Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(20)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38320322

RESUMO

The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.

2.
J Fluoresc ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460094

RESUMO

Herein, we report the nonlinear optical (NLO) refraction and absorption features of azo dye namely, methyl orange (MO) dissolved in ethanol, methanol, acetone, 1-propanol, DMF and DMSO. The UV-Visible absorption study reveals that the maximum absorption spectrum of MO dye appeared towards longer wavelength by increasing the solvent polarizability is the result of red shift or bathochromic shift. The Z-scan method is utilized to measure the third-order NLO features of MO dye in different polar solvents. A continuous wave laser with 5-mW power and an excitation wavelength of 405 nm is employed in the Z-scan technique. The NLO features including nonlinear index of refraction (n2), nonlinear coefficient of absorption (ß) and third-order NLO susceptibility (χ3) are calculated to be the order of 10-7 cm2/W, 10-2 cm/W and 10-7 esu, respectively. The NLO index of refraction shows peak-valley transmittance is the result of self-defocusing and NLO absorption coefficient exhibits both positive and negative nonlinearity owing to saturable absorption (SA) and reverse saturable absorption (RSA). The effect of solvent polarizability and dipole moment on third-order NLO susceptibility of MO dye is discussed. Based on the experimental results, an azo dye MO appears to be a promising option for NLO applications in the future.

3.
Biometals ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235582

RESUMO

Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing Polyalthia korintii aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV-Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40-60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against Enterococcus faecalis and Klebsiella pneumoniae. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of Culex quinquefasciatus was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.

4.
Environ Res ; 252(Pt 1): 118759, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537741

RESUMO

Among the various methods for the removal of azo dye, electrocoagulation is recognized to be highly efficient. However, the process is associated with high operation and maintenance cost, which demands the need for reducing the electrolysis time without compromising the performance efficiency. This can be achieved by adopting hybrid electrocoagulation process with a low-cost but effective process, such as adsorption. The study investigated the performance of a hybrid electrocoagulation-biocomposite system (H-EC-BC) for removing methyl orange dye. Firstly, the operating parameters of electrocoagulation process were optimized and a removal efficiency of 99% has been attained using Fe-SS electrodes at a pH of 6 for a reaction time of 30 min. The performance of EC process was found to be decreasing with increase in dye concentration. Secondly, biocomposite was synthesized from Psidium guajava leaves and characterized using SEM, FTIR, EDAX, and XRD analyses. The results suggested that it is having a porous nature and cellulose crystal structure and confirmed the presence of chemical elements such as carbon (65.2%), oxygen (29.1%) as primary with Fe, Cl, Na and Ca as secondary elements. The performance of the biocomposite was evaluated for the dye adsorption using spectrophotometric methods. Various operating parameters were optimized using experimental methods and a maximum removal efficiency of 65% was achieved at a pH of 6, dosage of 5 g/L and an adsorption contact time of 120 min. The maximum efficiency (92.78%) was obtained with Fe-SS electrodes and KCl as a sustaining electrolyte under acidic circumstances (pH 6). The biocomposite was observed to be more efficient for higher dye concentration. Langmuir and Freundlich adsorption isotherms were fitted with the experimental results with R2 values as 0.926 and 0.980 respectively. The adsorption kinetics were described using Pseudo-first and Pseudo-second order models, wherein Pseudo-second order model fits the experimental results with R2 value of 0.999. The energy consumption of electrocoagulation (EC) process in the hybrid H-EC-BC system was compared to that of a standard EC process. The results demonstrated that the hybrid system is approximately 7 times more energy efficient than the conventional process, thereby implicating its adaptability for field application.


Assuntos
Corantes , Águas Residuárias , Poluentes Químicos da Água , Adsorção , Corantes/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Compostos Azo/química , Eletrocoagulação/métodos , Descoloração da Água/métodos , Purificação da Água/métodos
5.
Environ Res ; 247: 118256, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266900

RESUMO

Water pollution by dyes and pesticides poses significant threats to our ecosystem. In this research, a visible-light ternary composite photocatalytic system was fabricated using graphene oxide (GO) by reducing with N2H4, modifying with KOH, and decorating with Ag/V2O5. The fabricated photocatalysts were characterized through FTIR, SEM, XRD, BET, PL, EDX, ESR, UV-vis spectroscopy, TGA, ESI-MS, and Raman spectroscopy. The point zero charge of the reduced and modified GO (RMGO/Ag/V2O5) was measured to be 6.7 by the pH drift method. This ternary composite was able to achieve complete removal of methyl orange (MO) and chlorpyrifos (CP) in solutions in 80 min under the optimum operation conditions (e.g., in terms of pollutant/catalyst concentrations, pH effects, and contact time). The role of active species responsible for photocatalytic activity was confirmed by scavenger analysis and ESR investigations. The potential mechanism for photocatalytic activity was studied through a fragmentation process carried out by MS analysis. Through nonlinear fitting of the experimental data, MO and CP exhibited the best fit results with the pseudo 1st-order kinetics (quantum yields of 1.07 × 10-3 and 2.16 × 10-3 molecules photon-1 and space-time yields of 1.53 × 10-5 and 2.7 × 10-5 molecules photon-1 mg-1, respectively). The structure of the nanomaterials remained mostly intact to support increased stability and reusability of the prepared photocatalysts even after 10 successive regeneration cycles.


Assuntos
Compostos Azo , Clorpirifos , Grafite , Praguicidas , Corantes/química , Ecossistema , Luz
6.
Environ Res ; 256: 119229, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797465

RESUMO

There has been significant attention on the efficient degradation of pollutants in wastewater using metal-organic frameworks (MOFs) photocatalytic methods over the past decade. Herein, we examined the elimination of two different types of water-contaminating dyes, specifically cationic dye methylene blue (MB) and anionic dye methyl orange (MO), through the application of bimetal Cu/Ni-BTC@SiO2 MOF as high performance photocatalyst. The bimetal Cu/Ni-BTC@SiO2 photocatalyst was synthesized and characterized by XRD, FTIR, SEM, TEM, TGA, BET, DRS, and VSM techniques. The examination of the impact of different operational factors on the elimination of pollutants involved a comprehensive analysis of variables including the photocatalyst type, initial pollutant concentration, quantity of photocatalyst, and pH levels. The highest removal efficiency for MO and MB dyes by the photocatalyst was found to be 98 and 71%, respectively, within 60 min. In the fifth reaction stage, degradation efficiency for MO and MB was 76 and 56% respectively. Kinetic investigations demonstrated that, in the context of the uptake of MB and MO dyes, the interparticle diffusion, and pseudo-second-order models emerged as possessing the most robust correlation coefficients with the experimental data, registering values of 0.988 and 0.961, respectively. The examination of isotherms reveals that the isotherm models proposed by BET, and Anderson (V) demonstrate the highest level of conformity with the empirical data for the decomposition of MB and MO dyes, correspondingly. The TOC levels decreased significantly from 51 to 14 and 47 to 3 mg/L for MB and MO dyes, indicating the effective mineralization process using Cu/Ni-BTC@SiO2.


Assuntos
Cobre , Azul de Metileno , Dióxido de Silício , Poluentes Químicos da Água , Cobre/química , Cobre/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Dióxido de Silício/química , Azul de Metileno/química , Compostos Azo/química , Corantes/química , Níquel/química , Níquel/análise , Catálise , Cinética
7.
Environ Res ; 247: 118193, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220086

RESUMO

In the presented study, a novel polypyrrole-decorated bentonite magnetic nanocomposite (MBnPPy) was synthesized for efficient removal of both anionic methyl orange (MO) and cationic crystal violet (CV) dyes from contaminated water. The synthesis of this novel adsorbent involved a two-step process: the magnetization of bentonite followed by its modification through in-situ chemical polymerization. The adsorbent was characterized by SEM/EDX, TEM/SAED, BET, TGA/DTA-DTG, FTIR, VSM, and XRD studies. The investigation of the adsorption properties of MBnPPy was focused on optimizing various parameters, such as dye concentration, medium pH, dosage, contact time, and temperature. The optimal conditions were established as follows: dye concentration of Co (CV/MO) at 100 mg/L, MBnPPy dosage at 2.0 g/L, equilibrium time set at 105 min for MO and 120 min for CV, medium pH adjusted to 5.0 for MO dye and 8.0 for CV dye, and a constant temperature of 303.15 K. The different kinetic and isotherm models were applied to fit the experimental results, and it was observed that the Pseudo-2nd-order kinetics and Langmuir adsorption isotherm were the best-fitted models. The maximal monolayer adsorption capacities of the adsorbent were found to be 78.74 mg/g and 98.04 mg/g (at 303.15 K) for CV and MO, respectively. The adsorption process for both dyes was exothermic and spontaneous. Furthermore, a reasonably good regeneration ability of MBnPPy (>83.45%/82.65% for CV/MO) was noted for up to 5 adsorption-desorption cycles with little degradation. The advantages of facile synthesis, cost-effectiveness, non-toxicity, strong adsorption capabilities for both anionic and cationic dyes, and easy separability with an external magnetic field make MBnPPy novel.


Assuntos
Compostos Azo , Nanocompostos , Poluentes Químicos da Água , Corantes/química , Adsorção , Polímeros , Violeta Genciana/química , Bentonita/química , Pirróis , Água/química , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Cinética
8.
Environ Res ; 248: 118218, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266892

RESUMO

The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Bentonita/química , Adsorção , Poluentes Químicos da Água/análise , Água , Nanocompostos/química , Cinética , Concentração de Íons de Hidrogênio
9.
Mikrochim Acta ; 191(9): 546, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158725

RESUMO

Tryptophan(Trp) is being explored as a potential biomarker for various diseases associated with decreased tryptophan levels; however, metabolomic methods are expensive and time-consuming and require extensive sample analysis, making them urgently needed for trace detection. To exploit the properties of Ti3C2 MXenes a rational porous methyl orange (MO)-delaminated Ti3C2 MXene was prepared via a facile mixing process for the electrocatalytic oxidation of Trp. The hollow-like 3D structure with a more open structure and the synergistic effect of MO and conductive Ti3C2 MXene enhanced its electrochemical catalytic capability toward Trp biosensing. More importantly, MO can stabilize Ti3C2 MXene nanosheets through noncovalent π-π interactions and hydrogen bonding. Compared with covalent attachment, these non-covalent interactions preserve the electronic conductivity of the Ti3C2 MXene nanosheets. Finally, the addition of MO-derived nitrogen (N) and sulfur (S) atoms to Ti3C2 MXene enhanced the electronegativity and improved its affinity for specific molecules, resulting in high-performance electrocatalytic activity. The proposed biosensor exhibited a wide linear response in concentration ranges of 0.01-0.3 µM and 0.5-120 µM, with a low detection limit of 15 nM for tryptophan detection, and high anti-interference ability in complex media of human urine and egg white matrices. The exceptional abilities of the MO/Ti3C2 nanocatalyst make it a promising electrode material for the detection of important biomolecules.


Assuntos
Compostos Azo , Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , Nanocompostos , Titânio , Triptofano , Triptofano/química , Triptofano/urina , Triptofano/análise , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Titânio/química , Técnicas Biossensoriais/métodos , Compostos Azo/química , Humanos , Oxirredução , Eletrodos , Porosidade
10.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673825

RESUMO

This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.


Assuntos
Regeneração Óssea , Química Verde , Óxido de Magnésio , Extratos Vegetais , Análise Espectral Raman , Óxido de Magnésio/química , Química Verde/métodos , Regeneração Óssea/efeitos dos fármacos , Extratos Vegetais/química , Nanopartículas/química , Nanopartículas Metálicas/química , Difração de Raios X
11.
J Environ Manage ; 368: 122068, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116819

RESUMO

Efficient filtering of dyes is essential for the protection of ecosystem and human health due to the considerable water pollution caused by the effluents released from the sector. We present a simple, scalable UV radiation-assisted method for treating methyl orange dye-polluted water from the textile industry using zirconium phosphate-loaded polyaniline-graphene oxide (PGZrP) composite. The new material was synthesized by sonochemically incorporating a polyaniline-graphene oxide composite with hydrothermally synthesized zirconium phosphate. The efficacy of PGZrP in eliminating methyl orange was evaluated using experimental conditions, and the adsorption capacity was investigated as a function of pH, temperature, adsorbent dosage, and adsorption period. The system follows Langmuir adsorption isotherm with pseudo-second-order kinetics. Thermodynamics studies showed that enthalpy (H°) and entropy (S°) values are positive, indicating that the dye adsorption increases with increasing temperature and is an endothermic reaction. The maximum adsorption capacity was found to be 36.45379 mg/g for methyl orange. Using the COMSOL Multiphysics CFD Platform, an attempt was made to check the temperature and concentration profile of a PGZrP composite in a real industrial system. The predicted result shows that there is no significant temperature change in the material during the adsorption process and the concentration of dye is mainly located on the top region of the bed. The developed zirconium phosphate decorated polyaniline-graphene oxide composite can be successfully utilized for the effective removal of methyl orange from industrial wastewater in bulk quantity which is coming from the textile industry, and the composite can be reused for several cycles with good efficiency. In this work, we have designed a miniaturized proof of concept to remove methyl orange from water which showed good dye removal efficiency.


Assuntos
Compostos de Anilina , Corantes , Grafite , Zircônio , Grafite/química , Zircônio/química , Compostos de Anilina/química , Adsorção , Corantes/química , Poluentes Químicos da Água/química , Têxteis , Cinética , Compostos Azo/química , Termodinâmica , Indústria Têxtil
12.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731441

RESUMO

Nanoporous (NP) gold, the most extensively studied and efficient NP metal, possesses exceptional properties that make it highly attractive for advanced technological applications. Notably, its remarkable catalytic properties in various significant reactions hold enormous potential. However, the exploration of its catalytic activity in the degradation of water pollutants remains limited. Nevertheless, previous research has reported the catalytic activity of NP Au in the degradation of methyl orange (MO), a toxic azo dye commonly found in water. This study aims to investigate the behavior of nanoporous gold in MO solutions using UV-Vis absorption spectroscopy and high-performance liquid chromatography. The NP Au was prepared by chemical removal of silver atoms of an AuAg precursor alloy prepared by ball milling. Immersion tests were conducted on both pellets and powders of NP Au, followed by examination of the residual solutions. Additionally, X-ray photoelectron spectroscopy and electrochemical impedance measurements were employed to analyze NP Au after the tests. The findings reveal that the predominant and faster process involves the partially reversible adsorption of MO onto NP Au, while the catalytic degradation of the dye plays a secondary and slower role in this system.

13.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675638

RESUMO

Herein, a series of ZnO-doped lignin-based carbons (LC/ZnO) were successfully prepared from different types of lignin and used for methyl orange (MO) photocatalytic degradation. The apparent morphology, internal structure, and photoelectric properties of prepared LC/ZnO composites and their effects on subsequent MO photocatalytic degradation were investigated by various characterization techniques. The results showed that the LC/ZnO composites that were prepared in this work mainly consisted of highly dispersed ZnO nanoparticles and lignin-based carbon nano-sheets, which were beneficial for subsequent photogenerated electrons and holes formation, dispersion, and migration. The MO could be significantly degraded with various ZnO-doped lignin-based carbons, especially over the LCSL/ZnO, and the maximum degradation rate was 96.9% within 30 min under the simulated 300w sunlight exposure. The experiments of free radical elimination showed that the photocatalytic degradation of MO over LC/ZnO were a result of the co-action of multiple free radicals, and h+ might play the predominant roles in MO degradation. In addition, the pH of the solution had little effect on MO degradation, and the MO could be effectively degraded even in an alkaline solution of pH = 12.0. The cycling experiments showed that the prepared LC/ZnO had a good stability for MO photodegradation, especially for LCSL/ZnO, even after 5 times recycling, and the degradation rate of MO only dropped from 97.0% to 93.0%. The research not only provided a fundamental theory for the efficient photocatalytic degradation of MO by LC/ZnO composites, but also offered a new insight into lignin valorization.

14.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675656

RESUMO

To develop valuable applications for the invasive weed Palmer amaranth, we utilized it as a novel biochar source and explored its potential for methyl orange adsorption through the synthesis of chitosan-encapsulated Palmer amaranth biochar composite microspheres. Firstly, the prepared microspheres were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy and were demonstrated to have a surface area of 19.6 m2/g, a total pore volume of 0.0664 cm3/g and an average pore diameter of 10.6 nm. Then, the influences of pH, dosage and salt type and concentration on the adsorption efficiency were systematically investigated alongside the adsorption kinetics, isotherms, and thermodynamics. The results reveal that the highest adsorption capacity of methyl orange was obtained at pH 4.0. The adsorption process was well fitted by a pseudo-second-order kinetic model and the Langmuir isotherm model, and was spontaneous and endothermic. Through the Langmuir model, the maximal adsorption capacities of methyl orange were calculated as 495.0, 537.1 and 554.3 mg/g at 25.0, 35.0 and 45.0 °C, respectively. Subsequently, the adsorption mechanisms were elucidated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy investigations. It is indicated that electrostatic interactions, hydrogen bonding, π-π interactions and hydrophobic interactions between methyl orange and the composite microspheres were pivotal for the adsorption process. Finally, the regeneration studies demonstrated that after five adsorption-desorption cycles, the microspheres still maintained 93.6% of their initial adsorption capacity for methyl orange. This work not only presents a promising method for mitigating methyl orange pollution but also offers a sustainable approach to managing Palmer amaranth invasion.

15.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124993

RESUMO

In this work, a series of thermosensitive ionic liquid functionalized polymers, PNx(IL)y, with controllable morphology and particle size were prepared by free radical polymerization. Then, using the polymer PN64(IL)8 with uniform morphology as a templating agent, the ZnO composite photocatalytic materials doped with rare earth metal Ce were prepared in combination with a microwave-assisted and templated hydrothermal reaction method. Series different Ce-doping amount photocatalytic materials ZnO-Ce-x‱ were characterized by XRD, SEM, TEM, XPS, and other methods. The results demonstrated that the templated materials PN64(IL)8 can prepare ZnO-Ce-2‱ with uniform petaloid ambulacra shape, good distribution of elements, and excellent photocatalytic performance. Photocatalytic degradation experiments of methyl orange (MO) showed that when the Ce-doping amount is only 2‱, the degradation rate of organic dyes can reach 96.5% by reacting the photocatalytic materials in water for 1 h. In addition, this kind of photocatalyst can be used for the degradation of high-concentration MO, as well as being easily recovered and effectively reused by simple filtration. Therefore, the structure of this kind of photocatalyst is controllable in the preparation process with an extremely low Ce-doping amount compared with current reports, and it has a good application prospect in the field of wastewater treatment technology.

16.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125065

RESUMO

In this work, the role of ascorbic acid in the process of azo dye degradation was explained. For this purpose, the kinetics of azo dye degradation under different conditions was studied. Among them, the influence of daylight protection/exposition, different concentrations of ascorbic acid (0.567-0.014 mol/dm3), and temperature (20 °C and 50 °C) on the rate of the dyes' degradation was considered. For this process, the kinetic equation was proposed, which indicates that the process of azo dye degradation using ascorbic acid is first order. Moreover, the observed rate constants were determined, and the mechanism of azo dye degradation was proposed. Spectrophotometry results, together with FTIR, fluorescence spectroscopy, and DFT calculations, explain the origin of the decolorization of the azo dyes and highlight the role of ascorbic acid in this process. Detailed analysis of the obtained products indicates that the process itself goes through several stages in which equally or more toxic compounds are formed. Obtained results from LCMS studies indicate that during tropaeolin OO degradation, 1,2-Diphenylhydrazine (m/z 185.1073) is formed. Thus, the process of azo dye degradation should be carried out in protective conditions. The proposed mechanism suggests that ascorbic acid at high content levels can be used for azo dye degradation from aqueous solution and can be an alternative method for their removal/neutralization from waste solution but with caution during the process.

17.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542830

RESUMO

The Fe3O4@SiO2@ZnO composite was synthesized via the simultaneous deposition of SiO2 and ZnO onto pre-prepared Fe3O4 nanoparticles. Physicochemical methods (TEM, EDXS, XRD, SEM, FTIR, PL, zeta potential measurements, and low-temperature nitrogen adsorption/desorption) revealed that the simultaneous deposition onto magnetite surfaces, up to 18 nm in size, results in the formation of an amorphous shell composed of a mixture of zinc and silicon oxides. This composite underwent modification to form Fe3O4@SiO2@ZnO*, achieved by activation with H2O2. The modified composite retained its structural integrity, but its surface groups underwent significant changes, exhibiting pronounced catalytic activity in the photodegradation of methyl orange under UV irradiation. It was capable of degrading 96% of this azo dye in 240 min, compared to the initial Fe3O4@SiO2@ZnO composite, which could remove only 11% under identical conditions. Fe3O4@SiO2@ZnO* demonstrated robust stability after three cycles of use in dye photodegradation. Furthermore, Fe3O4@SiO2@ZnO* exhibited decreased PL intensity, indicating an enhanced efficiency in electron-hole pair separation and a reduced recombination rate in the modified composite. The activation process diminishes the electron-hole (e-)/(h+) recombination and generates the potent oxidizing species, hydroxyl radicals (OH˙), on the photocatalyst surface, thereby playing a crucial role in the enhanced photodegradation efficiency of methyl orange with Fe3O4@SiO2@ZnO*.

18.
Arch Microbiol ; 205(2): 72, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693945

RESUMO

Microbial exopolysaccharides (EPS) are biocompatible, biodegradable, and less toxic substances secreted outside the cell. They adsorb metal cations to its surface, making it another captivating property, which helps in stabilizing and biosynthesizing metal nanoparticles. Owing to these properties, we adopted bacterial EPS toward the green synthesis of nanoparticles and its application in the removal of azo dyes. Extracted EPS weighed 2.6 mg/mL from the most potential isolate A07 with 385 µg/mg of the carbohydrate content. The top three isolates were subjected to nanoparticle synthesis via the intracellular method and, by their extracted EPS, silver nanoparticles (AgNP) with the size around 87 nm were successfully produced by both methods mediated by the most potent isolate. The nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction studies, atomic force microscopy, and FT-IR analysis. The nanoparticles were employed for dye degradation of azo dyes, namely, Methyl Orange (MO) and Congo Red (CO). EPS-Ag NPs showed fair degradation capability determined by UV-Vis kinetic studies. The work suggests electron transfer from reducing agent to dye molecule mediated by nanoparticles, destroying the dye chromophore. This makes EPS-Ag NPs a suitable, cheap, and environment-friendly candidate for biodegradation of harmful azo dyes. The most potential isolate was identified as Bacillus stratosphericus by 16S rRNA sequencing and submitted to GenBank under the accession id MK968439.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , RNA Ribossômico 16S , Prata/química , Compostos Azo/química
19.
Environ Res ; 216(Pt 3): 114695, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351473

RESUMO

'Wealth from Waste' is an emerging concept, since it leads an effective waste treatment and waste recyclability. On the other hand, cost effective production iron oxide (IO) nanomaterials is still needed to develop, owing to their wide applications. Herein, we proposed a simple direct calcination method to prepare porous IO (Fe3O4 and Fe2O3) nanomaterials from waste toner powder. Characterization techniques reveal that a structural change happened from Fe3O4 to γ-Fe2O3 and γ-Fe2O3 to α-Fe2O3 at the calcination temperature of 500 °C and 700 °C respectively. Consequently, optical (band gap) and magnetic parameters of IO samples were significantly varied. The pigment characteristics of the IO samples were evaluated using Commission Internationale de l'Eclairage (CIE) analysis. IO900 sample has shown good brown-red coloration (L* = 43.11, a* = 13.26 and b* = 5.69) and it also exhibited good stability in acidic and basic conditions. Practical applicability of IO pigments were also tested by mixing with plaster of paris (PP) powder. Further, porous IO samples were also used as catalysts in the reductive degradation of methyl orange (MO) dye in presence of excess sodium borohydride (NaBH4). IO, prepared at 900 °C exhibited ∼99.9% reduction efficiency within 40 min. Recycling experiments indicated that IO900 possess good stability up to seven cycles. The present porous IO samples will become potential in pigment and environmental remediation.


Assuntos
Compostos Férricos , Porosidade , Pós , Compostos Férricos/química , Catálise
20.
Environ Res ; 218: 114824, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455635

RESUMO

Water treatment is as much important as it is to satisfying 11 worldwide sustainable development goals out of 17. The removal of Azo is much important as they are toxic and their existence in water, air and food can easily affect humans by triggering allergies, forming tumours etc. Azo contained Dyes Production was banned in many countries. This research aims to synthesize composite Nanorods and Nanospheres and characterize and test to remove Azo dyes from the wastewater. This research used a previously reported method to rapidly synthesize chitin magnetite nanocomposites (ChM) by co-precipitation while irradiating with ultrasound (US). Detailed structural characterization of ChM revealed a crystalline phase analogous to magnetite and spherical morphologies; extending the reaction time to 8 min yielded a "nanorod" type morphology. Both the morphologies displayed a nanoscale limit with particles averaging between 5 and 30 nm in size, resulting the superparamagnetic performance and saturation magnetization values between 45 and 58 emu/g. The nitrogen adsorption-desorption isotherms showed that the surface modification of ChMs resulted in a rise of specific surface area and pore size. Anionic azo dyes (methyl orange (MO) and reactive black 5 (RB5)) adsorption on the surface of nanocomposites was also demonstrated to be pH-dependent, with the reaction favoured for surface-modified samples at pH 4 and unmodified samples at pH 8. Adsorption capacity studies showed that molecule size effect and electrostatic attraction were two distinct adsorption processes for unmodified and modified ChMs. Chitin Magnetite nanoparticles appear to be a substitute for traditional anionic dye adsorbents. Additionally, the two key materials sources, chitin, and magnetite are inexpensive and easily accessible.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Humanos , Óxido Ferroso-Férrico , Corantes/química , Quitina , Porosidade , Adsorção , Compostos Azo , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA