Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 44(1): 32, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568450

RESUMO

The phenomenon of ischemic postconditioning (PostC) is known to be neuroprotective against ischemic reperfusion (I/R) injury. One of the key processes in PostC is the opening of the mitochondrial ATP-dependent potassium (mito-KATP) channel and depolarization of the mitochondrial membrane, triggering the release of calcium ions from mitochondria through low-conductance opening of the mitochondrial permeability transition pore. Mitochondrial calcium uniporter (MCU) is known as a highly sensitive transporter for the uptake of Ca2+ present on the inner mitochondrial membrane. The MCU has attracted attention as a new target for treatment in diseases, such as neurodegenerative diseases, cancer, and ischemic stroke. We considered that the MCU may be involved in PostC and trigger its mechanisms. This research used the whole-cell patch-clamp technique on hippocampal CA1 pyramidal cells from C57BL mice and measured changes in spontaneous excitatory post-synaptic currents (sEPSCs), intracellular Ca2+ concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents under inhibition of MCU by ruthenium red 265 (Ru265) in PostC. Inhibition of MCU increased the occurrence of sEPSCs (p = 0.014), NMDAR currents (p < 0.001), intracellular Ca2+ concentration (p < 0.001), and dead cells (p < 0.001) significantly after reperfusion, reflecting removal of the neuroprotective effects in PostC. Moreover, mitochondrial depolarization in PostC with Ru265 was weakened, compared to PostC (p = 0.004). These results suggest that MCU affects mitochondrial depolarization in PostC to suppress NMDAR over-activation and prevent elevation of intracellular Ca2+ concentrations against I/R injury.


Assuntos
Lesões Encefálicas , Canais de Cálcio , Pós-Condicionamento Isquêmico , Compostos de Rutênio , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato , Trifosfato de Adenosina
2.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677784

RESUMO

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Assuntos
Inflamassomos , Macrófagos , Mitocôndrias , Triazinas , Humanos , Anti-Inflamatórios/farmacologia , Hipoglicemiantes/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Triazinas/farmacologia
3.
Mol Cell Neurosci ; 125: 103861, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182572

RESUMO

During Alzheimer's (AD), tau protein suffers from abnormal post-translational modifications, including cleaving by caspase-3. These tau forms affect synaptic plasticity contributing to the cognitive decline observed in the early stages of AD. In addition, caspase-3 cleaved tau (TauC3) impairs mitochondrial dynamics and organelles transport, which are both relevant processes for synapse. We recently showed that the absence of tau expression reverts age-associated cognitive and mitochondrial failure by blocking the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial complex involved in calcium regulation and apoptosis. Therefore, we studied the effects of TauC3 against the dendritic spine and synaptic vesicle formation and the possible role of mPTP in these alterations. We used mature hippocampal mice neurons to express a reporter protein (GFP, mCherry), coupled to full-length human tau protein (GFP-T4, mCherry-T4), and coupled to human tau protein cleaved at D421 by caspase-3 (GFP-T4C3, mCherry-T4C3) and synaptic elements were evaluated. Treatment with cyclosporine A (CsA), an immunosuppressive drug with inhibitory activity on mPTP, prevented ROS increase and mitochondrial depolarization induced by TauC3 in hippocampal neurons. These results were corroborated with immortalized cortical neurons in which ROS increase and ATP loss induced by this tau form were prevented by CsA. Interestingly, TauC3 expression significantly reduced dendritic spine density (filopodia type) and synaptic vesicle number in hippocampal neurons. Also, neurons transfected with TauC3 showed a significant accumulation of synaptophysin protein in their soma. More importantly, all these synaptic alterations were prevented by CsA, suggesting an mPTP role in these negative changes derived from TauC3 expression.


Assuntos
Doença de Alzheimer , Proteínas tau , Camundongos , Humanos , Animais , Proteínas tau/metabolismo , Ciclosporina/farmacologia , Caspase 3/metabolismo , Espécies Reativas de Oxigênio , Apoptose , Doença de Alzheimer/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613474

RESUMO

The relationship between neurological damage and cardiovascular disease is often observed. This type of damage is both a cause and an effect of cardiovascular disease. Mitochondria are the key organelles of the cell and are primarily subject to oxidative stress. Mitochondrial dysfunctions are involved in the etiology of various diseases. A decrease in the efficiency of the heart muscle can lead to impaired blood flow and decreased oxygen supply to the brain. Astaxanthin (AST), a marine-derived xanthophyll carotenoid, has multiple functions and its effects have been shown in both experimental and clinical studies. We investigated the effects of AST on the functional state of brain mitochondria in rats after heart failure. Isoproterenol (ISO) was used to cause heart failure. In the present study, we found that ISO impaired the functional state of rat brain mitochondria (RBM), while the administration of AST resulted in an improvement in mitochondrial efficiency. The respiratory control index (RCI) in RBM decreased with the use of ISO, while AST administration led to an increase in this parameter. Ca2+ retention capacity (CRC) decreased in RBM isolated from rat brain after ISO injection, and AST enhanced CRC in RBM after heart failure. The study of changes in the content of regulatory proteins such as adenine nucleotide translocase 1 and 2 (ANT1/2), voltage dependent anion channel (VDAC), and cyclophilin D (CyP-D) of mitochondrial permeability transition pore (mPTP) showed that ISO reduced their level, while AST restored the content of these proteins almost to the control value. In general, AST improves the functional state of mitochondria and can be considered as a prophylactic drug in various therapeutic approaches.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Ratos , Animais , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Doenças Cardiovasculares/metabolismo , Mitocôndrias/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Xantofilas/metabolismo , Encéfalo/metabolismo , Isoproterenol/farmacologia , Mitocôndrias Cardíacas/metabolismo , Cálcio/metabolismo
5.
J Mol Cell Cardiol ; 151: 145-154, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147447

RESUMO

Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Animais , Transporte Biológico , Fenômenos Biofísicos , Humanos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
6.
Mol Cell Biochem ; 476(1): 493-506, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33000352

RESUMO

Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/terapia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Complexos de ATP Sintetase/metabolismo , Animais , Ânions , Apoptose , Transporte Biológico , Peptidil-Prolil Isomerase F/metabolismo , Humanos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Necrose , Doenças Neurodegenerativas/metabolismo , Fosfatos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de GABA/metabolismo , Traumatismo por Reperfusão
7.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360729

RESUMO

Mitochondria are considered to be important organelles in the cell and play a key role in the physiological function of the heart, as well as in the pathogenesis and development of various heart diseases. Under certain pathological conditions, such as cardiovascular diseases, stroke, traumatic brain injury, neurodegenerative diseases, muscular dystrophy, etc., mitochondrial permeability transition pore (mPTP) is formed and opened, which can lead to dysfunction of mitochondria and subsequently to cell death. This review summarizes the results of studies carried out by our group of the effect of astaxanthin (AST) on the functional state of rat heart mitochondria upon direct addition of AST to isolated mitochondria and upon chronic administration of AST under conditions of mPTP opening. It was shown that AST exerted a protective effect under all conditions. In addition, AST treatment was found to prevent isoproterenol-induced oxidative damage to mitochondria and increase mitochondrial efficiency. AST, a ketocarotenoid, may be a potential mitochondrial target in therapy for pathological conditions associated with oxidative damage and mitochondrial dysfunction, and may be a potential mitochondrial target in therapy for pathological conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Humanos , Isoproterenol/efeitos adversos , Isoproterenol/uso terapêutico , Mitocôndrias Cardíacas/patologia , Oxirredução/efeitos dos fármacos , Xantofilas/uso terapêutico
8.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638588

RESUMO

BACKGROUND: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. METHODS: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. RESULTS: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.


Assuntos
Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Carbenoxolona/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Animais , Cálcio/metabolismo , Ciclosporina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ratos
9.
J Biol Chem ; 293(1): 115-129, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158256

RESUMO

Congestive heart failure typically arises from cardiac myocyte necrosis/apoptosis, associated with the pathological opening of the mitochondrial permeability transition pore (mPTP). mPTP opening decreases the mitochondrial membrane potential leading to the activation of Ca2+-independent phospholipase A2γ (iPLA2γ) and the production of downstream toxic metabolites. However, the array of enzymatic mediators and the exact chemical mechanisms responsible for modulating myocardial mPTP opening remain unclear. Herein, we demonstrate that human heart failure activates specific myocardial mitochondrial phospholipases that increase Ca2+-dependent production of toxic hydroxyeicosatetraenoic acids (HETEs) and attenuate the activity of phospholipases that promote the synthesis of protective epoxyeicosatrienoic acids (EETs). Mechanistically, HETEs activated the Ca2+-induced opening of the mPTP in failing human myocardium, and the highly selective pharmacological blockade of either iPLA2γ or lipoxygenases attenuated mPTP opening in failing hearts. In contrast, pharmacological inhibition of cytochrome P450 epoxygenases opened the myocardial mPTP in human heart mitochondria. Remarkably, the major mitochondrial phospholipase responsible for Ca2+-activated release of arachidonic acid (AA) in mitochondria from non-failing hearts was calcium-dependent phospholipase A2ζ (cPLA2ζ) identified by sequential column chromatographies and activity-based protein profiling. In contrast, iPLA2γ predominated in failing human myocardium. Stable isotope kinetics revealed that in non-failing human hearts, cPLA2ζ metabolically channels arachidonic acid into EETs, whereas in failing hearts, increased iPLA2γ activity channels AA into toxic HETEs. These results mechanistically identify the sequelae of pathological remodeling of human mitochondrial phospholipases in failing myocardium. This remodeling metabolically channels AA into toxic HETEs promoting mPTP opening, which induces necrosis/apoptosis leading to further progression of heart failure.


Assuntos
Fosfolipases A2 do Grupo VI/metabolismo , Insuficiência Cardíaca/metabolismo , Ácidos Hidroxieicosatetraenoicos/biossíntese , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/patologia , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/enzimologia , Miocárdio/metabolismo , Miocárdio/patologia , Permeabilidade , Fosfolipases A2/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 618-631, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223733

RESUMO

Frataxin-deficient neonatal rat cardiomyocytes and dorsal root ganglia neurons have been used as cell models of Friedreich ataxia. In previous work we show that frataxin depletion resulted in mitochondrial swelling and lipid droplet accumulation in cardiomyocytes, and compromised DRG neurons survival. Now, we show that these cells display reduced levels of the mitochondrial calcium transporter NCLX that can be restored by calcium-chelating agents and by external addition of frataxin fused to TAT peptide. Also, the transcription factor NFAT3, involved in cardiac hypertrophy and apoptosis, becomes activated by dephosphorylation in both cardiomyocytes and DRG neurons. In cardiomyocytes, frataxin depletion also results in mitochondrial permeability transition pore opening. Since the pore opening can be inhibited by cyclosporin A, we show that this treatment reduces lipid droplets and mitochondrial swelling in cardiomyocytes, restores DRG neuron survival and inhibits NFAT dephosphorylation. These results highlight the importance of calcium homeostasis and that targeting mitochondrial pore by repurposing cyclosporin A, could be envisaged as a new strategy to treat the disease.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação ao Ferro/química , Mitocôndrias Cardíacas/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Fatores de Transcrição NFATC/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Calcineurina/química , Sobrevivência Celular , Ciclosporina/química , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Gânglios Espinais/metabolismo , Lipídeos/química , Linfócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Permeabilidade , Fosforilação , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/química , Frataxina
11.
Biochim Biophys Acta ; 1863(10): 2515-30, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26902508

RESUMO

Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina/metabolismo , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Dimerização , Humanos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
12.
J Comput Aided Mol Des ; 31(10): 929-941, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28913661

RESUMO

Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to ß amyloid (Aß) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD-cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aß-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)-based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.


Assuntos
Ciclofilinas/antagonistas & inibidores , Ciclosporina/química , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/química , Peptídeos beta-Amiloides/química , Animais , Sítios de Ligação , Sobrevivência Celular , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Bases de Dados de Produtos Farmacêuticos , Células HT29 , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
13.
Handb Exp Pharmacol ; 240: 71-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27783269

RESUMO

Mitochondria are the "power house" of a cell continuously generating ATP to ensure its proper functioning. The constant production of ATP via oxidative phosphorylation demands a large electrochemical force that drives protons across the highly selective and low-permeable mitochondrial inner membrane. Besides the conventional role of generating ATP, mitochondria also play an active role in calcium signaling, generation of reactive oxygen species (ROS), stress responses, and regulation of cell-death pathways. Deficiencies in these functions result in several pathological disorders like aging, cancer, diabetes, neurodegenerative and cardiovascular diseases. A plethora of ion channels and transporters are present in the mitochondrial inner and outer membranes which work in concert to preserve the ionic equilibrium of a cell for the maintenance of cell integrity, in physiological as well as pathophysiological conditions. For, e.g., mitochondrial cation channels KATP and BKCa play a significant role in cardioprotection from ischemia-reperfusion injury. In addition to the cation channels, mitochondrial anion channels are equally essential, as they aid in maintaining electro-neutrality by regulating the cell volume and pH. This chapter focusses on the information on molecular identity, structure, function, and physiological relevance of mitochondrial chloride channels such as voltage dependent anion channels (VDACs), uncharacterized mitochondrial inner membrane anion channels (IMACs), chloride intracellular channels (CLIC) and the aspects of forthcoming chloride channels.


Assuntos
Canais de Cloreto/fisiologia , Mitocôndrias/metabolismo , Canais de Ânion Dependentes de Voltagem/fisiologia , Animais , Humanos , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial
14.
Adv Exp Med Biol ; 982: 127-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551785

RESUMO

A core feature of ischemic heart disease is injury to cardiomyocytes (CMC). Ischemic CMC manifest the molecular mechanisms to undergo the major forms of cell injury and death, namely, oncotic necrosis, necroptosis, apoptosis and unregulated autophagy. Important modulators of ischemic injury are reperfusion and conditioning. Mitochondria have a major role in mediating the injury to CMC through membrane protein complexes referred to as death channels. Apoptosis is mediated by activation of a channel regulated by the Bcl-2 protein family leading to mitochondrial outer membrane permeabilization (MOMP). Oncotic type injury is mediated by opening of the mitochondrial permeability transition pore (mPTP). Mitochondria also have a reperfusion salvage kinase pathway (RISK). With cyclosporine A serving as a prototype, ongoing research is aimed at developing pharmacological approaches to condition and preserve mitochondrial integrity in order to promote CMC survival during episodes of myocardial ischemia.


Assuntos
Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiotônicos/uso terapêutico , Morte Celular , Circulação Coronária , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Contração Miocárdica/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia
15.
J Mol Cell Cardiol ; 78: 142-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25172387

RESUMO

The mitochondrial permeability transition is a key event in cell death. Intense research efforts have been focused on elucidating the molecular components of the mitochondrial permeability transition pore (mPTP) to improve the understanding and treatment of various pathologies, including neurodegenerative disorders, cancer and cardiac diseases. Several molecular factors have been proposed as core components of the mPTP; however, further investigation has indicated that these factors are among a wide range of regulators. Thus, the scientific community lacks a clear model of the mPTP. Here, we review the molecular factors involved in the regulation and formation of the mPTP. Furthermore, we propose that the mitochondrial ATP synthase, specifically its c subunit, is the central core component of the mPTP complex. Moreover, we discuss the involvement of the mPTP in ischemia and reperfusion as well as the results of clinical studies targeting the mPTP to ameliorate ischemia-reperfusion injury. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/química , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Terapia de Alvo Molecular , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Necrose/metabolismo , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Biochem Biophys Res Commun ; 464(1): 286-91, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116776

RESUMO

In the current study, we studied the potential role of ABT-737, a novel Bcl-2 inhibitor, on curcumin-induced anti-melanoma cell activity in vitro. The associated mechanisms were also investigated. We demonstrated that ABT-737 significantly sensitized curcumin-induced activity against melanoma cells (WM-115 and B16 lines), resulting in substantial cell death and apoptosis with co-administration. At the molecular level, curcumin and ABT-737 synergistically induced mitochondrial permeability transition pore (mPTP) opening in melanoma cells, the latter was evidenced by mitochondrial membrane potential (MPP) reduction and mitochondrial complexation between cyclophilin-D (CyPD) and adenine nucleotide translocator 1 (ANT-1). Significantly, mPTP blockers, including cyclosporin A and sanglifehrin A, remarkably inhibited curcumin and ABT-737 co-administration-induced cytotoxicity against melanoma cells. Meanwhile, siRNA-mediated knockdown of CyPD or ANT-1, the two key components of mPTP, alleviated WM-116 cell death by the co-treatment. Collectively, we show that ABT-737 sensitizes curcumin-induced anti-melanoma cell activity probably through facilitating mPTP death pathway. ABT-737 could be further investigated as a potential curcumin adjuvant in melanoma and other cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Curcumina/farmacologia , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/agonistas , Nitrofenóis/farmacologia , Sulfonamidas/farmacologia , Translocador 1 do Nucleotídeo Adenina/antagonistas & inibidores , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/genética , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Sinergismo Farmacológico , Humanos , Lactonas/farmacologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Compostos de Espiro/farmacologia
17.
Tumour Biol ; 36(11): 9015-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26084607

RESUMO

In the current study, we tested the potential anti-pancreatic cancer activity of a novel hydroxamate-based histone deacetylase (HDAC) inhibitor ST-3595. We showed that ST-3595 exerted potent anti-proliferative and cytotoxic activities against both established pancreatic cancer cell lines (PANC-1, AsPC-1, and Mia-PaCa-2), and patient-derived primary cancer cells. It was, however, generally safe to non-cancerous pancreatic epithelial HPDE6c7 cells. ST-3595-induced cytotoxicity to pancreatic cancer cells was associated with significant apoptosis activation. Reversely, the pan caspase inhibitor z-VAD-fmk and the caspase-8 inhibitor z-ITED-fmk alleviated ST-3595-mediated anti-pancreatic cancer activity in vitro. For the mechanism study, ST-3595 inhibited HDAC activity, and induced mitochondrial permeability transition pore (MPTP) opening in pancreatic cancer cells. Inhibition of MPTP, by cyclosporin A, sanglifehrin A, or by cyclophilin-D (Cyp-D) siRNA knockdown, dramatically inhibited ST-3595-induced pancreatic cancer cell apoptosis. Meanwhile, we found that a low concentration of ST-3595 dramatically sensitized gemcitabine-induced anti-pancreatic cancer cell activity in vitro. In vivo, ST-3595 oral administration inhibited PANC-1 xenograft growth in nude mice, and this activity was further enhanced when in combination with gemcitabine. In summary, the results of this study suggest that targeting HDACs by ST-3595 might represent as a novel and promising anti-pancreatic cancer strategy.


Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/genética , Ácidos Hidroxâmicos/administração & dosagem , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Camundongos , Poro de Transição de Permeabilidade Mitocondrial , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biochem Biophys Res Commun ; 450(1): 697-703, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24946211

RESUMO

The prostate cancer is one of the leading causes of men's cancer mortality. The development of alternative chemotherapeutic strategies is urgent. Berberine has displayed significant anti-prostate cancer activities. The underlying mechanisms are not fully understood. In the current study, we found that berberine induced apoptosis and programmed necrosis in cultured prostate cancer cells (LNCaP and PC-82 lines), and necrosis weighted more than apoptosis in contributing berberine's cytotoxicity. We demonstrated that mitochondrial protein cyclophilin-D (Cyp-D) is required for berberine-induced programmed necrosis. Inhibition of Cyp-D by its inhibitors cyclosporin A (CSA) or sanglifehrin A (SFA), and by Cyp-D shRNA depletion alleviated berberine-induced prostate cancer cell necrosis (but not apoptosis). Our data found that in prostate cancer cells, berberine induced reactive oxygen species (ROS) production, which dictated P53 translocation to mitochondria, where it physically interacted with Cyp-D to open mitochondrial permeability transition pore (mPTP). The anti-oxidant N-acetylcysteine (NAC), the P53 inhibitor pifithrin-α (PFTα) as well as P53 siRNA knockdown suppressed berberine-induced P53 mitochondrial translocation and Cyp-D association, thus inhibiting mitochondrial membrane potential (MMP) decrease and prostate cancer cell necrosis. In summary, the results of the present study provide mechanistic evidence that both apoptosis and programmed necrosis attribute to berberine's cytotoxicity in prostate cancer cells.


Assuntos
Berberina/farmacologia , Ciclofilinas/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia
19.
Biochem Biophys Res Commun ; 448(1): 15-21, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24735534

RESUMO

Here we studied the role of mitochondrial permeability transition pore (mPTP) opening in curcumin's cytotoxicity in melanoma cells. In cultured WM-115 melanoma cells, curcumin induced mitochondrial membrane potential (MPP) decrease, cyclophilin-D (CyPD)-adenine nucleotide translocator 1 (ANT-1) (two mPTP components) mitochondrial association and cytochrome C release, indicating mPTP opening. The mPTP blocker sanglifehrin A (SfA) and ANT-1 siRNA-depletion dramatically inhibited curcumin-induced cytochrome C release and WM-115 cell death. CyPD is required for curcumin-induced melanoma cell death. The CyPD inhibitor cyclosporin A (CsA) or CyPD siRNA-depletion inhibited curcumin-induced WM-115 cell death and apoptosis, while WM-115 cells with CyPD over-expression were hyper-sensitive to curcumin. Finally, we found that C6 ceramide enhanced curcumin-induced cytotoxicity probably through facilitating mPTP opening, while CsA and SfA as well as CyPD and ANT-1 siRNAs alleviated C6 ceramide's effect on curcumin in WM-115 cells. Together, these results suggest that curcumin-induced melanoma cell death is associated with mPTP opening.


Assuntos
Morte Celular/efeitos dos fármacos , Curcumina/farmacologia , Melanoma/patologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/farmacologia , Linhagem Celular Tumoral , Peptidil-Prolil Isomerase F , Ciclofilinas/biossíntese , Citocromos c/metabolismo , Humanos , Lactonas/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Compostos de Espiro/farmacologia
20.
Biochem Biophys Res Commun ; 452(3): 768-74, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25201730

RESUMO

Lung cancer is a major cause of cancer-related mortality in the United States and around the world. Due to the pre-existing or acquired chemo-resistance, the current standard chemotherapy regimens only show moderate activity against lung cancer. In the current study, we explored the potential anti-lung cancer activity of cinobufotalin in vivo and in vitro, and studied the underlying mechanisms. We demonstrated that cinobufotalin displayed considerable cytotoxicity against lung cancer cells (A549, H460 and HTB-58 lines) without inducing significant cell apoptosis. Our data suggest that mitochondrial protein cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates cinobufotalin-induced non-apoptotic death of lung cancer cells. The Cyp-D inhibitor cyclosporine A (CsA), the mPTP blocker sanglifehrin A (SfA), and Cyp-D shRNA-silencing significantly inhibited cinobufotalin-induced mitochondrial membrane potential (MMP) reduction and A549 cell death (but not apoptosis). Using a mice xenograft model, we found that cinobufotalin inhibited A549 lung cancer cell growth in vivo. Thus, cinobufotalin mainly induces Cyp-D-dependent non-apoptotic death in cultured lung cancer cells. The results of this study suggest that cinobufotalin might be further investigated as a novel anti-lung cancer agent.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Ciclofilinas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Transporte da Membrana Mitocondrial/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Lactonas/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Compostos de Espiro/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA