Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 82, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225589

RESUMO

BACKGROUND: Glioblastoma is the most common and most aggressive malignant primary brain tumor in adults. Glioblastoma cells synthesize and secrete large quantities of the excitatory neurotransmitter glutamate, driving epilepsy, neuronal death, tumor growth and invasion. Moreover, neuronal networks interconnect with glioblastoma cell networks through glutamatergic neuroglial synapses, activation of which induces oncogenic calcium oscillations that are propagated via gap junctions between tumor cells. The primary objective of this study is to explore the efficacy of brain-penetrating anti-glutamatergic drugs to standard chemoradiotherapy in patients with glioblastoma. METHODS/DESIGN: GLUGLIO is a 1:1 randomized phase Ib/II, parallel-group, open-label, multicenter trial of gabapentin, sulfasalazine, memantine and chemoradiotherapy (Arm A) versus chemoradiotherapy alone (Arm B) in patients with newly diagnosed glioblastoma. Planned accrual is 120 patients. The primary endpoint is progression-free survival at 6 months. Secondary endpoints include overall and seizure-free survival, quality of life of patients and caregivers, symptom burden and cognitive functioning. Glutamate levels will be assessed longitudinally by magnetic resonance spectroscopy. Other outcomes of interest include imaging response rate, neuronal hyperexcitability determined by longitudinal electroencephalography, Karnofsky performance status as a global measure of overall performance, anticonvulsant drug use and steroid use. Tumor tissue and blood will be collected for translational research. Subgroup survival analyses by baseline parameters include segregation by age, extent of resection, Karnofsky performance status, O6-methylguanine DNA methyltransferase (MGMT) promotor methylation status, steroid intake, presence or absence of seizures, tumor volume and glutamate levels determined by MR spectroscopy. The trial is currently recruiting in seven centers in Switzerland. TRIAL REGISTRATION: NCT05664464. Registered 23 December 2022.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Quimiorradioterapia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Reposicionamento de Medicamentos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glutamatos , Estudos Multicêntricos como Assunto , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Esteroides/uso terapêutico
2.
Mol Pharm ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108016

RESUMO

This study examines pharmaceutically acceptable inorganic salts of memantine, specifically focusing on hydrogen sulfate, sulfate, and dihydrogen phosphate salts, with the aim of finding alternatives to the commonly used chloride salt in the treatment of Alzheimer's disease. Through comprehensive solid-state characterization, including powder X-ray diffraction, thermal analysis, and solubility testing, we unveil complex polymorphic behaviors, reversible solid-state transitions, and significant differences in solubility and stability among the salts. Notably, the hydrogen sulfate salt emerges as a promising candidate for drug formulations, offering improved solubility, nonhygroscopic nature, and favorable morphological characteristics compared to the existing chloride salt. This work establishes a foundation for further investigation into memantine salts as potential therapeutics with improved efficacy.

3.
Br J Clin Pharmacol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925159

RESUMO

AIMS: Alzheimer's disease and related diseases (ADRD) is a progressive and inexorable disease. In France, acetylcholinesterase inhibitors and memantine were reimbursed for subjects with ADRD, until 2 modifications of their reimbursement rate (2012, 2018). We aimed to study the consequences of these measures on ADRD subjects' healthcare use. METHODS: We analysed data from the FRA-DEM cohort, including subjects with presumed incident ADRD identified since 2011 in the French health insurance system. We studied the healthcare use of subjects identified with incident ADRD in 2011, 2013, 2015, 2017 and 2019, notably the annual number of defined daily doses of various psychotropic groups. We performed 2 multivariate multinomial logistic regressions with the subcohort year as the dependent variable. RESULTS: In total, 165 120 subjects were included. A progressive decrease in exposure to antidementia drugs was observed between 2011 and 2019. Consultations with private neurologists or psychiatrists, and exposure to risperidone, antidepressants and benzodiazepines increased in the 2019 subcohort, following the 2018 reimbursement withdrawal. Meanwhile, the use of nursing/allied healthcare and emergency care increased over the subcohort years, whereas we observed a decrease in general practitioner consultations. CONCLUSION: These results suggest increases in private neurologist or psychiatrist consultations and exposure to recommended drugs after the reimbursement withdrawal, contrary to the fears expressed. However, antidementia drug exposure decreased long before the reimbursement modifications, probably due to the growing evidence of the modest effect of these drugs, and exposure to benzodiazepines increased after the reimbursement withdrawal.

4.
Brain ; 146(3): 873-879, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256600

RESUMO

Memantine is an N-methyl-D-aspartate receptor antagonist, approved for dementia treatment. There is limited evidence of memantine showing benefit for paediatric neurodevelopmental phenotypes, but no randomized placebo-controlled trials in children with developmental and epileptic encephalopathy. In this randomized double-blind placebo-controlled crossover trial (Trial registration: https://clinicaltrials.gov/ct2/show/NCT03779672), patients with developmental and epileptic encephalopathy received memantine and placebo, each for a 6-week period separated by a 2-week washout phase. Electroencephalography, seizure diary, patient caregivers' global impression, serum inflammatory markers and neuropsychological evaluation were performed at baseline and after each treatment phase. The primary outcome measure was classification as a 'responder', defined as ≥2 of: >50% seizure frequency reduction, electroencephalography improvement, caregiver clinical impression improvement or clear neuropsychological testing improvement. Thirty-one patients (13 females) enrolled. Two patients withdrew prior to initiating medication and two (twins) had to be removed from analysis. Of the remaining 27 patients, nine (33%) were classified as responders to memantine versus two (7%) in the placebo group (P < 0.02). Electroencephalography improvement was seen in eight patients on memantine compared to two on placebo (P < 0.04). Seizure improvement was observed in eight patients on memantine and two on placebo (P < 0.04). Caregivers reported overall clinical improvement in 10 patients on memantine compared to seven on placebo (not significant). Statistical analysis of neuropsychological evaluation suggested improvements in symptoms of attention-deficit hyperactivity disorder and autism. Memantine is a safe and effective treatment for children with developmental and epileptic encephalopathy, having the potential to improve both seizure control and cognitive function.


Assuntos
Epilepsia Generalizada , Memantina , Feminino , Humanos , Memantina/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Estudos Cross-Over , Resultado do Tratamento , Convulsões/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico , Método Duplo-Cego
5.
BMC Geriatr ; 24(1): 123, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302876

RESUMO

BACKGROUND: Since 2003 when memantine was first approved for use in the management of moderate-severe Alzheimer's dementia, its use has become more widespread and is being explored in other diseases like neuropathic pain, epilepsy, and mood disorders. Our case uniquely highlights two important adverse effects in a patient who overdosed on memantine. One is hypertension, which is easy to overlook as a medication side effect. The other is echolalia which is the repetition of words and phrases spoken by another person. It is commonly seen in children with autism spectrum disorder and has been reported in older adults with head injuries, delirium, and neurocognitive disorders. The aim of this patient story is to highlight the importance of medication reconciliation with caregivers and knowledge of adverse drug reactions in patient management. This case report has been presented previously in the form of an abstract at the American Geriatrics Society Presidential poster session in May 2023. CASE PRESENTATION: Our patient is an 86-year-old man with mild dementia and hypertension, who was brought to the emergency department (ED) due to abrupt onset of altered mental status and auditory hallucinations. Investigations including blood work, CT head and an electroencephalogram (EEG) did not reveal an etiology for this change in his condition. Due to elevated blood pressure on presentation, a nicardipine drip was started, and he was given IV midazolam to assist with obtaining imaging. While reviewing medications with his daughter, it was noted that sixty memantine pills were missing from the bottle. Poison control was contacted and they confirmed association of these features with memantine. With supportive care, his symptoms resolved in less than 100 h, consistent with the half-life of memantine. Notably, our patient was started on Memantine one month prior to this presentation. CONCLUSIONS: Hypertensive urgency and echolalia were the most striking symptoms of our patient's presentation. Though hypertension is a known sign of memantine overdose, it can easily be contributed to medication non-compliance in patients with dementia, being treated for hypertension. According to our literature review, this the first case of memantine overdose presenting with echolalia, a sign that is not commonly associated with adverse reactions to medications. This highlights the importance of an early medication review, especially with caregivers of people with dementia.


Assuntos
Doença de Alzheimer , Transtorno do Espectro Autista , Demência , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hipertensão , Masculino , Humanos , Idoso , Idoso de 80 Anos ou mais , Memantina/efeitos adversos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Ecolalia/induzido quimicamente , Ecolalia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Demência/tratamento farmacológico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico
6.
J Dual Diagn ; 20(2): 132-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38117676

RESUMO

The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.


Assuntos
N-Metilaspartato , Transtornos Relacionados ao Uso de Substâncias , Humanos , Receptor Nicotínico de Acetilcolina alfa7 , Ácido Cinurênico/metabolismo , Memantina , Estudos Multicêntricos como Assunto , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Neurochem Res ; 48(5): 1480-1490, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36509985

RESUMO

The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Ratos , Masculino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipopolissacarídeos/toxicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Minociclina/farmacologia , Minociclina/uso terapêutico , Minociclina/metabolismo , Ratos Sprague-Dawley , Memantina/farmacologia , Memantina/uso terapêutico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Transdução de Sinais , Estresse Oxidativo , Hipocampo/metabolismo , Superóxido Dismutase/metabolismo , Aprendizagem em Labirinto
8.
Mol Pharm ; 20(9): 4714-4728, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37523676

RESUMO

This work focuses on developing nanoemulsions using a low-energy emulsification method for the codelivery of donepezil and memantine in one dosage form intended to be administered via the intranasal route for enhanced brain delivery. The nanoemulsion formulation was prepared using a low emulsification technique and characterized using various microscopy and nasal ciliotoxicity studies. The safe nanoemulsion was intended for preclinical pharmacokinetics with brain distribution and pharmacodynamics in a scopolamine-induced murine model. The formulated nanoemulsion was 16 nm in size, with a zeta potential of -7.22 mV, and exhibited a spherical shape. The brain concentration of IN-administered NE for DPZ and MEM was ∼678 and 249 ng/mL after 15 min. This concentration is more than 2 times higher in amount when compared with NE administered via PO, free drug solution administered via IN and PO route both. However, the plasma concentration of IN-administered NE for DPZ and MEM was ∼3 and 28 ng/mL after 15 min. In pharmacodynamic studies, the efficacy of NE administered via the IN route was higher when compared with other groups in neurobehavioral, biochemical estimation, and gene expression studies. The results suggest that the IN route can be explored in the future for the delivery of actives via nanocolloidal carriers in the brain for neurological disorders and can serve as promising alternatives for conventional dosage forms and routes.


Assuntos
Memantina , Nanopartículas , Camundongos , Animais , Donepezila , Administração Intranasal , Encéfalo/metabolismo , Escopolamina , Emulsões/metabolismo , Nanopartículas/química , Tamanho da Partícula
9.
J Oncol Pharm Pract ; 29(2): 469-472, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35607285

RESUMO

INTRODUCTION: Memantine is used for neurocognitive protection in patients undergoing cranial radiotherapy for central nervous system tumors and is reported to be well-tolerated. CASE REPORT: Presented is a case of memantine-induced altered mental status requiring an intensive care unit admission. An 18-year-old male with relapsed, progressive medulloblastoma presented with severe altered mental status shortly after the first fraction of palliative whole brain radiotherapy. At the time, the patient was on day five of memantine therapy, which had been prescribed to reduce neurocognitive toxicity risk. MANAGEMENT & OUTCOME: Memantine was withheld while dexamethasone, valproate, and morphine were continued for headache. Approximately 50 h after admission, the patient's confusion significantly improved. Evaluation of acute altered mental status was unrevealing, including but not limited to negative urinary toxicology screen and lack of disease progression on imaging. Whole brain radiotherapy was resumed after a two-day cessation and he was discharged home after four days with complete resolution of symptoms. DISCUSSION: Clinicians should be aware of and consider the risk of altered mental status with memantine, given the increased utilization and upcoming clinical trials in pediatric patients.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Masculino , Humanos , Adolescente , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Memantina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Irradiação Craniana/efeitos adversos , Irradiação Craniana/métodos
10.
J Microencapsul ; 40(1): 15-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36622880

RESUMO

AIM: To prepare polymer-drug conjugates containing a combination of memantine, tacrine, and E)-N-(3-aminopropyl)cinnamide, promising therapeutics for the treatment of neurodegenerative disorders. METHODS: The conjugates were characterised by 1HNMR, particle size analysis, SEM, LC-MS, TEM/EDX, and XRD, followed by in vitro anti-acetylcholinesterase and drug release studies. RESULTS: 1H NMR analysis revealed successful drug conjugation with drug mass percentages in the range of 1.3-6.0% w/w. The drug release from the conjugates was sustained for 10 h in the range of 20-36%. The conjugates' capability to inhibit acetylcholinesterase (AChE) activity was significant with IC50 values in the range of 13-44.4 µm which was more effective than tacrine (IC50 =1698.8 µm). The docking studies further confirmed that the conjugation of the drugs into the polymer improved their anti-acetylcholinesterase activity. CONCLUSION: The drug release profile, particle sizes, and in vitro studies revealed that the conjugates are promising therapeutics for treating neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Sistemas de Liberação de Fármacos por Nanopartículas , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Memantina/química , Memantina/farmacologia , Memantina/uso terapêutico , Tacrina/farmacologia , Tacrina/química , Tacrina/uso terapêutico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/farmacologia , Polímeros/uso terapêutico
11.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445987

RESUMO

Tau protein aggregations are important contributors to the etiology of Alzheimer's disease (AD). Hydromethylthionine (HMT) is a potent inhibitor of tau aggregation in vitro and in vivo and is being developed as a possible anti-dementia medication. HMT was also shown to affect the cholinergic system and to interact with mitochondria. Here, we used tau-transgenic (L1 and L66) and wild-type NMRI mice that were treated with HMT, rivastigmine and memantine and with combinations thereof, for 2-4 weeks. We measured HMT concentrations in both brain homogenates and isolated mitochondria and concentrations of glucose, lactate and pyruvate in brain by microdialysis. In isolated brain mitochondria, we recorded oxygen consumption of mitochondrial complexes by respirometry. While rivastigmine and memantine lowered mitochondrial respiration, HMT did not affect respiration in wild-type animals and increased respiration in tau-transgenic L1 mice. Glucose and lactate levels were not affected by HMT administration. The presence of HMT in isolated mitochondria was established. In summary, traditional anti-dementia drugs impair mitochondrial function while HMT has no adverse effects on mitochondrial respiration in tau-transgenic mice. These results support the further development of HMT as an anti-dementia drug.


Assuntos
Doença de Alzheimer , Memantina , Camundongos , Animais , Rivastigmina/farmacologia , Memantina/farmacologia , Memantina/uso terapêutico , Proteínas tau/genética , Proteínas tau/metabolismo , Camundongos Transgênicos , Inibidores da Colinesterase/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/induzido quimicamente , Mitocôndrias/metabolismo
12.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175959

RESUMO

We studied the neuroprotective properties of the non-competitive NMDA receptor antagonist memantine, in combination with a positive allosteric modulator of metabotropic glutamate receptors of Group III, VU 0422288. The treatment was started 48 h after the injection of neurotoxic agent trimethyltin (TMT) at 7.5 mg/kg. Three weeks after TMT injection, functional and morphological changes in a rat hippocampus were evaluated, including the expression level of genes characterizing glutamate transmission and neuroinflammation, animal behavior, and hippocampal cell morphology. Significant neuronal cell death occurred in the CA3 and CA4 regions, and to a lesser extent, in the CA1 and CA2 regions. The death of neurons in the CA1 field was significantly reduced in animals with a combined use of memantine and VU 0422288. In the hippocampus of these animals, the level of expression of genes characterizing glutamatergic synaptic transmission (Grin2b, Gria1, EAAT2) did not differ from the level in control animals, as well as the expression of genes characterizing neuroinflammation (IL1b, TGF beta 1, Aif1, and GFAP). However, the expression of genes characterizing neuroinflammation was markedly increased in the hippocampus of animals treated with memantine or VU 0422288 alone after TMT. The results of immunohistochemical studies confirmed a significant activation of microglia in the hippocampus three weeks after TMT injection. In contrast to the hilus, microglia in the CA1 region had an increase in rod-like cells. Moreover, in the CA1 field of the hippocampus of the animals of the MEM + VU group, the amount of such microglia was close to the control. Thus, the short-term modulation of glutamatergic synaptic transmission by memantine and subsequent activation of Group III mGluR significantly affected the dynamics of neurodegeneration in the hippocampus.


Assuntos
Receptores de N-Metil-D-Aspartato , Compostos de Trimetilestanho , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Doenças Neuroinflamatórias , Hipocampo/metabolismo , Compostos de Trimetilestanho/farmacologia
13.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615626

RESUMO

Recent evidences indicate that there is a substantial increase in worldwide cases of dementia. Alzheimer's disease is the leading cause of dementia and may contribute to 60-70% of cases. Quercetin is a unique bioflavonoid that has numerous therapeutic benefits such as anti-allergy, anti-ulcer, anti-inflammatory, anti-hypertensive, anti-cancer, immuno-modulatory, anti-infective, antioxidant, acetylcholinesterase inhibitory activity, neuroprotective effects, etc. In the present study, we evaluated the neuroprotective effect of orally administered quercetin with memantine in albino Wistar rats after inducing neurotoxicity through AlCl3 (100 mg/kg, p.o.). Chronic administration of AlCl3 resulted in poor retention of memory and significant oxidative damage. Various behavioral parameters, such as locomotor activity, Morris water maze, elevated plus maze, and passive avoidance test, were assessed on days 21 and 42 of the study. The animals were euthanatized following the completion of the last behavioral assessment. Various oxidative stress parameters were assessed to know the extent of oxidative damage to brain tissue. Quercetin with memantine has shown significant improvement in behavioral studies, inhibition of AChE activity, and reduction in oxidative stress parameters. Histopathological studies assessed for cortex and hippocampus using hematoxylin and eosin (H&E), and Congo red stain demonstrated a reduction in amyloid-ß plaque formation after treatment of quercetin with memantine. Immunohistochemistry showed that quercetin with memantine treatment also improved the expression of brain-derived neurotrophic factor (BDNF) and inhibited amyloid-ß plaque formation. The present study results demonstrated protective effects of treatment of quercetin with memantine in the neurotoxicity linked to aluminum chloride in albino Wistar rats.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Animais , Fármacos Neuroprotetores/uso terapêutico , Ratos Wistar , Memantina/farmacologia , Quercetina/farmacologia , Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Estresse Oxidativo , Aprendizagem em Labirinto
14.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202606

RESUMO

In an effort to further understand the challenges facing in vivo imaging probe development for the N-methyl-D-aspartate (NMDA) receptor ion channel, we have evaluated the effect of glutamate on the Alzheimer's disease (AD) brain. Human post-mortem AD brain slices of the frontal cortex and anterior cingulate were incubated with [3H]MK-801 and adjacent sections were tested for Aß and Tau. The binding of [3H]MK-801 was measured in the absence and presence of glutamate and glycine. Increased [3H]MK-801 binding in AD brains was observed at baseline and in the presence of glutamate, indicating a significant increase (>100%) in glutamate-induced NMDA ion channel activity in AD brains compared to cognitively normal brains. The glycine effect was lower, suggesting a decrease of the co-agonist effect of glutamate and glycine in the AD brain. Our preliminary findings suggest that the targeting of the NMDA ion channel as well as the glutamate site may be appropriate in the diagnosis and treatment of AD. However, the low baseline levels of [3H]MK-801 binding in the frontal cortex and anterior cingulate in the absence of glutamate and glycine indicate significant hurdles for in vivo imaging probe development and validation.


Assuntos
Doença de Alzheimer , Fabaceae , Humanos , N-Metilaspartato/farmacologia , Doença de Alzheimer/diagnóstico por imagem , Maleato de Dizocilpina/farmacologia , Encéfalo/diagnóstico por imagem , Canais Iônicos , Ácido Glutâmico , Glicina , Receptores de N-Metil-D-Aspartato , Tomografia por Emissão de Pósitrons
15.
Toxicol Mech Methods ; 33(7): 590-595, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051629

RESUMO

Organophosphorus nerve agents pose a global threat to both military personnel and civilian population, because of their high acute toxicity and insufficient medical countermeasures. Commonly used drugs could ameliorate the intoxication and overall medical outcomes. In this study, we tested the drugs able to alleviate the symptoms of Alzheimer's disease (donepezil, huperzine A, memantine) or Parkinson's disease (procyclidine). They were administered to mice before soman intoxication in terms of their: i) protection potential against soman toxicity and ii) influence on post-exposure therapy consisting of atropine and asoxime (also known as oxime HI-6). Their pretreatment effect was not significant, when administered alone, but in combination (acetylcholinesterase inhibitor such as denepezil or huperzine A with NMDA antagonist such as memantine or procyclidine) they lowered the soman toxicity more than twice. These combinations also positively influenced the efficacy of post-exposure treatment in a similar fashion; the combinations increased the therapeutic effectiveness of antidotal treatment. In conclusion, the most effective combination - huperzine A and procyclidine - lowered the toxicity three times and improved the post-exposure therapy efficacy more than six times. These results are unprecedented in the published literature.


Assuntos
Venenos , Soman , Camundongos , Animais , Inibidores da Colinesterase/toxicidade , Soman/toxicidade , Acetilcolinesterase/metabolismo , Receptores de N-Metil-D-Aspartato , Prociclidina/farmacologia , Memantina/uso terapêutico , Taxa de Sobrevida , Compostos de Piridínio/farmacologia , Antídotos/uso terapêutico , Atropina/uso terapêutico , Atropina/farmacologia , Oximas/uso terapêutico , Oximas/farmacologia
16.
Bull Exp Biol Med ; 175(4): 446-449, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37768458

RESUMO

The non-competitive NMDA glutamate receptor antagonist memantine has neuroprotective properties and is the first non-cholinergic drug approved for the treatment of Alzheimer's disease. The purpose of this work was to test the hypothesis that injections of memantine to healthy animals can affect the subunit composition of NMDA receptors in the brain, which may explain the effects of its chronic administration. For this, the expression of subunits GluN1, GluN2A, GluN2B, and GluN2C was studied in the hippocampus and prefrontal cortex of rats after single or five subchronic injections of memantine. The results showed that the GluN2C subunit (GRIN2C) plays an important role in the effects of memantine; against the background of memantine treatment, the expression of this subunit markedly decreased in the prefrontal cortex, but not in the hippocampus, which significantly affected the excitation/inhibition balance in cortical structures.


Assuntos
Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico
17.
Dokl Biochem Biophys ; 512(1): 284-287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38093132

RESUMO

New hybrid structures based on memantine and edaravone molecules, in which the pyrazolone ring and adamantane fragments are linked by an alkyl linker, were synthesized. It was found that, in addition to the ability to block the intrachannel site of NMDA receptors, the new hybrid compounds exhibit the property of blockers of the allosteric site of NMDA receptors, which is not inherent in memantine and edaravone preparations. The most active hit compound was determined, which, along with the properties of a two-site blocker of the NMDA receptor, exhibits a pronounced activity as an inhibitor of lipid peroxidation, similarly to the drug edaravone.


Assuntos
Adamantano , Memantina , Memantina/farmacologia , Memantina/química , Edaravone , Receptores de N-Metil-D-Aspartato , Adamantano/farmacologia
18.
Turk J Med Sci ; 53(4): 894-901, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38031940

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease. Thymoquinone (TQ) has broad biological functions, including antiinflammatory, antioxidant, neuroprotective properties. Memantine (MEM) is indicated for the symptomatic treatment of moderate to severe AD. We aimed to evaluate the effect of TQ alone or in combination with MEM on memory and hippocampal morphology in an STZ-induced rat AD model. METHODS: Thirty male rats were included in this study. The AD model was created by giving ICV STZ. The rats were divided into 5 groups (n = 6 each). Group 1 (control group): The rats received only ICV-STZ 3 mg/kg for 2 weeks. Group 2 (sham group): In addition to ICV STZ, 9% NaCl, 1 mL/day i.p. for 2 weeks of injection, was applied. Group 3 (TQ group): In addition to ICV STZ, rats received TQ 10 mg/kg i.p. for 2 weeks. Group 4 (MEM group): In addition to ICV STZ, rats were given MEM at a dose of 5 mg/kg for two weeks. Group 5 (TQ+MEM group): In addition to ICV STZ, this group was given TQ (10 mg/kg/day, i.p.) and MEM (5 mg/kg/day, i.p.) for 2 weeks. On the 15th day, passive avoidance learning (PAL) was applied to all groups. Then, rats were sacrificed, neurons in the hippocampal CA1, CA2, CA3 regions were evaluated. RESULTS: Groups 3, 4, 5 had longer latency periods than groups 1 and 2. The neuron density in the CA1, CA2, CA3 regions had decreased in groups 1 and 2 compared to groups 3, 4, 5. There were significantly more neurons in groups 3, 4, 5 than in groups 1 and 2. DISCUSSION: We found that TQ alone and in combination with MEM showed ameliorative effects on memory and hippocampal morphology. TQ may offer a promising treatment strategy for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Ratos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Memantina/efeitos adversos , Estreptozocina/efeitos adversos , Hipocampo , Modelos Animais de Doenças , Aprendizagem em Labirinto
19.
Korean J Physiol Pharmacol ; 27(5): 449-456, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641807

RESUMO

N-methyl-D-aspartate (NMDA) receptors are ionic glutamine receptors involved in brain development and functions such as learning and memory formation. NMDA receptor inhibition is associated with autophagy activation. In this study, we investigated whether the NMDA receptor antagonists, memantine and ifenprodil, induce autophagy in human retinal pigment epithelial cells (ARPE-19) to remove Nretinylidene- N-retinylethanolamine (A2E), an intracellular lipofuscin component. Fluorometric analysis using labeled A2E (A2E-BDP) and confocal microscopic examination revealed that low concentrations of NMDA receptor antagonists, which did not induce cytotoxicity, significantly reduced A2E accumulation in ARPE-19 cells. In addition, memantine and ifenprodil activated autophagy in ARPE-19 cells as measured by microtubule-associated protein 1A/1B-light chain3-II formation and phosphorylated p62 protein levels. Further, to understand the correlation between memantine- and ifenprodil-mediated A2E degradation and autophagy, autophagy-related 5 (ATG5) was depleted using RNA interference. Memantine and ifenprodil failed to degrade A2E in ARPE-19 cells lacking ATG5. Taken together, our study indicates that the NMDA receptor antagonists, memantine and ifenprodil, can remove A2E accumulated in cells via autophagy activation in ARPE-19 cells.

20.
J Neurochem ; 160(2): 172-184, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855998

RESUMO

The prevention of tau protein aggregations is a therapeutic goal for the treatment of Alzheimer's disease (AD), and hydromethylthionine (HMT) (also known as leucomethylthioninium-mesylate [LMTM]), is a potent inhibitor of tau aggregation in vitro and in vivo. In two Phase 3 clinical trials in AD, HMT had greater pharmacological activity on clinical endpoints in patients not receiving approved symptomatic treatments for AD (acetylcholinesterase (AChE) inhibitors and/or memantine) despite different mechanisms of action. To investigate this drug interaction in an animal model, we used tau-transgenic L1 and wild-type NMRI mice treated with rivastigmine or memantine prior to adding HMT, and measured changes in hippocampal acetylcholine (ACh) by microdialysis. HMT given alone doubled hippocampal ACh levels in both mouse lines and increased stimulated ACh release induced by exploration of the open field or by infusion of scopolamine. Rivastigmine increased ACh release in both mouse lines, whereas memantine was more active in tau-transgenic L1 mice. Importantly, our study revealed a negative interaction between HMT and symptomatic AD drugs: the HMT effect was completely eliminated in mice that had been pre-treated with either rivastigmine or memantine. Rivastigmine was found to inhibit AChE, whereas HMT and memantine had no effects on AChE or on choline acetyltransferase (ChAT). The interactions observed in this study demonstrate that HMT enhances cholinergic activity in mouse brain by a mechanism of action unrelated to AChE inhibition. Our findings establish that the drug interaction that was first observed clinically has a neuropharmacological basis and is not restricted to animals with tau aggregation pathology. Given the importance of the cholinergic system for memory function, the potential for commonly used AD drugs to interfere with the treatment effects of disease-modifying drugs needs to be taken into account in the design of clinical trials.


Assuntos
Hipocampo/efeitos dos fármacos , Memantina/farmacologia , Azul de Metileno/análogos & derivados , Rivastigmina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Dopaminérgicos/farmacologia , Interações Medicamentosas , Feminino , Hipocampo/metabolismo , Azul de Metileno/farmacologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA