RESUMO
Miniaturized reconstructive spectrometers play a pivotal role in on-chip and portable devices, offering high-resolution spectral measurement through precalibrated spectral responses and AI-driven reconstruction. However, two key challenges persist for practical applications: artificial intervention in algorithm parameters and compatibility with complementary metal-oxide-semiconductor (CMOS) manufacturing. We present a cutting-edge miniaturized reconstructive spectrometer that incorporates a self-adaptive algorithm referenced with Fabry-Perot resonators, delivering precise spectral tests across the visible range. The spectrometers are fabricated with CMOS technology at the wafer scale, achieving a resolution of ~2.5 nm, an average wavelength deviation of ~0.27 nm, and a resolution-to-bandwidth ratio of ~0.46%. Our approach provides a path toward versatile and robust reconstructive miniaturized spectrometers and facilitates their commercialization.
RESUMO
The rich morphology of 2D materials grown through chemical vapor deposition (CVD), is a distinctive feature. However, understanding the complex growth of 2D crystals under practical CVD conditions remains a challenge due to various intertwined factors. Real-time monitoring is crucial to providing essential data and enabling the use of advanced tools like machine learning for unraveling these complexities. In this study, we present a custom-built miniaturized CVD system capable of observing and recording 2D MoS2 crystal growth in real time. Image processing converts the real-time footage into digital data, and machine learning algorithms (ML) unveil the significant factors influencing growth. The machine learning model successfully predicts CVD growth parameters for synthesizing ultralarge monolayer MoS2 crystals. It also demonstrates the potential to reverse engineer CVD growth parameters by analyzing the as-grown 2D crystal morphology. This interdisciplinary approach can be integrated to enhance our understanding of controlled 2D crystal synthesis through CVD.
RESUMO
The development of miniaturized high-throughput in situ screening platforms capable of handling the entire process of drug synthesis to final screening is essential for advancing drug discovery in the future. In this study, an approach based on combinatorial solid-phase synthesis, enabling the efficient synthesis of libraries of proteolysis targeting chimeras (PROTACs) in an array format is presented. This on-chip platform allows direct biological screening without the need for transfer steps. UV-induced release of target molecules into individual droplets facilitates further on-chip experimentation. Utilizing a mitogen-activated protein kinase kinases (MEK1/2) degrader as a template, a series of 132 novel PROTAC-like molecules is synthesized using solid-phase Ugi reaction. These compounds are further characterized using various methods, including matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) imaging, while consuming only a few milligrams of starting materials in total. Furthermore, the feasibility of culturing cancer cells on the modified spots and quantifying the effect of MEK suppression is demonstrated. The miniaturized synthesis platform lays a foundation for high-throughput in situ biological screening of potent PROTACs for potential anticancer activity and offers the potential for accelerating the drug discovery process by integrating miniaturized synthesis and biological steps on the same array.
Assuntos
Ensaios de Triagem em Larga Escala , Proteólise , Humanos , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Linhagem Celular Tumoral , MiniaturizaçãoRESUMO
PURPOSE: To assess the safety and efficacy of super-mini PCNL (SMP, 14 Fr) when compared to standard PCNL (sPCNL, 24-30 Fr) in the management of renal calculi of size ranging from 1.5 to 3 cm. METHODS: From February 2021 to January 2022, a total of 100 patients were randomized to either SMP group or sPCNL group in a 1:1 ratio (50 in each group) using computer-generated simple randomization. Demographic data, stone characteristics, operative times, perioperative complications, blood transfusions, postoperative drop in haemoglobin, postoperative pain, duration of hospital stay and stone-free rates were compared between the two groups. RESULTS: Mean stone volume (2.41 cm2 vs 2.61 cm2) and stone-free rates (98% vs 94%, p = 0.14) were similar in both the SMP and sPCNL groups, respectively. The SMP group had significantly longer mean operative times (51.62 ± 10.17 min vs 35.6 ± 6.8 min, p = 0.03). Intraoperative calyceal injury (1/50 vs 7/50, p = 0.42) and mean postoperative drop in haemoglobin (0.8 ± 0.7 g/dl vs 1.2 ± 0.81, p = 0.21) were lower in the SMP group, but not statistically significant. SMP group showed significantly lower mean postoperative pain VAS scores (5.4 ± 0.7 vs 5.9 ± 0.9, p = 0.03) and mean duration of hospital stay (28.38 ± 3.6 h vs 39.84 ± 3.7 h, p = 0.0001). Complications up to Clavien grade 2 were comparable, with grade ≥ 3 complications higher in the standard group, but not statistically significant. CONCLUSION: Super-mini PCNL is equally effective as standard PCNL in treating renal calculi up to 3 cm, with significantly reduced postoperative pain and duration of hospital stay and lower risk of Clavien grade ≥ 3 complications, although with higher operative times.
Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Humanos , Cálculos Renais/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Nefrolitotomia Percutânea/métodos , Adulto , Resultado do Tratamento , Sucção/métodos , Hospitais Universitários , Hospitais de Ensino , Nefrostomia Percutânea/métodosRESUMO
3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.
RESUMO
Herein, a deep eutectic solvent (DES)-based miniaturized pressurized liquid extraction in combination with DES-based dispersive liquid-liquid microextraction (DLLME) was developed for the extraction of organophosphorus pesticides (parathion-methyl, triazophos, parathion, diazinon, and phoxim) from egg powder samples prior to their analysis by a high-performance liquid chromatography-diode array detector. In this work, first, the analytes' extraction was done by a pressurized liquid phase extraction for effective extraction of the analytes from the solid matrix, and then they were concentrated on a DLLME for more concentration of the analytes to reach low limits of detections. The use of DESs was done in both steps to omit the use of toxic organic solvents. Satisfactory results including high extraction recoveries (74-90%), great repeatability (relative standard deviations equal or less than 4.3% and 5.3% for intra- and inter-day precisions), and low limits of detection (0.11-0.29 ng/g) and quantification (0.38-0.98 ng/g) were attained under the optimum conditions. Lastly, the suggested approach was utilized for the determination of the studied pesticides in various egg powder samples marketed in Tabriz, Iran.
Assuntos
Microextração em Fase Líquida , Paration , Resíduos de Praguicidas , Praguicidas , Compostos Organofosforados , Cromatografia Líquida de Alta Pressão , Solventes Eutéticos Profundos , PósRESUMO
INTRODUCTION: Minimally invasive surgery is considered the gold standard for the treatment of gynecological diseases. Our study aims to assess the effectiveness of the new concept of ultra-low-impact laparoscopy as a combination of low-impact laparoscopy, consisting in the use of miniaturized instruments through 3-5mm ports and low-pressure pneumoperitoneum, with regional anesthesia to evaluate the perioperative outcomes. METHODS: A cross-sectional study was performed from May 2023 to December 2023, to enroll 26 women affected by benign gynecological disease and threated by mini-invasive surgical approach. The surgical procedures were performed following the low-impact laparoscopy protocol and the regional anesthesia protocol. The postoperative pain, nausea, and vomiting and the antiemetic/analgesic intake were evaluated. Postoperative surgical and anesthesiological variables were analyzed. RESULTS: Operative time was within 90 min (41.1 ± 17.1 mean ± standard deviation (SD)) and no conversion to laparotomy or general anesthesia was required. According to VAS score, the postoperative pain during the whole observation time was less than 3 (mean). Faster resumption of bowel motility (6.5 ± 2.1 mean ± SD) and women's mobilization (3.1 ± 0.7 mean ± SD) were observed as well as low incidence of post-operative nausea and vomit. Early discharge and patient's approval were recorded. Intraoperatively pain score was assessed on Likert scale during all stages. CONCLUSION: Ultra-low-impact laparoscopy showed to provide a satisfying recovery experience for patients in terms of short hospital stays, cosmetic result, and pain relief, without compromising surgical outcomes. The encouraging results lead us to recruit a greater number of patients to validate our technique as a future well-established produce.
Assuntos
Laparoscopia , Dor Pós-Operatória , Humanos , Feminino , Laparoscopia/métodos , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Dor Pós-Operatória/etiologia , Duração da Cirurgia , Náusea e Vômito Pós-Operatórios/epidemiologia , Pneumoperitônio Artificial/métodos , Procedimentos Cirúrgicos em Ginecologia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Doenças dos Genitais Femininos/cirurgiaRESUMO
INTRODUCTION: We aimed to compare the inflammatory cytokines levels of the miniaturized and conventional extracorporeal circuit system. The miniaturized extracorporeal circuit system may be fewer possible inflammation-induced or blood transfusion-related complications. METHODS: We performed a prospective randomized controlled trial (RCT) of 101 patients undergoing congenital heart surgery with CPB (cardiopulmonary bypass, weight ≤15 kg, age ≤2 years). Patients were divided into two different CPB groups randomly by random data form. Blood samples at five different time points and the ultrafiltration fluid before and after CPB were collected in all patients. IL-6, IL-8, and TNF alpha were respectively tested with Abcam ELISA kit. RESULTS: The IL-6 level of blood serum in two groups had no statistical differences between the two groups at all time points. The IL-8 level of blood serum in two groups had no statistical differences right after anesthesia and 5 min after CPB. However, IL-8 level was significantly higher in conventional extracorporeal circuit group than that in miniaturized extracorporeal circuit group at 6 h, 12 h and 24 h after CPB. Blood serum TNF alpha in conventional extracorporeal circuit group was significantly higher at 6 h after CPB than that in miniaturized extracorporeal circuit group. No statistical differences in TNF alpha were found between two groups right after anesthesia and at 5 min after CPB, 12 h and 24 h after CPB. In ultrafiltration fluid, no statistical differences were found in IL-6, IL-8 nor TNF alpha between two groups in all time. No statistical differences were found in ICU (intensive care unit) stay and mechanical ventilation time between the two groups. The blood transfusion rate was significantly lower in miniaturized extracorporeal circuit group. CONCLUSION: Implementing the miniaturized extracorporeal circuit system could decrease the inflammatory cytokines at a certain level. The blood transfusion rate is significantly lower in miniaturized extracorporeal circuit group This indicates the miniaturized extracorporeal circuit system might be a safer CPB strategy with fewer possible inflammation-induced or blood transfusion-related complications.
RESUMO
Broadband filtering and reconstruction-based spectral measurement represent a hot technical route for miniaturized spectral measurement; the measurement encoding scheme has a great effect on the spectral reconstruction fidelity. The existing spectral encoding schemes are usually complex and hard to implement; thus, the applications are severely limited. Considering this, here, a simple spectral encoding method based on a triangular matrix is designed. The condition number of the proposed spectral encoding system is estimated and demonstrated to be relatively low theoretically; then, verification experiments are carried out, and the results show that the proposed encoding can work well under precise or unprecise encoding and measurement conditions; therefore, the proposed scheme is demonstrated to be an effective trade-off of the spectral encoding efficiency and implementation cost.
RESUMO
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.
Assuntos
Trifosfato de Adenosina , Medições Luminescentes , Água , Trifosfato de Adenosina/análise , Água/química , Medições Luminescentes/métodos , Luminescência , Técnicas Biossensoriais/métodosRESUMO
A sensitive, miniaturized, ultrawideband probe is proposed for near-field measurements. The proposed probe is based on a new V-shaped tip design and a slope structure resulting in better field distribution and impedance matching with a span bandwidth from 10 kHz up to 52 GHz, which is compatible with ultrawideband applications. The proposed E-probe fabrication process utilizes a four-layer printed circuit board (PCB) using Rogers RO4003 (tm) and RO4450 high-performance dielectrics, with εr = 3.55 and 3.3, respectively. The probe length is 40 mm with a minimum width of 4 mm, which is suitable for narrow, complex, and integrated PCBs. The passive E-probe sensitivity is -106.29 dBm and -87.48 dBm at 2 GHz and 40 GHz, respectively. It has a very small spatial resolution of 0.5 mm at 20, 25, 30, and 35 GHz. The probe is small and cheap and can diagnose electromagnetic interference (EMI) in electronic systems such as telemetry, UAVs, and avionics.
RESUMO
Repetitive transcranial magnetic stimulation (rTMS) is a rapidly developing therapeutic modality for the safe and effective treatment of neuropsychiatric disorders. However, clinical rTMS driving systems and head coils are large, heavy, and expensive, so miniaturized, affordable rTMS devices may facilitate treatment access for patients at home, in underserved areas, in field and mobile hospitals, on ships and submarines, and in space. The central component of a portable rTMS system is a miniaturized, lightweight coil. Such a coil, when mated to lightweight driving circuits, must be able to induce B and E fields of sufficient intensity for medical use. This paper newly identifies and validates salient theoretical considerations specific to the dimensional scaling and miniaturization of coil geometries, particularly figure-8 coils, and delineates novel, key design criteria. In this context, the essential requirement of matching coil inductance with the characteristic resistance of the driver switches is highlighted. Computer simulations predicted E- and B-fields which were validated via benchtop experiments. Using a miniaturized coil with dimensions of 76 mm × 38 mm and weighing only 12.6 g, the peak E-field was 87 V/m at a distance of 1.5 cm. Practical considerations limited the maximum voltage and current to 350 V and 3.1 kA, respectively; nonetheless, this peak E-field value was well within the intensity range, 60-120 V/m, generally held to be therapeutically relevant. The presented parameters and results delineate coil and circuit guidelines for a future miniaturized, power-scalable rTMS system able to generate pulsed E-fields of sufficient amplitude for potential clinical use.
Assuntos
Projetos de Pesquisa , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Simulação por ComputadorRESUMO
The goal of the present research was to assess, under controlled laboratory conditions, the accuracy and precision of a prototype device (named 'P.ALP': Ph.D. Air-quality Low-cost Project) developed for PM2.5 concentration level monitoring. Indeed, this study follows a complementary manuscript (previously published) focusing on the in-field evaluation of the device's performance. Four P.ALP prototypes were co-located with the reference instrument in a calm-air aerosol chamber at the NIOSH laboratories in Pittsburgh, PA (USA), used by the Center for Direct Reading and Sensor Technologies. The devices were tested for 10 monitoring days under several exposure conditions. To evaluate the performance of the prototypes, different approaches were employed. After the data from the devices were stored and prepared for analysis, to assess the accuracy (comparing the reference instrument with the prototypes) and the precision (comparing all the possible pairs of devices) of the P.ALPs, linear regression analysis was performed. Moreover, to find out the applicability field of this device, the US EPA's suggested criteria were adopted, and to assess error trends of the prototype in the process of data acquisition, Bland-Altman plots were built. The findings show that, by introducing ad hoc calibration factors, the P.ALP's performance needs to be further implemented, but the device can monitor the concentration trend variations with satisfying accuracy. Overall, the P.ALP can be involved in and adapted to a wide range of applications because of the inexpensive nature of the components, the small dimensions, and the high data storage capacity.
Assuntos
Monitoramento Ambiental , Material Particulado , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Poluentes Atmosféricos/análise , Análise Custo-Benefício , Humanos , Aerossóis/química , Aerossóis/análiseRESUMO
Electrochemical measurements are vital to a wide range of applications such as air quality monitoring, biological testing, food industry, and more. Integrated circuits have been used to implement miniaturized and low-power electrochemical potentiostats that are suitable for wearable devices. However, employing modern integrated circuit technologies with low supply voltage precludes the utilization of electrochemical reactions that require a higher potential window. In this paper, we present a novel circuit architecture that utilizes dynamic voltage at the working electrode of an electrochemical cell to effectively enhance the supported voltage range compared to traditional designs, increasing the cell voltage range by 46% and 88% for positive and negative cell voltages, respectively. In return, this facilitates a wider range of bias voltages in an electrochemical cell, and, therefore, opens integrated microsystems to a broader class of electrochemical reactions. The circuit was implemented in 180 nm technology and consumes 2.047 mW of power. It supports a bias potential range of 1.1 V to -2.12 V and cell potential range of 2.41 V to -3.11 V that is nearly double the range in conventional designs.
RESUMO
This paper presents the introduction, design, and experimental validation of two small helical antennae. These antennae are a component of the surface acoustic wave (SAW) sensor interrogation system, which has been miniaturized to operate at 915 MHz and aims to improve the performance of wireless passive SAW temperature-sensing applications. The proposed antenna designs are the normal-mode cylindrical helical antenna (CHA) and the hemispherical helical antenna (HSHA); both designed structures are developed for the ISM band, which ranges from 902 MHz to 928 MHz. The antennae exhibit resonance at 915 MHz with an operational bandwidth of 30 MHz for the CHA and 22 MHz for the HSHA. A notch occurs in the operating band, caused by the characteristics of the SAW sensor. The presence of this notch is crucial for the temperature measurement by aiding in calculating the frequency shifting of that notch. The decrement in the resonance frequency of the SAW sensor is about 66.67 kHz for every 10 °C, which is obtained by conducting the temperature measurement of the system model across temperature environments ranging from 30 °C to 90 °C to validate the variation in system performance.
RESUMO
The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the signal difference coefficient (SDC) was introduced to quantify delamination damage and evaluate the sensitivity of A0-mode and S0-mode Lamb waves to delamination damage. The simulation results show that compared with the S0-mode Lamb wave, the A0-mode Lamb wave exhibits higher delamination damage sensitivity. The delamination damage can be quantified based on the strong correlation between the SDC and the delamination damage size. The control effect of the linear array PZT phase time-delay method on the Lamb wave mode was investigated by simulation. The phase time-delay method realizes the generation of a single-mode Lamb wave, which can separately excite the A0-mode and S0-mode Lamb wave to identify delamination damage of different sizes. The A0-mode Lamb wave was excited by the developed one-dimensional miniaturized linear comb transducer (LCT), which was used to conduct the detection experiment on the CFRP bending plate with delamination damage sizes of Φ6.0 mm, Φ10.0 mm, and Φ15.0 mm. The experimental results verify the correctness of the simulation. According to the Hermite interpolation results of the finite-element simulation data, the relationship between the delamination damage size and the SDC was fitted by the Gaussian function and Rational function, which can accurately quantify the delamination damage. The absolute error of the delamination damage quantification with Gaussian and Rational fitting expression does not exceed 0.8 mm and 0.7 mm, and the percentage error is not more than 8% and 7%. The detection and signal processing methods employed in the present research are easy to operate and implement, and accurate delamination damage quantification results have been obtained.
RESUMO
Immunoadsorption (IA) has proven to be clinically effective in the treatment of steroid-refractory multiple sclerosis (MS) relapses, but its mechanism of action remains unclear. We used miniaturized adsorber devices with a tryptophan-immobilized polyvinyl alcohol (PVA) gel sorbent to mimic the IA treatment of patients with MS in vitro. The plasma was screened before and after adsorption with regard to disease-specific mediators, and the effect of the IA treatment on the migration of neutrophils and the integrity of the endothelial cell barrier was tested in cell-based models. The in vitro IA treatment with miniaturized adsorbers resulted in reduced plasma levels of cytokines and chemokines. We also found a reduced migration of neutrophils towards patient plasma treated with the adsorbers. Furthermore, the IA-treated plasma had a positive effect on the endothelial cell barrier's integrity in the cell culture model. Our findings suggest that IA results in a reduced infiltration of cells into the central nervous system by reducing leukocyte transmigration and preventing blood-brain barrier breakdown. This novel approach of performing in vitro blood purification therapies on actual patient samples with miniaturized adsorbers and testing their effects in cell-based assays that investigate specific hypotheses of the pathophysiology provides a promising platform for elucidating the mechanisms of action of those therapies in various diseases.
Assuntos
Esclerose Múltipla , Humanos , Projetos Piloto , Plasma , Neutrófilos , LeucócitosRESUMO
The advancement of traditional sample preparation techniques has brought about miniaturization systems designed to scale down conventional methods and advocate for environmentally friendly analytical approaches. Although often referred to as green analytical strategies, the effectiveness of these methods is intricately linked to the properties of the sorbent utilized. Moreover, to fully embrace implementing these methods, it is crucial to innovate and develop new sorbent or solid phases that enhance the adaptability of miniaturized techniques across various matrices and analytes. Graphene-based materials exhibit remarkable versatility and modification potential, making them ideal sorbents for miniaturized strategies due to their high surface area and functional groups. Their notable adsorption capability and alignment with green synthesis approaches, such as bio-based graphene materials, enable the use of less sorbent and the creation of biodegradable materials, enhancing their eco-friendly aspects towards green analytical practices. Therefore, this study provides an overview of different types of hybrid graphene-based materials as well as their applications in crucial miniaturized techniques, focusing on offline methodologies such as stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), pipette-tip solid-phase extraction (PT-SPE), disposable pipette extraction (DPX), dispersive micro-solid-phase extraction (d-µ-SPE), and magnetic solid-phase extraction (MSPE).
RESUMO
Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and in vivo delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from Staphylococcus lugdunensis and AsCas12a derived from Acidaminococcus sp. Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for EMX1, NUDT5 and AAVS1 gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Células HEK293RESUMO
Lanceolate nerve endings (LNEs) surrounding hair follicles (HFs) play an important role in detecting hair deflection. Complexes of the LNEs form a palisade-like structure along the longitudinal axis of hair roots in which axons are sandwiched between two processes of terminal Schwann cells (tSCs) at the isthmus of HFs. The structure and molecular mechanism of LNEs in animal sinus hair, pelage, and human vellus hairs have been investigated. Despite the high density of HFs in human scalp skin, the LNEs in human terminal HFs have not been investigated. In this study, we aimed to reveal the distribution and ultrastructure of LNEs in terminal HFs of human scalp skin. Using light-sheet microscopy and immunostaining, the LNEs were observed at one terminal HF but not at the other terminal HFs in the same follicular unit. The ultrastructure of the LNEs of terminal HFs in human scalp skin was characterized using correlated light and electron microscopy (CLEM). Confocal laser microscopy and transmission electron microscopy of serial transverse sections of HFs revealed that LNEs were aligned adjacent to the basal lamina outside the outer root sheath (ORS), at the isthmus of terminal HFs, and adjacent to CD200-positive ORS cells in the upper bulge region. Moreover, axons with abundant mitochondria were sandwiched between tSCs. Three-dimensional CLEM, specifically confocal laser microscopy and focused ion beam scanning electron microscopy, of stained serial transverse sections revealed that LNEs were wrapped with type I and type II tSCs, with the processes protruding from the space between the Schwann cells. Moreover, the ultrastructures of LNEs at miniaturized HFs were similar to those of LNEs at terminal HFs. Preembedding immunoelectron microscopy revealed that Piezo-type mechanosensitive ion channel component 2 (Piezo2), a gated ion channel, was in axons and tSCs and adjacent to the cell membrane of axons and tSCs, suggesting that LNEs function as mechanosensors. The number of LNEs increased as the diameter of the ORS decreased, suggesting that LNEs dynamically adapt to the HF environment as terminal HFs miniaturize into vellus-like hair. These findings will provide insights for investigations of mechanosensory organs, aging, and re-innervation during wound healing.