial foundation for further research aimed at determining the chemical components and in vivo effectiveness of these plant extracts against both the mycelial and yeast forms of Histoplasma capsulatum var. farciminosum.


Assuntos
Histoplasmose , Doenças dos Cavalos , Linfangite , Plantas Medicinais , Cavalos , Animais , Histoplasma , Linfangite/veterinária , Etiópia , Histoplasmose/veterinária , Equidae , Doenças dos Cavalos/microbiologia
19.
Cell Biochem Funct ; 42(5): e4093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978319

RESUMO

The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 µg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 µg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.


Assuntos
Antioxidantes , Metanol , Componentes Aéreos da Planta , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Componentes Aéreos da Planta/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Metanol/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Células MCF-7 , Simulação por Computador , Flavonoides/farmacologia , Flavonoides/química , Fenóis/farmacologia , Fenóis/química , Apoptose/efeitos dos fármacos
20.
Plant Cell Rep ; 43(2): 45, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261110

RESUMO

KEY MESSAGE: A high-efficiency protoplast transient system was devised to screen genome editing elements in Salvia miltiorrhiza. Medicinal plants with high-value pharmaceutical ingredients have attracted research attention due to their beneficial effects on human health. Cell wall-free protoplasts of plants can be used to evaluate the efficiency of genome editing mutagenesis. The capabilities of gene editing in medicinal plants remain to be fully explored owing to their complex genetic background and shortfall of suitable transformation. Here, we took the Salvia miltiorrhiza as a representative example for developing a method to screen favorable gene editing elements with high editing efficiency in medical plants by a PEG-mediated protoplast transformation. Results indicated that using the endogenous SmU6.1 of S. miltiorrhiza to drive sgRNA and the plant codon-optimized Cas9 driven by the promoter SlEF1α can enhance the efficiency of editing. In summary, we uncover an efficacious transient method for screening editing elements and shed new light on increasing gene editing efficiency in medicinal plants.


Assuntos
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/genética , Edição de Genes , Protoplastos , RNA Guia de Sistemas CRISPR-Cas , Parede Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA