Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L98-L110, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050687

RESUMO

miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.


Assuntos
Enfisema , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Masculino , Camundongos , Enfisema/etiologia , Inflamação/patologia , Pulmão/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética
2.
J Transl Med ; 22(1): 440, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720358

RESUMO

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Assuntos
Fibroblastos , Fibrose , Cirurgia Filtrante , Glaucoma , MicroRNAs , Ratos Sprague-Dawley , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Glaucoma/patologia , Glaucoma/genética , Cirurgia Filtrante/efeitos adversos , Fibroblastos/metabolismo , Masculino , Cápsula de Tenon/metabolismo , Cápsula de Tenon/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos , Proteína Smad4/metabolismo , Proteína Smad4/genética , NF-kappa B/metabolismo , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Regulação da Expressão Gênica
3.
J Autoimmun ; 144: 103186, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38428111

RESUMO

Giant cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries. MiRNAs are small, non-coding RNAs that inhibit gene expression at post-transcriptional level. Several miRNAs have been shown to be dysregulated in temporal artery biopsies (TABs) from GCA patients, but their role is unknown. The aims of the present work were: to gain insight into the link between inflammation and miRNA up-regulation in GCA; to identify the role of miR-146a and miR-146b. Primary cultures from TABs were treated with IL-1ß, IL-6, soluble IL-6R (sIL6R), IL-17, IL-22, IFNγ, LPS and PolyIC. Correlations between cytokine mRNA and miRNA levels were determined in inflamed TABs. Primary cultures from TABs, human aortic endothelial and smooth muscle cells and ex-vivo TAB sections were transfected with synthetic miR-146a and miR-146b to mimic miRNA activities. Cell viability, target gene expression, cytokine levels in culture supernatants were assayed. Treatment of primary cultures from TABs with IL-1ß and IL-17 increased miR-146a expression while IL-1ß, IL-6+sIL6R and IFNγ increased miR-146b expression. IFNγ and IL-1ß mRNA levels correlated with miR-146a/b levels. Following transfection, cell viability decreased only in primary cultures from TABs. Moreover, transfection of miR-146a/b mimics increased ICAM-1 gene expression and production of the soluble form of ICAM-1 by primary cultures from TABs and by ex-vivo TABs. ICAM-1 expression was higher in inflamed than normal TABs and ICAM-1 levels correlated with miR-146a/b levels. Expression of miR-146a and miR-146b in GCA appeared to be driven by inflammatory cytokines (e.g. IL-1ß, IFNγ). miR-146a and miR-146b seem responsible for the increase of soluble ICAM-1.


Assuntos
Arterite de Células Gigantes , MicroRNAs , Humanos , Arterite de Células Gigantes/genética , Interleucina-17/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Molécula 1 de Adesão Intercelular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/genética , Interleucina-1beta , RNA Mensageiro/metabolismo
4.
Wound Repair Regen ; 32(4): 464-474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656652

RESUMO

Recent evidence has implicated the role of microRNA-146a (miR-146a) in regulating inflammatory responses. In the present study, we investigated the role of miRNA-146a in the progression of diabetic foot ulcer (DFU) in type 2 diabetes mellitus patients (T2DM) and studied its correlation with stress mediators such as Endoplasmic Reticulum (ER) and oxidative stress. Ninety subjects were enrolled and evenly distributed among three groups: Controls (n = 30), T2DM without complications (n = 30) and T2DM with foot ulcers (n = 30). Subsequently, each group was further subdivided based on the University of Texas classification. Peripheral blood was collected from all the study subjects, while tissue biopsies were taken only from DFU patients. Total RNA from both PBMCs and wound tissues were isolated using miRNA isolation kit and qPCR was performed to check the expression of miR-146a, ER stress and oxidative stress markers. Our findings revealed a significant decrease in miR-146a expression among T2DM patients with Grade 2 and Grade 3 DFUs compared with those with Grade 0 and Grade 1 DFUs. Notably, inflammatory genes regulated by miR-146a, including TRAF6, IRAK-1 and ADAM, were all upregulated in T2DM patients with Grade 2 and Grade 3 DFUs. Moreover, reduced miR-146a levels were correlated with increased markers of ER stress and oxidative stress in Grade 2 and Grade 3 DFU patients. Furthermore, our in vitro experiment using mouse 3T3 fibroblasts demonstrated a downregulation of miR-146a following induction of hyperglycaemia, ER stress and oxidative stress in these cells. These findings suggest a potential link between diminished miR-146a expression and heightened oxidative and ER stress in T2DM patients with more severe grades of DFUs. Our results imply that targeting miR-146a may hold therapeutic promise for managing disease progression in DFU patients, as it could help alleviate oxidative and ER stress associated with diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Progressão da Doença , Estresse do Retículo Endoplasmático , Inflamação , MicroRNAs , Estresse Oxidativo , Humanos , Pé Diabético/metabolismo , Pé Diabético/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Pessoa de Meia-Idade , Inflamação/metabolismo , Animais , Camundongos , Idoso
5.
J Periodontal Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845170

RESUMO

AIMS: The study aimed to investigate the role of miR-146a-5p in osteogenesis of hPDLSCs irradiated with low-energy red LEDs. METHODS: After irradiation with 5 J/cm2 red LED, miR-146a-5p expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR), and osteogenic markers expression was determined by RT-qPCR and Western blotting. Alkaline phosphatase (ALP) activity was assessed by ALP staining, and mineralization was assessed by Alizarin Red staining, respectively. Lentiviral vectors were designed to regulate miR-146a-5p expression. Dual-luciferase reporter assay was performed to confirm the targeted relationship between miR-146a-5p and MAPK1. Short hairpin RNA (shRNA) was used to regulate MAPK1 expression. RESULTS: RT-qPCR and western blotting revealed that 5 J/cm2 irradiation elevated the levels of the osteogenic markers osterix (OSX) and bone sialoprotein (BSP) in hPDLSCs. miR-146a-5p is downregulated in hPDLSCs under the low-energy red LED light irradiation. miR-146a-5p underexpression markedly promoted the osteogenic potential of hPDLSCs. miR-146a-5p targeted MAPK1. 5 J/cm2 red LED irradiation rescued the inhibitory effects of upregulated miR-146a-5p on osteogenic differentiation, and the positive influence of red LED irradiation could be reversed by downregulated MAPK1. CONCLUSION: These findings confirm that miR-146a-5p is involved in the effect of LED irradiation on the osteogenic differentiation of hPDLSCs by targeting MAPK1. Red LED irradiation may be a potential clinical adjunct therapy for periodontal regeneration.

6.
J Nanobiotechnology ; 22(1): 65, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365722

RESUMO

BACKGROUNDS: The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS: In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION: These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-ß-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Feminino , Humanos , Camundongos , Gravidez , Proliferação de Células , Dieta , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite , Sus scrofa
7.
BMC Ophthalmol ; 24(1): 144, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553670

RESUMO

AIM: To elaborate the underlying mechanisms by which IL-1ß promote progression of Dry eye disease(DED) through effect on pyroptosis and apoptosis of corneal epithelial cells(CECs). METHODS: 400 mOsM solutions were used to establish the DED model (hCECs- DED). RT-qPCR was performed to measure IL-1ß mRNA and miR-146a-5p in CECs. Western blotting was performed to measure STAT3, GSDMD, NLRP3, and Caspase-1 levels. Cell counting kit-8 assay was adopted to check cell viability. Apoptosis was detected by flow cytometry. ELISAs were performed to determine IL-18, IL-33 and LDH. The luciferase test detects targeting relationships. RESULTS: After treatment with 400 mOsM solution, cell viability decreased and apoptosis increased. Compared with hCECs, IL-1ß was increased and miR-146a-5p was decreased in hCECs-DED. At the same time, GSDMD, NLRP3, Caspase-1, IL-18, IL-33 and LDH were significantly higher in hCECs-DED than in hCECs, while IL-1ß silencing reversed this effect. In addition, IL-1ß negatively regulated miR-146a-5p. MiR-146a-5p mimics eliminated the inhibition of hCECs-DED pyroptosis and apoptosis caused by IL-1ß silencing. At the same time, miR-146a-5p reduced STAT3 levels in hCECs. CONCLUSION: Highly expressed IL-1ß promoted pyroptosis and apoptosis of hCECs- DED through downregulated miR-146a-5p and inhibited STAT3.


Assuntos
Síndromes do Olho Seco , MicroRNAs , Humanos , Piroptose , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-33/genética , Regulação para Baixo , Apoptose , Síndromes do Olho Seco/genética , Células Epiteliais/metabolismo , Caspases/genética , Fator de Transcrição STAT3/genética
8.
Sleep Breath ; 28(1): 319-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37726500

RESUMO

BACKGROUND: Exosomes are involved in cell-to-cell communication in numerous diseases including cardiovascular diseases, neurological diseases. Little attention has been dedicated to exosomal circular RNAs in obstructive sleep apnea (OSA)-related cardiovascular diseases. The aim of this study was to explore the role of exosomal circular RNA ZNF292 (circZNF292) on AC16 cells exposure to intermittent hypoxia (IH). METHODS: Exosome release inhibitor GW4869 was used to examine the effect of exosomes on IH-induced AC16 cells apoptosis. The expression of exosomal circZNF292 was detected by qRT-PCR in AC16 cells exposure to IH, and a luciferase reporter assay was conducted to confirm the connection between circZNF292 and miR-146a-5p. Exosomal circZNF292 was stably transfected with short hairpin RNAs (shRNAs) against circZNF292 and co-cultured with AC16 cells. The expression of miR-146a-5p and apoptosis-related protein was then measured to evaluate the effect of exosomal circZNF292. RESULTS: We found that IH contributed to the AC16 cells apoptosis, and the administration of GW4869 increased the apoptosis of cardiomyocytes when exposed to IH. The expression of exosomal circZNF292 decreased and miR-146a-5p increased significantly in AC16 cells exposed to IH compared to normoxic conditions. Bioinformatics analysis predicted a circZNF292/miR-146a-5p axis in IH-induced cardiomyocytes apoptosis. The dual-luciferase reporter system validated the direct interaction of circZNF292 and miR-146a-5p. Knockdown of circZNF292 increased the expressions of miR-146a-5p and accelerated the AC16 cardiomyocytes apoptosis. CONCLUSIONS: The findings of this study suggested a novel mechanism by which exosomes transmit intrinsic regulatory signals to the myocardium through the exosomal circZNF292/miR-146a-5p axis. This finding highlights the potential of targeting this pathway as a therapeutic approach for treating cardiovascular diseases associated with OSA.


Assuntos
Compostos de Anilina , Compostos de Benzilideno , Doenças Cardiovasculares , MicroRNAs , Apneia Obstrutiva do Sono , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/farmacologia , Miócitos Cardíacos/metabolismo , Doenças Cardiovasculares/metabolismo , Apoptose/genética , Hipóxia/genética , Hipóxia/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Apneia Obstrutiva do Sono/metabolismo , Proteínas de Transporte , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia
9.
Biochem Genet ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844639

RESUMO

The objective of the study is to investigate how miR-146b-5p might contribute to the etiology of HSCR. The study investigated the expression levels of miRNA, mRNA, and proteins in colon tissues obtained from the HSCR and control groups. The role of miR-146b-5p in cell proliferation and migration was studied in vitro. The interaction between miR-146b-5p and RET was validated through a dual-luciferase reporter experiment. To assess the impact of miR-146b-5p on the development of the enteric nervous system, zebrafish embryos were micro-injected with either miR-146b-5p mimics or negative control, followed by subsequent evaluation. Compared to the control group, miR-146b-5p expression levels in the spastic region of HSCR were significantly increased. In vitro, miR-146b-5p prevented cell migration and proliferation by targeting RET pathway. In zebrafish, miR-146b-5p negatively regulates the migration of neural crest cells through a reduction in RET expression. Overexpression of miR-146b-5p hinders the development of mature neurons by decreasing RET expression. Additionally, the aberrant phenotypes induced by miR-146b-5p were partially ameliorated when RET mRNA was co-injected. By targeting RET in HSCR patients, aberrant expression of miR-146b-5p may play a unique role in the etiology of the disease and be involved in enteric nervous system development.

10.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892194

RESUMO

The drug-resistant temporal lobe epilepsy (TLE) has recently been associated with single nucleotide variants (SNVs) in microRNA(miR)-146a (MIR-146A) (rs2910164) and Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) (rs2298771 and rs3812718) genes. Moreover, no studies have shown an association between these SNVs and susceptibility to drug-resistant and drug-responsive TLE in Brazil. Thus, deoxyribonucleic acid (DNA) samples from 120 patients with TLE (55 drug-responsive and 65 drug-resistant) were evaluated by real-time polymerase chain reaction (RT-PCR). A total of 1171 healthy blood donor individuals from the Online Archive of Brazilian Mutations (ABraOM, from Portuguese Arquivo Brasileiro On-line de Mutações), a repository containing genomic variants of the Brazilian population, were added as a control population for the studied SNVs. MIR-146A and SCN1A relative expression was performed by quantitative RT-PCR (qRT-PCR). The statistical analysis protocol was performed using an alpha error of 0.05. TLE patient samples and ABraOM control samples were in Hardy-Weinberg equilibrium for all studied SNVs. For rs2910164, the frequencies of the homozygous genotype (CC) (15.00% vs. 9.65%) and C allele (37.80% vs. 29.97%) were superior in patients with TLE compared to controls with a higher risk for TLE disease [odds ratio (OR) = 1.89 (95% confidence interval (95%CI) = 1.06-3.37); OR = 1.38 (95%CI = 1.04-1.82), respectively]. Drug-responsive patients also presented higher frequencies of the CC genotype [21.81% vs. 9.65%; OR = 2.58 (95%CI = 1.25-5.30)] and C allele [39.09% vs. 29.97%; OR = 1.50 (95%CI = 1.01-2.22)] compared to controls. For rs2298771, the frequency of the heterozygous genotype (AG) (51.67% vs. 40.40%) was superior in patients with TLE compared to controls with a higher risk for TLE disease [OR = 2.42 (95%CI = 1.08-5.41)]. Drug-resistant patients presented a higher AG frequency [56.92% vs. 40.40%; OR = 3.36 (95%CI = 1.04-17.30)] compared to the control group. For rs3812718, the prevalence of genotypes and alleles were similar in both studied groups. The MIR-146A relative expression level was lower in drug-resistant compared to drug-responsive patients for GC (1.6 vs. 0.1, p-value = 0.049) and CC (1.8 vs. 0.6, p-value = 0.039). Also, the SCN1A relative expression levels in samples from TLE patients were significantly higher in AG [2.09 vs. 1.10, p-value = 0.038] and GG (3.19 vs. 1.10, p-value < 0.001) compared to the AA genotype. In conclusion, the rs2910164-CC and rs2298771-AG genotypes are exerting significant risk influence, respectively, on responsive disease and resistant disease, probably due to an upregulated nuclear factor kappa B (NF-kB) and SCN1A loss of function.


Assuntos
Epilepsia do Lobo Temporal , MicroRNAs , Canal de Sódio Disparado por Voltagem NAV1.1 , Polimorfismo de Nucleotídeo Único , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , MicroRNAs/genética , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/tratamento farmacológico , Feminino , Masculino , Brasil , Adulto , Predisposição Genética para Doença , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Genótipo , Estudos de Coortes , Alelos , Frequência do Gene , Adolescente , Estudos de Casos e Controles
11.
Artigo em Inglês | MEDLINE | ID: mdl-38434226

RESUMO

Background: Multiple sclerosis (MS) is a complex human autoimmune-type inflammatory disease of the central nervous system (CNS). MicroRNA-146a (miR-146a) belongs to an endogenous and non-coding RNA family with 18-22 nucleotides long, which modulates the innate and adaptive immune response. Methods: Our study aimed to investigate a possible association between rs2910164 and rs2431697 polymorphisms of the miR-146a gene and multiple sclerosis in the Iranian population. A total of 60 MS cases and 100 controls were recruited. Single nucleotide polymorphism (SNP) rs2431697 was genotyped by utilizing polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and SNP rs2910164 was genotyped by using Tetra-primer ARMS-PCR. Statistical Analysis conducted by the chi-squared test utilizing SPSS version 21.0 Software. The Hardy-Weinberg equilibrium assumption was evaluated. Results: The results of the present study suggest the miR-146a gene rs2431697 polymorphism is not associated with multiple sclerosis. However, there is a significant relationship between polymorphism rs2910164 of the miR-146a gene and multiple sclerosis in the population studied (P = 0.012). Conclusion: Our data provide evidence that the miR-146a gene may be involved in creating the susceptibility to MS in the Iranian population.

12.
Biol Reprod ; 109(6): 938-953, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676254

RESUMO

A large proportion of miscarriages are classified as unexplained miscarriages since no cause is identified. No reliable biomarkers or treatments are available for these pregnancy losses. While our transcriptomic sequencing has revealed substantial upregulation of miR-146b-5p in unexplained miscarriage villous tissues, its role and associated molecular processes have yet to be fully characterized. Our work revealed that relative to samples from normal pregnancy, miR-146b-5p was significantly elevated in villous tissues from unexplained miscarriage patients and displayed promising diagnostic potential. Moreover, miR-146b-5p agomir contributed to higher rates of embryonic resorption in ICR mice. When overexpressed in HTR-8/SVneo cells, miR-146b-5p attenuated the proliferative, invasive, and migratory activity of these cells while suppressing the expression of MMP9 and immune inflammation-associated cytokines, including IL1B, IL11, CXCL1, CXCL8, and CXCL12. Conversely, inhibition of its expression enhanced proliferation, migration, and invasion abilities. Mechanistically, IL-1 receptor-associated kinase-1 and a disintegrin and metalloproteinase 19 were identified as miR-146b-5p targets regulating trophoblast function, and silencing IL-1 receptor-associated kinase-1 had similar effects as miR-146b-5p overexpression, while IL-1 receptor-associated kinase-1 overexpression could partially reverse the inhibitory impact of this microRNA on trophoblasts. miR-146b-5p may inhibit trophoblast proliferation, migration, invasion, and implantation-associated inflammation by downregulating IL-1 receptor-associated kinase-1 and a disintegrin and metalloproteinase 19, participating in the pathogenesis of miscarriage and providing a critical biomarker and a promising therapeutic target for unexplained miscarriage.


Assuntos
Aborto Espontâneo , MicroRNAs , Camundongos , Animais , Gravidez , Feminino , Humanos , Aborto Espontâneo/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Desintegrinas/metabolismo , Desintegrinas/farmacologia , Camundongos Endogâmicos ICR , MicroRNAs/genética , MicroRNAs/metabolismo , Trofoblastos/metabolismo , Inflamação/metabolismo , Proliferação de Células/fisiologia , Metaloproteases/metabolismo , Movimento Celular , Proteínas ADAM/metabolismo
13.
Cytotherapy ; 25(5): 502-509, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36513574

RESUMO

BACKGROUND AIMS: As evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported. METHODS: The authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, -20°C, -80°C) for various durations as well as after lyophilization. RESULTS: Mesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4-6 weeks at -20°C and -80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs. CONCLUSIONS: These findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Cicatrização
14.
FASEB J ; 36(9): e22486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929425

RESUMO

Neointimal hyperplasia (NIH) after revascularization is a key unsolved clinical problem. Various studies have shown that attenuation of the acute inflammatory response on the vascular wall can prevent NIH. MicroRNA146a-5p (miR146a-5p) has been reported to show anti-inflammatory effects by inhibiting the NF-κB pathway, a well-known key player of inflammation of the vascular wall. Here, a nanomedicine, which can reach the vascular injury site, based on polymeric micelles was applied to deliver miR146a-5p in a rat carotid artery balloon injury model. In vitro studies using inflammation-induced vascular smooth muscle cell (VSMC) was performed. Results showed anti-inflammatory response as an inhibitor of the NF-κB pathway and VSMC migration, suppression of reactive oxygen species production, and proinflammatory cytokine gene expression in VSMCs. A single systemic administration of miR146a-5p attenuated NIH and vessel remodeling in a carotid artery balloon injury model in both male and female rats in vivo. MiR146a-5p reduced proinflammatory cytokine gene expression in injured arteries and monocyte/macrophage infiltration into the vascular wall. Therefore, miR146a-5p delivery to the injury site demonstrated therapeutic potential against NIH after revascularization.


Assuntos
Lesões das Artérias Carótidas , MicroRNAs , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artérias , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Citocinas/metabolismo , Feminino , Hiperplasia/metabolismo , Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Nanomedicina , Neointima/tratamento farmacológico , Neointima/metabolismo , Neointima/prevenção & controle , Ratos
15.
Neurochem Res ; 48(1): 172-187, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36040608

RESUMO

Spinal cord injury (SCI) is a prevalent disease that debilitates millions of people. Nuclear factor E2-related factor 2 (Nrf2) is an important regulator of SCI. The current study sought to elaborate on the effects of Nrf2 on gasdermin D (GSDMD)-mediated microglia pyroptosis to repair SCI. The SCI rat model was established via the percussion of the T10 spinal cord and in vitro SCI model was established on BV-2 cells via lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. Nrf2 expression in SCI rats and BV-2 cells was overexpressed via pcDNA3.1-Nrf2 injection. Functional assays were carried out to evaluate SCI rat pathological injury, BV-2 cell viability, the release of lactate dehydrogenase (LDH), and pyroptotic factors. The binding relations of Nrf2 and microRNA (miR)-146a and miR-146a and GSDMD were verified. BV-2 pyroptosis was analyzed after the combined experiment of miR-146a-inhibitor and pcDNA3.1-GSDMD. Our experiments revealed that Nrf2 was downregulated in SCI, and Nrf2 overexpression relieved SCI pathological injury, promoted BV-2 cell viability, inhibited the release of LDH, and repressed pyroptosis. Mechanically, Nrf2 bound to the miR-146a promoter and promoted miR-146a expression, and miR-146a targeted GSDMD transcription. Rescue experiments revealed that miR-146a knockdown or GSDMD overexpression annulled the inhibitory function of Nrf2 overexpression in LPS/ATP-induced microglia pyroptosis. Overall, our findings initially highlighted that Nrf2 inhibited GSDMD-mediated microglia pyroptosis and accelerated SCI repair by repressing miR-146a.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Piroptose , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2 , Lipopolissacarídeos/farmacologia , Traumatismos da Medula Espinal/metabolismo , MicroRNAs/metabolismo
16.
Mol Biol Rep ; 50(12): 10025-10036, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904010

RESUMO

BACKGROUND: MicroRNA and cell-free DNA have shown significant correlations with several autoimmune disorders including systemic lupus erythematosus (SLE). SLE has been associated with challenges in determining its activity, so that the need for biomarkers contributing to assessing its activity is emerging. The current study investigated miRNA-21, miRNA-146a and plasma cf-DNA in determination of SLE activity, in addition their association with clinical data including complement factor 3 (C3), complement factor(C4), anti-dsDNA, and other disease activity indices. METHODS AND RESULTS: Eighty subjects divided into; twenty active patients (with SLE-DAI2K score of 16-18) twenty inactive patients (with SLE-DAI2K score of 1-3), and forty healthy control participants) were included in this study. Serum miR-21, miR-146a, and plasma cf-DNA were quantified by real time PCR and their correlation with clinical data was statistically analyzed. The results demonstrated that active cases have significant upregulation of serum miRNA-21 and plasma cf-DNA. Moreover, miR-21 showed a negative, significant pertaining to C3, C4 and was positively related to Systemic Lupus Erythematosus Disease Activity Index 2 K score (SLE-DAI Index2K score) and Systemic-Lupus-Erythematosus-Disease Activity-Index 2 K activity (SLE-DAI 2 K activity). Also, Active group miRNA-146a was negatively, significantly correlated with C3, as well as a positive significant relationship with SLE-DAI2K score and SLEDAI 2 K activity, in addition to anti DNA Autoantibodies. Furthermore, miR-21 and cf-DNA demonstrated a differential value through Receiver Operating Characteristic (ROC) curve's study. CONCLUSIONS: the present study illustrated miR-21, miR-146a, and cf-DNA relationship with SLE clinical data. In addition to their potential value in SLE diagnosis, and activity determination.


Assuntos
Ácidos Nucleicos Livres , Lúpus Eritematoso Sistêmico , MicroRNAs , Humanos , Biomarcadores , Complemento C3/genética , Complemento C3/análise , Complemento C4/análise , DNA , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética
17.
J Biochem Mol Toxicol ; 37(3): e23272, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504472

RESUMO

As a serotonin antagonist, tropisetron positively affects blood glucose lowering, insulin synthesis, pancreas inflammation, and apoptosis in diabetes. Reproductive disorders are one of the diabetes-induced chronic complications. The present study aimed to evaluate the effect of tropisetron on diabetes-induced testicular inflammation, its signaling pathway, and mir146a. To this end, animals were assigned to the control, tropisetron, diabetes (DM), DM-tropisetron, and DM-glibenclamide groups. Streptozotocin (50 mg/kg) was intraperitoneally injected to provide diabetes. Tropisetron and glibenclamide were then administrated intraperitoneally for 2 weeks after diabetes induction. Testes histology, real-time polymerase chain reaction, western blot analysis, ELISA, and immunohistochemistry assays were also performed. The finding revealed that tropisetron significantly improved diabetes-induced testis damages, lowered TLR4, TRAF6, IRAK1, NF-κB, and caspase3 protein expressions, and decreased TNF-α and IL-1 levels. Moreover, the mir146a expression declined following the tropisetron treatment. This study demonstrated that the significant role of tropisetron in lowering testicular inflammation and apoptosis might have been due to the inhibition of the TLR4/IRAK1/TRAF6 signaling pathway and thereby the attenuation of NF-κB and caspase3 expression and inflammatory cytokines. Furthermore, the downregulation of mir146a, as an inflammatory microRNA interacting with TLR4, showed another pathway, through which tropisetron improved diabetes-induced testicular injuries.


Assuntos
Complicações do Diabetes , Diabetes Mellitus Experimental , Masculino , Ratos , Animais , NF-kappa B/metabolismo , Tropizetrona , Receptor 4 Toll-Like/metabolismo , Estreptozocina , Diabetes Mellitus Experimental/metabolismo , Glibureto , Fator 6 Associado a Receptor de TNF/metabolismo , Inflamação
18.
BMC Endocr Disord ; 23(1): 184, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37641092

RESUMO

OBJECTIVE: The classical role of PIWIL2 is to regulate reproduction by binding to piRNA, but its tumor-related function has received increasing attention in recent years. This study aims to explore its role in the progression of thyroid cancer (TC). METHODS: First, we measured and analyzed the levels of PIWIL2 and miR-146a-3p in TC tissue and adjacent tissues as well as several TC cell lines. We demonstrated the clinical significance of PIWIL2 and miR-146a-3p through the survival rate. Based on these results, we selected TPC-1 and KTC-3 cell lines for our cell experiments. We treated these cell lines with PIWIL2 lentivirus, PIWIL2 siRNA, miR-146a-3p mimic, or miR-146a-3p inhibitor and measured cell proliferation, cell cycle, apoptosis, migration, and invasion. We used PCR and Western blot to quantify the mRNA and protein levels of PIWIL2, while we used luciferase reporter assay and RNA binding protein immunoprecipitation to explore the relationship between miR-146a-3p and PIWIL2. Finally, we developed a xenograft tumor model to confirm the effects of the miR-146a-3p/PIWIL2 axis on TC progression in vivo. RESULTS: We identified that PIWIL2 and miR-146a-3p exhibit opposite expression alterations in TC tissues and that PIWIL2 serves as a 'sponge' by adsorbing miR-146a-3p. Up-regulating PIWIL2 decelerated the proliferation, metastasis, and cell cycle progression of TPC-1 and KTC-3 cells, but accelerated the apoptosis of TC cells, while miR-146a-3p exhibited opposite effects. Finally, overexpressing PIWIL2 restrained the progression of TC in nude mice, which can be reversed by increasing miR-146a-3p expression. Inhibiting PIWIL2, on the other hand, promoted the progression of TC in vivo, which can be reversed by inhibiting miR-146a-3p. CONCLUSION: PIWIL2 may inhibit the progression of TC by sponging miR-146a-3p, providing new insights into the early treatment, recrudescence treatment, and metastasis treatment of TC.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Neoplasias da Glândula Tireoide/genética , Apoptose , Modelos Animais de Doenças , MicroRNAs/genética , Proteínas Argonautas/genética
19.
Mol Ther ; 30(3): 1300-1314, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34768001

RESUMO

Enhancing neurogenesis within the hippocampal dentate gyrus (DG) is critical for maintaining brain development and function in many neurological diseases. However, the neural mechanisms underlying neurogenesis in depression remain unclear. Here, we show that microglia transfer a microglia-enriched microRNA, miR-146a-5p, via secreting exosomes to inhibit neurogenesis in depression. Overexpression of miR-146a-5p in hippocampal DG suppresses neurogenesis and spontaneous discharge of excitatory neurons by directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-146a-5p expression ameliorates adult neurogenesis deficits in DG regions and depression-like behaviors in rats. Intriguingly, circular RNA ANKS1B acts as a miRNA sequester for miR-146a-5p to mediate post-transcriptional regulation of KLF4 expression. Collectively, these results indicate that miR-146a-5p can function as a critical factor regulating neurogenesis under conditions of pathological processes resulting from depression and suggest that microglial exosomes generate new crosstalk channels between glial cells and neurons.


Assuntos
Exossomos , MicroRNAs/metabolismo , Animais , Depressão/genética , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Neurogênese/genética , Ratos
20.
Int J Med Sci ; 20(10): 1316-1325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786444

RESUMO

Background: Micro RNAs (miRs) expression is involved in the pathogenesis of type 2 diabetes mellitus (T2DM). This study investigates the expression levels of plasma miR-29a, miR-146a, and miR-147b and their correlations with clinical parameters in patients with T2DM. Methods: 105 patients with T2DM who categorized either as newly diagnosed T2DM (n=52) or treated T2DM (n=53) and 93 healthy individuals were included in this study. The expression levels of miR-29a, miR-146a, and miR-147b were quantified by real-time PCR and analyzed for possible association with T2DM. Results: The expressions of miR-29a and miR-147b were significantly increased in T2DM patients compared with healthy controls (P<0.0001). The expression levels of miR-29a in newly diagnosed T2DM patients were higher than that in the group of treated T2DM (P=0.002). The expression of studied miRs was correlated with several clinical parameters such as blood glucose levels, HbA1C, microalbuminuria, C-peptide, triglyceride levels as well as the HOMA-ß index. The expression levels of miR-29a and miR-147b show a potential diagnostic performance to discriminate newly diagnostic T2DM (AUCs=0.77 and 0.84, respectively) and beta-cell dysfunction (AUCs= 0.62 and 0.75, respectively). Conclusions: The plasma miR-29a and miR-147b expression levels in T2DM patients are significantly associated with T2DM while miR-146a shows poor evidence in relation to T2DM. miR-147b shows potential as a biomarker for the diagnosis of T2DM and pancreatic beta cell dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Humanos , MicroRNAs/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA