Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.997
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065082

RESUMO

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Microambiente Tumoral , Humanos , Instabilidade Cromossômica/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Quinases Ativadas por p21/genética , Filogenia , Mutação , Progressão da Doença , Prognóstico
2.
Cell ; 180(2): 387-402.e16, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978347

RESUMO

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Instabilidade de Microssatélites , Mutação/genética , Proteômica/métodos
3.
Genes Dev ; 37(19-20): 913-928, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932011

RESUMO

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Replicação do DNA/genética , DNA Helicases/metabolismo , Repetições de Microssatélites , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
CA Cancer J Clin ; 69(4): 258-279, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31074865

RESUMO

Endometrial cancer is the most common gynecologic cancer in the United States, and its incidence is rising. Although there have been significant recent advances in our understanding of endometrial cancer biology, many aspects of treatment remain mired in controversy, including the role of surgical lymph node assessment and the selection of patients for adjuvant radiation or chemotherapy. For the subset of women with microsatellite-instable, metastatic disease, anti- programmed cell death protein 1 immunotherapy (pembrolizumab) is now approved by the US Food and Drug Administration, and numerous trials are attempting to build on this early success.


Assuntos
Neoplasias do Endométrio/terapia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Quimioterapia Adjuvante , Procedimentos Cirúrgicos de Citorredução , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Predisposição Genética para Doença , Humanos , Histerectomia , Excisão de Linfonodo , Metástase Neoplásica , Recidiva Local de Neoplasia/terapia , Prognóstico , Radioterapia Adjuvante , Fatores de Risco , Linfonodo Sentinela/patologia , Linfonodo Sentinela/cirurgia
5.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682004

RESUMO

Somatic mutational signatures (MSs) identified by genome sequencing play important roles in exploring the cause and development of cancer. Thus far, many such signatures have been identified, and some of them do imply causes of cancer. However, a major bottleneck is that we do not know the potential meanings (i.e. carcinogenesis or biological functions) and contributing genes for most of them. Here, we presented a computational framework, Gene Somatic Genome Pattern (GSGP), which can decipher the molecular mechanisms of the MSs. More importantly, it is the first time that the GSGP is able to process MSs from ribonucleic acid (RNA) sequencing, which greatly extended the applications of both MS analysis and RNA sequencing (RNAseq). As a result, GSGP analyses match consistently with previous reports and identify the etiologies for a number of novel signatures. Notably, we applied GSGP to RNAseq data and revealed an RNA-derived MS involved in deficient deoxyribonucleic acid mismatch repair and microsatellite instability in colorectal cancer. Researchers can perform customized GSGP analysis using the web tools or scripts we provide.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Carcinogênese/genética , Sequência de Bases , RNA
6.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833839

RESUMO

Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Repetições de Microssatélites , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Redes Neurais de Computação , DNA/metabolismo , RNA/metabolismo , Microambiente Tumoral , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
7.
J Pathol ; 263(3): 288-299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747304

RESUMO

In the Drug Rediscovery Protocol (DRUP), patients with cancer are treated based on their tumor molecular profile with approved targeted and immunotherapies outside the labeled indication. Importantly, patients undergo a tumor biopsy for whole-genome sequencing (WGS) which allows for a WGS-based evaluation of routine diagnostics. Notably, we observed that not all biopsies of patients with dMMR/MSI-positive tumors as determined by routine diagnostics were classified as microsatellite-unstable by subsequent WGS. Therefore, we aimed to evaluate the discordance rate between routine dMMR/MSI diagnostics and WGS and to further characterize discordant cases. We assessed patients enrolled in DRUP with dMMR/MSI-positive tumors identified by routine diagnostics, who were treated with immune checkpoint blockade (ICB) and for whom WGS data were available. Patient and tumor characteristics, study treatment outcomes, and material from routine care were retrieved from the patient medical records and via Palga (the Dutch Pathology Registry), and were compared with WGS results. Initially, discordance between routine dMMR/MSI diagnostics and WGS was observed in 13 patients (13/121; 11%). The majority of these patients did not benefit from ICB (11/13; 85%). After further characterization, we found that in six patients (5%) discordance was caused by dMMR tumors that did not harbor an MSI molecular phenotype by WGS. In six patients (5%), discordance was false due to the presence of multiple primary tumors (n = 3, 2%) and misdiagnosis of dMMR status by immunohistochemistry (n = 3, 2%). In one patient (1%), the exact underlying cause of discordance could not be identified. Thus, in this group of patients limited to those initially diagnosed with dMMR/MSI tumors by current routine diagnostics, the true assay-based discordance rate between routine dMMR/MSI-positive diagnostics and WGS was 5%. To prevent inappropriate ICB treatment, clinicians and pathologists should be aware of the risk of multiple primary tumors and the limitations of different tests. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Reparo de Erro de Pareamento de DNA , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Sequenciamento Completo do Genoma , Adulto , Biomarcadores Tumorais/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Idoso de 80 Anos ou mais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia
8.
Semin Cancer Biol ; 97: 70-85, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832751

RESUMO

Artificial Intelligence (AI)-enhanced histopathology presents unprecedented opportunities to benefit oncology through interpretable methods that require only one overall label per hematoxylin and eosin (H&E) slide with no tissue-level annotations. We present a structured review of these methods organized by their degree of verifiability and by commonly recurring application areas in oncological characterization. First, we discuss morphological markers (tumor presence/absence, metastases, subtypes, grades) in which AI-identified regions of interest (ROIs) within whole slide images (WSIs) verifiably overlap with pathologist-identified ROIs. Second, we discuss molecular markers (gene expression, molecular subtyping) that are not verified via H&E but rather based on overlap with positive regions on adjacent tissue. Third, we discuss genetic markers (mutations, mutational burden, microsatellite instability, chromosomal instability) that current technologies cannot verify if AI methods spatially resolve specific genetic alterations. Fourth, we discuss the direct prediction of survival to which AI-identified histopathological features quantitatively correlate but are nonetheless not mechanistically verifiable. Finally, we discuss in detail several opportunities and challenges for these one-label-per-slide methods within oncology. Opportunities include reducing the cost of research and clinical care, reducing the workload of clinicians, personalized medicine, and unlocking the full potential of histopathology through new imaging-based biomarkers. Current challenges include explainability and interpretability, validation via adjacent tissue sections, reproducibility, data availability, computational needs, data requirements, domain adaptability, external validation, dataset imbalances, and finally commercialization and clinical potential. Ultimately, the relative ease and minimum upfront cost with which relevant data can be collected in addition to the plethora of available AI methods for outcome-driven analysis will surmount these current limitations and achieve the innumerable opportunities associated with AI-driven histopathology for the benefit of oncology.


Assuntos
Inteligência Artificial , Instabilidade Cromossômica , Humanos , Reprodutibilidade dos Testes , Amarelo de Eosina-(YS) , Oncologia
9.
BMC Bioinformatics ; 25(1): 130, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532317

RESUMO

BACKGROUND: Recent improvements in sequencing technologies enabled detailed profiling of genomic features. These technologies mostly rely on short reads which are merged and compared to reference genome for variant identification. These operations should be done with computers due to the size and complexity of the data. The need for analysis software resulted in many programs for mapping, variant calling and annotation steps. Currently, most programs are either expensive enterprise software with proprietary code which makes access and verification very difficult or open-access programs that are mostly based on command-line operations without user interfaces and extensive documentation. Moreover, a high level of disagreement is observed among popular mapping and variant calling algorithms in multiple studies, which makes relying on a single algorithm unreliable. User-friendly open-source software tools that offer comparative analysis are an important need considering the growth of sequencing technologies. RESULTS: Here, we propose Comparative Sequencing Analysis Platform (COSAP), an open-source platform that provides popular sequencing algorithms for SNV, indel, structural variant calling, copy number variation, microsatellite instability and fusion analysis and their annotations. COSAP is packed with a fully functional user-friendly web interface and a backend server which allows full independent deployment for both individual and institutional scales. COSAP is developed as a workflow management system and designed to enhance cooperation among scientists with different backgrounds. It is publicly available at https://cosap.bio and https://github.com/MBaysanLab/cosap/ . The source code of the frontend and backend services can be found at https://github.com/MBaysanLab/cosap-webapi/ and https://github.com/MBaysanLab/cosap_frontend/ respectively. All services are packed as Docker containers as well. Pipelines that combine algorithms can be customized and new algorithms can be added with minimal coding through modular structure. CONCLUSIONS: COSAP simplifies and speeds up the process of DNA sequencing analyses providing commonly used algorithms for SNV, indel, structural variant calling, copy number variation, microsatellite instability and fusion analysis as well as their annotations. COSAP is packed with a fully functional user-friendly web interface and a backend server which allows full independent deployment for both individual and institutional scales. Standardized implementations of popular algorithms in a modular platform make comparisons much easier to assess the impact of alternative pipelines which is crucial in establishing reproducibility of sequencing analyses.


Assuntos
Variações do Número de Cópias de DNA , Instabilidade de Microssatélites , Humanos , Reprodutibilidade dos Testes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software
10.
Lab Invest ; 104(2): 100297, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008183

RESUMO

The detection of microsatellite instability (MSI) and mismatch repair (MMR) deficiency has become mandatory for most tumors in recent years, owing to the development of immune checkpoint inhibitors as a highly effective therapy for MMR deficiency/MSI tumors. The timely and efficient detection of MSI is valuable, and new methods are increasingly being developed. To date, MMR assessment has been performed using immunohistochemistry of the 4 MMR proteins and/or microsatellite stability/MSI using PCR, mostly using the pentaplex panel. The implementation of next-generation sequencing (NGS) for MSI analysis would improve the effectiveness at a lower cost and in less time. This study describes the development of 8 new microsatellites combined with a classification algorithm, termed "Octaplex CaBio-MSID" (for Cancérologie Biologique MSI Detection tool), to assess MSI using NGS. A series of 303 colorectal cancer and 88 endometrial cancer samples were assessed via MSI testing using NGS using the Octaplex CaBio-MSID algorithm. The sensitivity and specificity of Octaplex CaBio-MSID were 98.4% and 98.4% for colorectal cancers, and 89.3% and 100% for endometrial cancers, respectively. This new NGS-based MSI detection method outperforms previously published methods (ie, Idylla [Biocartis], OncoMate MSI Dx [Promega], and Foundation One CDx [Roche Foundation Medicine]). Although highly efficient, Octaplex CaBio-MSID requires validation in a larger independent series of different tumor types.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Neoplasias do Endométrio , Síndromes Neoplásicas Hereditárias , Feminino , Humanos , Instabilidade de Microssatélites , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
11.
Int J Cancer ; 155(4): 766-775, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38594805

RESUMO

The inconsistency between mismatch repair (MMR) protein immunohistochemistry (IHC) and microsatellite instability PCR (MSI-PCR) methods has been widely reported. We aim to investigate the prognosis and the effect of immunotherapy in dMMR by IHC but MSS by MSI-PCR (dMMR&MSS) colorectal cancer (CRC) patients. A microsatellite instability (MSI) predicting model was established to help find dMMR&MSS patients. MMR and MSI states were detected by the IHC and MSI-PCR in 1622 CRC patients (ZS6Y-1 cohort). Logistic regression analysis was used to screen clinical features to construct an MSI-predicting nomogram. We propose a new nomogram-based assay to find patients with dMMR&MSS, in which the MSI-PCR assay only detects dMMR patients with MSS predictive results. We applied the new strategy to a random cohort of 248 CRC patients (ZS6Y-2 cohort). The consistency of MMR IHC and MSI-PCR in the ZS6Y-1 cohort was 95.7% (1553/1622). Both pMMR&MSS and dMMR&MSS groups experienced significantly shorter overall survival (OS) than those in dMMR by IHC and MSI-H by MSI-PCR (dMMR&MSI-H) group (hazard ratio [HR] = 2.429, 95% confidence interval [CI]: 1.89-3.116, p < .01; HR = 21.96, 95% CI: 7.24-66.61, p < .01). The dMMR&MSS group experienced shorter OS than the pMMR&MSS group, but the difference did not reach significance (log rank test, p = .0686). In the immunotherapy group, the progression-free survival of dMMR&MSS patients was significantly shorter than that of dMMR&MSI-H patients (HR = 13.83, 95% CI: 1.508-126.8, p < .05). The ZS6Y-MSI-Pre nomogram (C-index = 0.816, 95% CI: 0.792-0.841, already online) found 66% (2/3) dMMR&MSS patients in the ZS6Y-2 cohort. There are significant differences in OS and immunotherapy effect between dMMR&MSI-H and dMMR&MSS patients. Our prediction model provides an economical way to screen dMMR&MSS patients.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Imunoterapia , Instabilidade de Microssatélites , Nomogramas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Reparo de Erro de Pareamento de DNA/genética , Imunoterapia/métodos , Idoso , Imuno-Histoquímica , Adulto , Biomarcadores Tumorais/genética
12.
Curr Issues Mol Biol ; 46(2): 1374-1382, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392206

RESUMO

The association of age at the onset of CRC and the prevalence of a KRAS G12C mutation is unclear. A retrospective, multicenter study evaluating metastatic CRC patients from January 2019 to July 2023, treated at the Oncoclinicas units and tested for tissue based KRAS/NRAS and BRAF mutations in a centralized genomics lab. A mismatch repair (MMR) status was retrieved from different labs and electronic medical records, as were patient demographics (age, gender) and tumor sidedness. The chi-square test was used to examine the association between clinical and molecular variables, with p value < 0.05 being statistically significant. A total of 858 cases were included. The median age was 63.7 years (range 22-95) and 17.4% were less than 50 years old at the diagnosis of metastatic CRC. Male patients represented 50.3% of the population. The sidedness distribution was as follows: left side 59.2%, right side 36.8% and not specified 4%. The prevalence of the KRAS mutation was 49.4% and the NRAS mutation was 3.9%. Among KRAS mutated tumors, the most common variants were G12V (27.6%) and G12D (23.5%), while KRAS G12C was less frequent (6.4%), which represented 3.1% of the overall population. The BRAF mutant cases were 7.3% and most commonly V600E. Only five (<1%) non-V600E mutations were detected. MSI-high or dMMR was present in 14 cases (1.6%). In the age-stratified analysis, left-sidedness (p < 0.001) and a KRAS G12C mutation (p = 0.046) were associated with a younger age (<50 years). In the sidedness-stratified analysis, a BRAF mutation (p = 0.001) and MSI-high/dMMR status (p = 0.009) were more common in right-sided tumors. Our data suggest that KRAS G12C mutations are more frequent in early-onset metastatic CRC. To the best of our knowledge, this is the largest cohort in the Latin American population with metastatic CRC reporting RAS, BRAF and MSI/MMR status.

13.
Curr Issues Mol Biol ; 46(2): 1208-1218, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392195

RESUMO

Gastric cancer (GC) persists as the fourth most prevalent cause of global cancer-related mortality, presenting a challenge due to the scarcity of available therapeutic strategies. Precision medicine is crucial not only in the treatment but also in the management of GC. We performed gene panel sequencing with Oncomine focus assay comprising 52 cancer-associated genes and MSI analysis in 100 case-matched gastric cancer cases. A comprehensive analysis of clinical and genetic characteristics was conducted on these genetic results and clinicopathological findings. Upon comparison of clinicopathological characteristics, significant differences between early gastric cancer (EGC) and advanced gastric cancer (AGC) were observed in tumor location (p = 0.003), Lauren classification (p = 0.015), T stage (p = 0.000), and N stage (p = 0.015). The six most frequently mutated genes were PIK3CA (29%, 10/35), ERBB2 (17%, 6/35), KRAS (14%, 5/35), ALK (6%, 2/35), ESR1 (6%, 2/35), and FGFR3 (6%, 2/35). Regarding genetic variation, there was a tendency for the N stage to be higher in GC patients with mutated genes (p = 0.014). The frequency of mutations in GC patients was statistically significantly higher in AGC (n = 24) compared to EGC (n = 11) (odds ratio, 2.792; 95% confidence interval, 1.113 to 7.007; p = 0.026). Six of the ten GC patients carrying mutated genes and exhibiting MSI were classified into intestinal-type and undifferentiated GC, with the location of the tumor being in the lower-third. Among these patients, five harbored mutated PIK3CA, while the remaining patient had a mutation in ALK. Conclusions: AGC patients more frequently exhibited alterations of PIK3CA, KRAS, and ERBB2 as somatic oncogenic drivers, and displayed a higher prevalence of cumulative genetic events, including increased rates of PIK3CA mutations, enhanced detection of immunotherapy biomarkers, and mutations of the ESR1 gene.

14.
Cancer Sci ; 115(6): 1738-1748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528657

RESUMO

Deficient mismatch repair (dMMR) results in microsatellite instability (MSI), a pronounced mutator phenotype. High-frequency MSI (MSI-H)/dMMR is gaining increasing interest as a biomarker for advanced cancer patients to determine their eligibility for immune checkpoint inhibitors (ICIs). Various methods based on next-generation sequencing (NGS) have been developed to assess the MSI status. Comprehensive genomic profiling (CGP) testing can precisely ascertain the MSI status as well as genomic alterations in a single NGS test. The MSI status can be also ascertained through the liquid biopsy-based CGP assays. MSI-H has thus been identified in various classes of tumors, resulting in a greater adoption of immunotherapy, which is hypothesized to be effective against malignancies that possess a substantial number of mutations and/or neoantigens. NGS-based studies have also characterized MSI-driven carcinogenesis, including significant rates of fusion kinases in colorectal cancers (CRCs) with MSI-H that are targets for therapeutic kinase inhibitors, particularly in MLH1-methylated CRCs with wild-type KRAS/BRAF. NTRK fusion is linked to the colorectal serrated neoplasia pathway. Recent advances in investigations of MSI-H malignancies have resulted in the development of novel diagnostic or therapeutic techniques, such as a synthetic lethal therapy that targets the Werner gene. DNA sensing in cancer cells is required for antitumor immunity induced by dMMR, opening up novel avenues and biomarkers for immunotherapy. Therefore, clinical relevance exists for analyses of MSI and MSI-H-associated genomic alterations in malignancy. In this article, we provide an update on MSI-driven carcinogenesis, with an emphasis on unique landscapes of diagnostic and immunotherapeutic strategies.


Assuntos
Reparo de Erro de Pareamento de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Instabilidade de Microssatélites , Neoplasias , Humanos , Neoplasias/genética , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Biomarcadores Tumorais/genética , Imunoterapia/métodos , Mutação
15.
Cancer Sci ; 115(3): 1014-1021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263580

RESUMO

Molecular testing to determine optimal therapies is essential for managing patients with colorectal cancer (CRC). In October 2022, the Japanese Society of Medical Oncology published the 5th edition of the Molecular Testing Guideline for Colorectal Cancer Treatment. In this guideline, in patients with unresectable CRC, RAS/BRAF V600E mutational and mismatch repair tests are strongly recommended prior to first-line chemotherapy to select optimal first- and second-line therapies. In addition, HER2 testing is strongly recommended because the pertuzumab plus trastuzumab combination is insured after fluoropyrimidine, oxaliplatin, and irinotecan in Japan. Circulating tumor DNA (ctDNA)-based RAS testing is also strongly recommended to assess the indications for the readministration of anti-EGFR antibodies. Both tissue- and ctDNA-based comprehensive genomic profiling tests are strongly recommended to assess the indications for targeted molecular drugs, although they are currently insured in patients with disease progression after receiving standard chemotherapy (or in whom disease progression is expected in the near future). Mutational and mismatch repair testing is strongly recommended for patients with resectable CRC, and RAS/BRAF V600E mutation testing is recommended to estimate the risk of recurrence. Mutational and mismatch repair and BRAF testing are also strongly recommended for screening for Lynch syndrome. Circulating tumor DNA-based minimal residual disease (MRD) testing is strongly recommended for estimating the risk of recurrence based on clinical evidence, although MRD testing was not approved in Japan at the time of the publication of this guideline.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , Japão , DNA Tumoral Circulante/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Mutação , Técnicas de Diagnóstico Molecular , Progressão da Doença , Oncologia
16.
Cancer ; 130(3): 385-399, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751191

RESUMO

BACKGROUND: Mismatch-repair (MMR)/microsatellite instability (MSI) status has therapeutic implications in endometrial cancer (EC). The authors evaluated the concordance of testing and factors contributing to MMR expression heterogeneity. METHODS: Six hundred sixty-six ECs were characterized using immunohistochemistry (IHC), MSI testing, and mut-L homolog 1 (MLH1) methylation. Select samples underwent whole-transcriptome analysis and next-generation sequencing. MMR expression of metastatic/recurrent sites was evaluated. RESULTS: MSI testing identified 27.3% of cases as MSI-high (n = 182), MMR IHC identified 25.1% cases as MMR-deficient (n = 167), and 3.8% of cases (n = 25) demonstrated discordant results. A review of IHC staining explained discordant results in 18 cases, revealing subclonal loss of MLH1/Pms 1 homolog 2 (PMS2) (n = 10) and heterogeneous MMR IHC (mut-S homolog 6 [MSH6], n = 7; MLH1/PMS2, n = 1). MSH6-associated Lynch syndrome was diagnosed in three of six cases with heterogeneous expression. Subclonal or heterogeneous cases had a 38.9% recurrence rate (compared with 16.7% in complete MMR-deficient cases and 9% in MMR-proficient cases) and had abnormal MMR IHC results in all metastatic recurrent sites (n = 7). Tumors with subclonal MLH1/PMS2 demonstrated 74 differentially expressed genes (determined using digital spatial transcriptomics) when stratified by MLH1 expression, including many associated with epithelial-mesenchymal transition. CONCLUSIONS: Subclonal/heterogeneous MMR IHC cases showed epigenetic loss in 66.7%, germline mutations in 16.7%, and somatic mutations in 16.7%. MMR IHC reported as intact/deficient missed 21% of cases of Lynch syndrome. EC with subclonal/heterogeneous MMR expression demonstrated a high recurrence rate, and metastatic/recurrent sites were MMR-deficient. Transcriptional analysis indicated an increased risk for migration/metastasis, suggesting that clonal MMR deficiency may be a driver for tumor aggressiveness. Reporting MMR IHC only as intact/deficient, without reporting subclonal and heterogeneous staining, misses opportunities for biomarker-directed therapy. PLAIN LANGUAGE SUMMARY: Endometrial cancer is the most common gynecologic cancer, and 20%-40% of tumors have a defect in DNA proofreading known as mismatch-repair (MMR) deficiency. These results can be used to guide therapy. Tests for this defect can yield differing results, revealing heterogeneous (mixed) proofreading capabilities. Tumors with discordant testing results and mixed MMR findings can have germline or somatic defects in MMR genes. Cells with deficient DNA proofreading in tumors with mixed MMR findings have DNA expression profiles linked to more aggressive characteristics and cancer spread. These MMR-deficient cells may drive tumor behavior and the risk of spreading cancer.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Neoplasias do Endométrio , Síndromes Neoplásicas Hereditárias , Humanos , Feminino , Neoplasias Colorretais Hereditárias sem Polipose/genética , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Neoplasias do Endométrio/patologia , Reparo de Erro de Pareamento de DNA/genética , DNA , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo
17.
Cancer ; 130(10): 1733-1746, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422006

RESUMO

The DNA mismatch repair (MMR) pathway is critical for correcting DNA mismatches generated during DNA replication. MMR-deficiency (MMR-D) leads to microsatellite instability (MSI) associated with an increased mutation rate, driving cancer development. This is particularly relevant in endometrial cancer (EC) as 25%-30% of tumors are of MMR-D/MSI-high (MSI-H) phenotype. Comprehensive assessment using immunohistochemistry (IHC) and sequencing-based techniques are necessary to fully evaluate ECs given the importance of molecular subtyping in staging and prognosis. This also influences treatment selection as clinical trials have demonstrated survival benefits for immune checkpoint inhibitors (ICIs) alone and in combination with chemotherapy for MMR-D/MSI-H EC patients in various treatment settings. As a portion of MMR-D/MSI-H ECs are driven by Lynch syndrome, an inherited cancer predisposition syndrome that is also associated with colorectal cancer, this molecular subtype also prompts germline assessment that can affect at-risk family members. Additionally, heterogeneity in the tumor immune microenvironment and tumor mutation burden (TMB) have been described by MMR mechanism, meaning MLH1 promoter hypermethylation versus germline/somatic MMR gene mutation, and this may affect response to ICI therapies. Variations by ancestry in prevalence and mechanism of MMR-D/MSI-H tumors have also been reported and may influence health disparities given observed differences in tumors of Black compared to White patients which may affect ICI eligibility. These observations highlight the need for additional prospective studies to evaluate the nuances regarding MMR-D heterogeneity as well as markers of resistance to inform future trials of combination therapies to further improve outcomes for patients with EC.


Assuntos
Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
Cancer ; 130(11): 1991-2002, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404184

RESUMO

BACKGROUND: This study investigated the safety and efficacy of an anti-CTLA-4 monoclonal antibody (CS1002) as monotherapy and in combination with an anti-PD-1 monoclonal antibody (CS1003) in patients with advanced/metastatic solid tumors. METHODS: The phase 1 study involved phase 1a monotherapy dose-escalation (part 1) and phase 1b combination therapy dose escalation (part 2) and expansion (part 3). Various dosing schedules of CS1002 (0.3, 1, or 3 mg/kg every 3 weeks, or 3 mg/kg every 9 weeks) were evaluated with 200 mg CS1003 every 3 weeks in part 3. RESULTS: Parts 1, 2, and 3 included a total of 13, 18, and 61 patients, respectively. No dose-limiting toxicities or maximum tolerated doses were observed. Treatment-related adverse events (TRAEs) were reported in 30.8%, 83.3%, and 75.0% of patients in parts 1, 2, and 3, respectively. Grade ≥3 TRAEs were experienced by 15.4%, 50.0%, and 18.3% of patients in each part. Of 61 patients evaluable for efficacy, 23 (37.7%) achieved objective responses in multiple tumor types. Higher objective response rates were observed with conventional and high-dose CS1002 regimens (1 mg/kg every 3 weeks or 3 mg/kg every 9 weeks) compared to low-dose CS1002 (0.3 mg/kg every 3 weeks) in microsatellite instability-high/mismatch repair-deficient tumors, melanoma, and hepatocellular carcinoma (50.0% vs. 58.8%, 14.3% vs. 42.9%, and 0% vs. 16.7%). CONCLUSION: CS1002, as monotherapy, and in combination with CS1003, had a manageable safety profile across a broad dosing range. Promising antitumor activities were observed in patients with immune oncology (IO)-naive and IO-refractory tumors across CS1002 dose levels when combined with CS1003, supporting further evaluation of this treatment combination for solid tumors. PLAIN LANGUAGE SUMMARY: CS1002 is a human immunoglobulin (Ig) G1 monoclonal antibody that blocks the interaction of CTLA-4 with its ligands and increases T-cell activation/proliferation. CS1003, now named nofazinlimab, is a humanized, recombinant IgG4 monoclonal antibody that blocks the interaction between human PD-1 and its ligands. In this original article, we determined the safety profile of CS1002 as monotherapy and in combination with CS1003. Furthermore, we explored the antitumor activity of the combination in anti-programmed cell death protein (ligand)-1 (PD-[L]1)-naive microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) pan tumors, and anti-PD-(L)1-refractory melanoma and hepatocellular carcinoma (HCC). CS1002 in combination with CS1003 had manageable safety profile across a broad dosing range and showed promising antitumor activities across CS1002 dose levels when combined with CS1003. This supports further assessment of CS1002 in combination with CS1003 for the treatment of solid tumors.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno CTLA-4 , Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Idoso , Adulto , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Dose Máxima Tolerável , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
19.
Cancer Immunol Immunother ; 73(9): 182, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967817

RESUMO

BACKGROUND: The long-term survival benefit of immune checkpoint inhibitors (ICIs) in neoadjuvant and adjuvant settings is unclear for colorectal cancers (CRC) and gastric cancers (GC) with deficiency of mismatch repair (dMMR) or microsatellite instability-high (MSI-H). METHODS: This retrospective study enrolled patients with dMMR/MSI-H CRC and GC who received at least one dose of neoadjuvant ICIs (neoadjuvant cohort, NAC) or adjuvant ICIs (adjuvant cohort, AC) at 17 centers in China. Patients with stage IV disease were also eligible if all tumor lesions were radically resectable. RESULTS: In NAC (n = 124), objective response rates were 75.7% and 55.4%, respectively, in CRC and GC, and pathological complete response rates were 73.4% and 47.7%, respectively. The 3-year disease-free survival (DFS) and overall survival (OS) rates were 96% (95%CI 90-100%) and 100% for CRC (median follow-up [mFU] 29.4 months), respectively, and were 84% (72-96%) and 93% (85-100%) for GC (mFU 33.0 months), respectively. In AC (n = 48), the 3-year DFS and OS rates were 94% (84-100%) and 100% for CRC (mFU 35.5 months), respectively, and were 92% (82-100%) and 96% (88-100%) for GC (mFU 40.4 months), respectively. Among the seven patients with distant relapse, four received dual blockade of PD1 and CTLA4 combined with or without chemo- and targeted drugs, with three partial response and one progressive disease. CONCLUSION: With a relatively long follow-up, this study demonstrated that neoadjuvant and adjuvant ICIs might be both associated with promising DFS and OS in dMMR/MSI-H CRC and GC, which should be confirmed in further randomized clinical trials.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Terapia Neoadjuvante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Estudos Retrospectivos , Idoso , Adulto , Reparo de Erro de Pareamento de DNA , Quimioterapia Adjuvante/métodos , Seguimentos
20.
Cancer Immunol Immunother ; 73(4): 74, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451314

RESUMO

BACKGROUND: Pembrolizumab has been indicated in the treatment of solid tumors with high frequency microsatellite instability (MSI-H) or high tumor mutational burden (TMB-H); however, real-world data on the effectiveness of pembrolizumab with or without chemotherapy in this molecular subset remain limited. Our retrospective study evaluated the clinical efficacy and safety of pembrolizumab in treating advanced solid tumors with either MSI-H or TMB-H. METHODS: This retrospective study analyzed data from 116 patients with MSI-H or TMB-H advanced solid cancers who received pembrolizumab with or without chemotherapy regardless of treatment setting. We analyzed objective response rate (ORR) and progression-free survival (PFS). RESULTS: The top three cancer types were colorectal (48.6% MSI-H, 6.5% TMB-H), lung (15.4% MSI-H, 84.4% TMB-H), and gastric (15.4% MSI-H, 5.1% TMB-H). The ORR with pembrolizumab was 52.6%, including complete response (CR) observed in 8.6% (n = 10) of cases and partial responses (PR) in 43.9% (n = 51). Of the 93 patients who received first-line pembrolizumab, 52 patients achieved objective response (10 CR, 42 PR), with a median PFS of 14.0 months (95% confidence intervals [CI] 6.6-21.4). Of the 23 who received subsequent-line pembrolizumab, the ORR was 39.1%, disease control rate was 91.3%, and median PFS was 5.7 months (95% CI 3.9-7.5). Treatment-related adverse events were observed in 32 patients (27.6%), with no reported treatment-related fatal adverse events. CONCLUSION: Our study provides real-world evidence on the clinical effectiveness of pembrolizumab with or without chemotherapy in the treatment of patients with MSI-H and TMB-H advanced solid cancers.


Assuntos
Anticorpos Monoclonais Humanizados , Instabilidade de Microssatélites , Neoplasias , Humanos , Estudos Retrospectivos , Neoplasias/tratamento farmacológico , Neoplasias/genética , China , Resposta Patológica Completa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA