Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33147444

RESUMO

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Vero , Internalização do Vírus
2.
Emerg Infect Dis ; 30(3): 581-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407189

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedaries in Africa, but camel-to-human transmission is limited. Sustained 12-month sampling of dromedaries in a Kenya abattoir hub showed biphasic MERS-CoV incidence; peak detections occurred in October 2022 and February 2023. Dromedary-exposed abattoir workers (7/48) had serologic signs of previous MERS-CoV exposure.


Assuntos
Camelus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Animais , Quênia/epidemiologia , Incidência , Matadouros
3.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722338

RESUMO

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Testes de Neutralização/métodos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Animais , Concentração Inibidora 50 , Sensibilidade e Especificidade
4.
J Infect Dis ; 228(5): 586-590, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36857443

RESUMO

Modified vaccinia virus Ankara (MVA) is used as a vaccine against monkeypox virus and as a viral vaccine vector. MVA-MERS-S is a vaccine candidate against Middle East respiratory syndrome (MERS)-associated coronavirus. Here, we report that cross-reactive monkeypox virus neutralizing antibodies were detectable in only a single study participant after the first dose of MVA-MERS-S vaccine, in 3 of 10 after the second dose, and in 10 of 10 after the third dose.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Humanos , Anticorpos Amplamente Neutralizantes , Glicoproteína da Espícula de Coronavírus , Monkeypox virus , Anticorpos Antivirais , Vaccinia virus/genética , Infecções por Coronavirus/prevenção & controle , Anticorpos Neutralizantes
5.
J Infect Dis ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698016

RESUMO

BACKGROUND: Chronic pulmonary conditions such as asthma and COPD increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS: We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine IL-13, examining how this impacted DPP4 protein levels along with MERS-CoV entry and replication. RESULTS: IL-13 exposure for 3 days led to increased DPP4 protein abundance, while a 21-day treatment increased DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly impacted by IL-13 treatment. CONCLUSIONS: Our results suggest that increased DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13 induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.

6.
Emerg Infect Dis ; 29(3): 585-589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823022

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Herpesvirus Cercopitecino 1 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Eliminação de Partículas Virais , Camelus
7.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209676

RESUMO

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Assuntos
Camelus , Infecções por Coronavirus , Linfócitos T , Vacinas Virais , Animais , Camelus/imunologia , Linfócitos T/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vacinas Virais/imunologia , Vacinação/veterinária , ELISPOT , Anticorpos Antivirais
8.
J Virol ; 96(4): e0173921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908447

RESUMO

Two strains of Middle East respiratory syndrome coronavirus (MERS-CoV), England 1 and Erasmus Medical Centre/2012 (EMC/2012), were used to challenge common marmosets (Callithrix jacchus) by three routes of infection: aerosol, oral, and intranasal. Animals challenged by the intranasal and aerosol routes presented with mild, transient disease, while those challenged by the oral route presented with a subclinical immunological response. Animals challenged with MERS-CoV strain EMC/2012 by the aerosol route responded with primary and/or secondary pyrexia. Marmosets had minimal to mild multifocal interstitial pneumonia, with the greatest relative severity being observed in animals challenged by the aerosol route. Viable virus was isolated from the host in throat swabs and lung tissue. The transient disease described is consistent with a successful host response and was characterized by the upregulation of macrophage and neutrophil function observed in all animals at the time of euthanasia. IMPORTANCE Middle East respiratory syndrome is caused by a human coronavirus, MERS-CoV, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Humans typically exhibit fever, cough, shortness of breath, gastrointestinal issues, and breathing difficulties, which can lead to pneumonia and/or renal complications. This emerging disease resulted in the first human lethal cases in 2012 and has a case fatality rate of approximately 36%. Consequently, there is a need for medical countermeasures and appropriate animal models for their assessment. This work has demonstrated the requirement for higher concentrations of virus to cause overt disease. Challenge by the aerosol, intranasal, and oral routes resulted in no or mild disease, but all animals had an immunological response. This shows that an appropriate early immunological response is able to control the disease.


Assuntos
COVID-19/metabolismo , Modelos Animais de Doenças , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Animais , Callithrix , Humanos
9.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36467615

RESUMO

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

10.
J Clin Nurs ; 32(15-16): 5357-5368, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32786157

RESUMO

AIMS AND OBJECTIVES: This study aimed to examine the lived experience of physicians and nurses who underwent hospitalised isolation during the Middle East respiratory syndrome coronavirus outbreak that hit Korea in 2015, and how it may have affected their professional self-image. BACKGROUND: Health professionals caring for patients during infectious outbreaks such as the Middle East respiratory syndrome have reported negative psychological effects. However, little is known about how the experience influences their professional self-image. DESIGN: An interpretive phenomenological approach was applied using individual in-depth interviews. METHODS: Through purposeful and snowball sampling, 11 health professionals who had experienced hospital isolation due to suspicious symptoms of Middle East respiratory syndrome during the outbreak, participated in face-to-face interviews (50-90 min). We adhered to the Consolidated Criteria for Reporting Qualitative Research guideline for reporting. RESULTS: Six themes were identified: (a) engulfed in chaos and exhaustion; (b) feeling hurt and constrained by the rejection and blame; (c) anxiety induced by the enclosed environment; (d) dread of this uncertain and critical disease; (e) sustained by family and colleagues; and (f) reflection at this turning point, expanding self-understanding and seeking a balance. CONCLUSION: Hospitalised isolation was a "turning point" that appeared to change health professionals' sense of identity and direction. RELEVANCE TO CLINICAL PRACTICE: Preparedness for infectious epidemics should ensure tangible assistance, protection, and clear communication with health professionals, with careful attention to their psychological needs and affirmation of their self-image in the aftermath.


Assuntos
Infecções por Coronavirus , Epidemias , Humanos , Pessoal de Saúde/psicologia , Infecções por Coronavirus/epidemiologia , Pesquisa Qualitativa , Pacientes
11.
Sens Actuators B Chem ; 351: 130975, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36568876

RESUMO

As the world has been facing several deadly virus crises, including Zika virus disease, Ebola virus disease, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Coronavirus disease 2019 (COVID-19), lateral flow assays (LFAs), which require minimal equipment for point-of-care of viral infectious diseases, are garnering much attention. Accordingly, there is an increasing demand to reduce the time and cost required for manufacturing LFAs. The current study introduces an equipment-free method of salt-mediated immobilization of nucleic acids (SAIoNs) for LFAs. Compared to general DNA immobilization methods such as streptavidin-biotin, UV-irradiation, and heat treatment, our method does not require special equipment (e.g., centrifuge, UV-crosslinker, heating device); therefore, it can be applied in a resource-limited environment with reduced production costs. The immobilization process was streamlined and completed within 30 min. Our method improved the color intensity signal approximately 14 times compared to the method without using SAIoNs and exhibited reproducibility with the long-term storage stability. The proposed method can be used to detect practical targets (e.g., SARS-CoV-2) and facilitates highly sensitive and selective detection of target nucleic acids with multiplexing capability and without any cross-reactivity. This novel immobilization strategy provides a basis for easily and inexpensively developing nucleic acid LFAs combined with various types of nucleic acid amplification.

12.
Sens Actuators B Chem ; 362: 131764, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35370362

RESUMO

The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.

13.
Vet Pathol ; 59(4): 546-555, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35001773

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camelus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Zoonoses
14.
Vet Pathol ; 59(4): 627-638, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35499307

RESUMO

Emerging and re-emerging human coronaviruses (hCoVs) cause severe respiratory illness in humans, but the basis for lethal pneumonia in these diseases is not well understood. Alveolar macrophages (AMs) are key orchestrators of host antiviral defense and tissue tolerance during a variety of respiratory infections, and AM dysfunction is associated with severe COVID-19. In this study, using a mouse model of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, we examined the role of AMs in MERS pathogenesis. Our results show that depletion of AMs using clodronate (CL) liposomes significantly increased morbidity and mortality in human dipeptidyl peptidase 4 knock-in (hDPP4-KI) mice. Detailed examination of control and AM-depleted lungs at different days postinfection revealed increased neutrophil activity but a significantly reduced MERS-CoV-specific CD4 T-cell response in AM-deficient lungs during later stages of infection. Furthermore, enhanced MERS severity in AM-depleted mice correlated with lung inflammation and lesions. Collectively, these data demonstrate that AMs are critical for the development of an optimal virus-specific T-cell response and controlling excessive inflammation during MERS-CoV infection.


Assuntos
Infecções por Coronavirus , Macrófagos Alveolares , Coronavírus da Síndrome Respiratória do Oriente Médio , Pneumonia , Animais , Ácido Clodrônico , Infecções por Coronavirus/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Transgênicos , Pneumonia/imunologia , Pneumonia/virologia
15.
Risk Anal ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100578

RESUMO

The Grunow-Finke epidemiological assessment tool (GFT) has several limitations in its ability to differentiate between natural and man-made epidemics. Our study aimed to improve the GFT and analyze historical epidemics to validate the model. Using a gray relational analysis (GRA), we improved the GFT by revising the existing standards and adding five new standards. We then removed the artificial weights and final decision threshold. Finally, by using typically unnatural epidemic events as references, we used the GRA to calculate the unnatural probability and obtain assessment results. Using the advanced tool, we conducted retrospective and case analyses to test its performance. In the validation set of 13 historical epidemics, unnatural and natural epidemics were divided into two categories near the unnatural probability of 45%, showing evident differences (p < 0.01) and an assessment accuracy close to 100%. The unnatural probabilities of the Ebola virus disease of 2013 and Middle East Respiratory Syndrome of 2012 were 30.6% and 36.1%, respectively. Our advanced epidemic assessment tool improved the accuracy of the original GFT from approximately 55% to approximately 100% and reduced the impact of human factors on these outcomes effectively.

16.
Energy (Oxf) ; 244: 122709, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34840405

RESUMO

The spread of the coronavirus SARS-CoV-2 affects the health of people and the economy worldwide. As air transmits the virus, heating, ventilation and air-conditioning (HVAC) systems in buildings, enclosed spaces and public transport play a significant role in limiting the transmission of airborne pathogens at the expenses of increased energy consumption and possibly reduced thermal comfort. On the other hand, liquid desiccant technology could be adopted as an air scrubber to increase indoor air quality and inactivate pathogens through temperature and humidity control, making them less favourable to the growth, proliferation and infectivity of microorganisms. The objectives of this study are to review the role of HVAC in airborne viral transmission, estimate its energy penalty associated with the adoption of HVAC for transmission reduction and understand the potential of liquid desiccant technology. Factors affecting the inactivation of pathogens by liquid desiccant solutions and possible modifications to increase their heat and mass transfer and sanitising characteristics are also described, followed by an economic evaluation. It is concluded that the liquid desiccant technology could be beneficial in buildings (requiring humidity control or moisture removal in particular when viruses are likely to present) or in high-footfall enclosed spaces (during virus outbreaks).

17.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364379

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the betacoronavirus genus can cause severe respiratory illnesses, accompanied by pneumonia, multiorgan failure, and ultimately death. CoVs have the ability to transgress species barriers and spread swiftly into new host species, with human-to-human transmission causing epidemic diseases. Despite the severe public health threat of MERS-CoV, there are currently no vaccines or drugs available for its treatment. MERS-CoV papain-like protease (PLpro) is a key enzyme that plays an important role in its replication. In the present study, we evaluated the inhibitory activities of doxorubicin (DOX) against the recombinant MERS-CoV PLpro by employing protease inhibition assays. Hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of DOX showed an IC50 value of 1.67 µM at 30 min. Subsequently, we confirmed the interaction between DOX and MERS-CoV PLpro by thermal shift assay (TSA), and DOX increased ΔTm by ~20 °C, clearly indicating a coherent interaction between the MERS-CoV PL protease and DOX. The binding site of DOX on MERS-CoV PLpro was assessed using docking techniques and molecular dynamic (MD) simulations. DOX bound to the thumb region of the catalytic domain of the MERS-CoV PLpro. MD simulation results showed flexible BL2 loops, as well as other potential residues, such as R231, R233, and G276 of MERS-CoV PLpro. Development of drug repurposing is a remarkable opportunity to quickly examine the efficacy of different aspects of treating various diseases. Protease inhibitors have been found to be effective against MERS-CoV to date, and numerous candidates are currently undergoing clinical trials to prove this. Our effort follows a in similar direction.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Papaína/química , Peptídeo Hidrolases/metabolismo , Reposicionamento de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
18.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432204

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a -7 kcal/mol binding energy score, the top-2 docked complex with a -6.9 kcal/mol binding energy score, and the top-3 docked complex with a -6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were -24.23 kcal/mol, -26.38 kcal/mol, and -25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as -17.23 kcal/mol (top-1 complex), -24.75 kcal/mol (top-2 complex), and -24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results.


Assuntos
Artemisia annua , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Compostos Fitoquímicos/farmacologia
19.
Clin Microbiol Rev ; 33(4)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32792417

RESUMO

Convalescent plasma (CP) therapy has been used since the early 1900s to treat emerging infectious diseases; its efficacy was later associated with the evidence that polyclonal neutralizing antibodies can reduce the duration of viremia. Recent large outbreaks of viral diseases for which effective antivirals or vaccines are still lacking has renewed the interest in CP as a life-saving treatment. The ongoing COVID-19 pandemic has led to the scaling up of CP therapy to unprecedented levels. Compared with historical usage, pathogen reduction technologies have now added an extra layer of safety to the use of CP, and new manufacturing approaches are being explored. This review summarizes historical settings of application, with a focus on betacoronaviruses, and surveys current approaches for donor selection and CP collection, pooling technologies, pathogen inactivation systems, and banking of CP. We additionally list the ongoing registered clinical trials for CP throughout the world and discuss the trial results published thus far.


Assuntos
Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Anticorpos Neutralizantes/análise , Bancos de Espécimes Biológicos/normas , COVID-19 , Seleção do Doador/métodos , Seleção do Doador/normas , Ensaio de Imunoadsorção Enzimática , Humanos , Imunização Passiva/efeitos adversos , Imunização Passiva/normas , Testes de Neutralização/normas , Pandemias , Síndrome Respiratória Aguda Grave/terapia , Soroterapia para COVID-19
20.
Early Child Res Q ; 60: 319-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431429

RESUMO

The COVID-19 pandemic and its resulting containment measures have forced many children and their caregivers around the world to spend unprecedented amounts of time at home. Based on a sample of 764 households with preschool-aged children in Wuhan, China, where the pandemic began, this study examined how primary caregivers perceived changes in the amount of time spent engaging with their children (i.e., engaged time) from the start of the pandemic and whether these changes were associated with children's learning behavior and emotional distress. The results showed that primary caregivers generally perceived increases in the amount of engaged time spent on indoor activities with their children but decreases in the amount of engaged time spent playing with their children outdoors. A bigger family size and greater loss of family income during the pandemic were associated with bigger perceived increases in caregivers' engaged time spent on indoor activities, whilst a higher level of parental education was associated with bigger perceived decreases in engaged time spent playing with children outdoors. The family's poorer physical health and higher levels of chaos during the pandemic were related to smaller perceived increases in caregivers' engaged time spent on educational activities. Finally, although bigger perceived increases in caregivers' indoor engaged time (e.g., time spent on educational activities) were associated with higher levels of positive learning behavior and fewer symptoms of anxiety and withdrawal in the children, bigger perceived decreases in outdoor play time were associated with fewer symptoms of anxiety and withdrawal. These findings offer valuable insights into caregivers' allocation of engaged time with their preschool-aged children during the COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA