Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118722, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499223

RESUMO

The key to the resource recycling of saline wastes in form of polyhydroxyalkanoates (PHA) is to enrich mixed cultures with salt tolerance and PHA synthesis ability. However, the comparison of saline sludge from different sources and the salt tolerance mechanisms of salt-tolerant PHA producers need to be clarified. In this study, three kinds of activated sludge from different salinity environments were selected as the inoculum to enrich salt-tolerant PHA producers under aerobic dynamic feeding (ADF) mode with butyric acid dominated mixed volatile fatty acid as the substrate. The maximum PHA content (PHAm) reached 0.62 ± 0.01, 0.62 ± 0.02, and 0.55 ± 0.03 g PHA/g VSS at salinity of 0.5%, 0.8%, and 1.8%, respectively. Microbial community analysis indicated that Thauera, Paracoccus, and Prosthecobacter were dominant salt-tolerant PHA producers at low salinity, Thauera, NS9_marine, and SM1A02 were dominant salt-tolerant PHA producers at high salinity. High salinity and ADF mode had synergistic effects on selection and enrichment of salt-tolerant PHA producers. Combined correlation network with redundancy analysis indicated that trehalose synthesis genes and betaine related genes had positive correlation with PHAm, while extracellular polymeric substances (EPS) content had negative correlation with PHAm. The compatible solutes accumulation and EPS secretion were the main salt tolerance mechanisms of the PHA producers. Therefore, adding compatible solutes is an effective strategy to improve PHA synthesis in saline environment.


Assuntos
Poli-Hidroxialcanoatos , Salinidade , Tolerância ao Sal , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo
2.
Food Microbiol ; 119: 104452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225053

RESUMO

The current study was conducted to statistically compare the SYBR® Green quantitative polymerase chain reaction (qPCR) assay and the conventional plate counting (PC) method to construct growth curves of a cocktail of Weissella viridescens in pure culture under different isothermal storage conditions (4, 8, 14, and 30 °C) and in mixed culture with Leuconostoc mesenteroides at 8 °C. The efficiency and specificity of the qPCR standard curves were confirmed, and both methods were adequate to quantify the growth kinetics of W. viridescens at all isothermal temperatures, demonstrating a good correlation and agreement. The efficiencies of the standard curves varied between 98% and 102%. The SYBR® Green qPCR assay was also able to differentiate the growth curves of W. viridescens and L. mesenteroides in the mixed culture at 8 °C. Additionally, the SYBR® Green qPCR method was considered a faster and more sensitive alternative to construct growth curves under different isothermal conditions and differentiate morphologically similar lactic acid bacteria. Overall, the results suggest that the SYBR® Green qPCR method is a reliable and efficient tool to study microbial growth kinetics in pure and mixed cultures.


Assuntos
Lactobacillales , Leuconostoc mesenteroides , Weissella , Lactobacillus , Weissella/genética , Leuconostoc/genética
3.
Microb Cell Fact ; 22(1): 16, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670385

RESUMO

The large application potential of microbiomes has led to a great need for mixed culture methods. However, microbial interactions can compromise the maintenance of biodiversity during cultivation in a reactor. In particular, competition among species can lead to a strong disequilibrium in favor of the fittest microorganism. In this study, an invert emulsion system was designed by dispersing culture medium in a mixture of sunflower oil and the surfactant PGPR. Confocal laser scanning microscopy revealed that this system allowed to segregate microorganisms in independent droplets. Granulomorphometric analysis showed that the invert emulsion remains stable during at least 24 h, and that the introduction of bacteria did not have a significant impact on the structure of the invert emulsion. A two-strain antagonistic model demonstrated that this invert emulsion system allows the propagation of two strains without the exclusion of the less-fit bacterium. The monitoring of single-strain cultures of bacteria representative of a cheese microbiota revealed that all but Brevibacterium linens were able to grow. A consortium consisting of Lactococcus lactis subsp. lactis biovar diacetylactis, Streptococcus thermophilus, Leuconostoc mesenteroides, Staphylococcus xylosus, Lactiplantibacillus plantarum and Carnobacterium maltaromaticum was successfully cultivated without detectable biotic interactions. Metabarcoding analysis revealed that the system allowed a better maintenance of alpha diversity and produced a propagated bacterial consortium characterized by a structure closer to the initial state compared to non-emulsified medium. This culture system could be an important tool in the field of microbial community engineering.


Assuntos
Bactérias , Queijo , Biodiversidade , Queijo/microbiologia , Emulsões , Microbiologia de Alimentos , Lactococcus lactis , Interações Microbianas
4.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985714

RESUMO

Indigenous Saccharomyces cerevisiae strains and their combinations may be used to diversify wines and add complexity to sensory profiles. Here, two S. cerevisiae strains that represent regional genetic and phenotypic specificities for two major winegrowing areas of Greece were used in single- and mixed-culture fermentations. The kinetics and metabolic activities of the strains were analyzed to evaluate the influence of each strain individually or in combination on wine quality. The two strains differentially affected the kinetics and the outcome of fermentation. They showed significant differences in the production of important metabolites that strongly affect the organoleptic profile of wines, such as volatile acidity, acetaldehyde, certain esters, and terpenes. Furthermore, the chemical and sensory profiles of wines produced by single cultures were different from those fermented by mixed-culture inoculum. The concentration of certain metabolites was enhanced (e.g. isoamyl acetate, 1-heptanol), while others were suppressed (e.g. hexyl acetate, octyl acetate). Results highlight the potential worth of indigenous S. cerevisiae strains to differentiate local wines. The mixed-culture S. cerevisiae inoculum was shown to generate novel wine characteristics, as compared to single cultures, thus offering alternatives to further diversify wines and increase their complexity.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação , Acetaldeído/metabolismo , Grécia
5.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36948609

RESUMO

Mixed microorganism cultures are prevalent in the food industry. A variety of microbiological mixtures have been used in these unique fermenting processes to create distinctive flavor profiles and potential health benefits. Mixed cultures are typically not well characterized, which may be due to the lack of simple measurement tools. Image-based cytometry systems have been employed to automatically count bacteria or yeast cells. In this work, we aim to develop a novel image cytometry method to distinguish and enumerate mixed cultures of yeast and bacteria in beer products. Cellometer X2 from Nexcelom was used to count of Lactobacillus plantarum and Saccharomyces cerevisiae in mixed cultures using fluorescent dyes and size exclusion image analysis algorithm. Three experiments were performed for validation. (1) Yeast and bacteria monoculture titration, (2) mixed culture with various ratios, and (3) monitoring a Berliner Weisse mixed culture fermentation. All experiments were validated by comparing to manual counting of yeast and bacteria colony formation. They were highly comparable with ANOVA analysis showing p-value > 0.05. Overall, the novel image cytometry method was able to distinguish and count mixed cultures consistently and accurately, which may provide better characterization of mixed culture brewing applications and produce higher quality products.


Assuntos
Lactobacillus , Saccharomyces , Saccharomyces cerevisiae , Fermentação , Bactérias , Pão/microbiologia , Microbiologia de Alimentos
6.
J Basic Microbiol ; 63(3-4): 239-256, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36670077

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous high global concern environmental pollutants and tend to bioaccumulate due to hydrophobic properties. These xenobiotics, having variable concentrations along different matrices, gradually undergo various physical, chemical, and biological transformation processes. Myco-remediation aids accelerated degradation by effectively transforming complex ring structures to oxidized/hydroxylated intermediates, which can further funnel to bacterial degradation pathways. Exploitation of such complementing fungal-bacterial enzymatic activity can overcome certain limitations of incomplete bioremediation process. Furthermore, high-throughput molecular methods can be employed to unveil community structure, taxon abundance, coexisting community interactions, and metabolic pathways under stressed conditions. The present review critically discusses the role of different fungal phyla in PAHs biotransformation and application of fungal-bacterial cocultures for enhanced mineralization. Moreover, recent advances in bioassays for PAH residue detection, monitoring, developing xenobiotics stress-tolerant strains, and application of fungal catabolic enzymes are highlighted. Application of next-generation sequencing methods to reveal complex ecological networks based on microbial community interactions and data analysis bias in performing such studies is further discussed in detail. Conclusively, the review underscores the application of mixed-culture approach by critically highlighting in situ fungal-bacterial community nexus and its role in complete mineralization of PAHs for the management of contaminated sites.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Xenobióticos/metabolismo , Biodegradação Ambiental , Biotransformação , Bactérias/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
7.
J Environ Manage ; 326(Pt B): 116786, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410150

RESUMO

PHAs are a form of cellular storage polymers with diverse structural and material properties, and their biodegradable and renewable nature makes them a potential green alternative to fossil fuel-based plastics. PHAs are obtained through extraction via various mechanical, physical and chemical processes after their intracellular synthesis. Most studies have until now focused on pure cultures, while information on mixed microbial cultures (MMC) remains limited. In this study, ultrasonic (US) disruption and alkaline digestion by NaOH were applied individually and in combination to obtain PHAs products from an acclimated MMC using phenol as the carbon source. Various parameters were tested, including ultrasonic sound energy density, NaOH concentration, treatment time and temperature, and biomass density. US alone caused limited cell lysis and resulted in high energy consumption and low efficiency. NaOH of 0.05-0.2 M was more efficient in cell disruption, but led to PHAs degradation under elevated temperature and prolonged treatment. Combining US and NaOH significantly improved the overall process efficiency, which could reduce energy consumption by 2/3rds with only minimal PHAs degradation. The most significant factor was identified to be NaOH dosage and treatment time, with US sound energy density playing a minor role. Under the semi-optimized condition (0.2 M NaOH, 1300 W L-1, 10 min), over 70% recovery and 80% purity were achieved from a 3 g L-1 MMC slurry of approximately 50% PHAs fraction. The material and thermal properties of the products were analyzed, and the polymers obtained from US + NaOH treatments showed comparable or higher molecular weight to previously reported results. The products also exhibited good thermal stability and rheological properties, compared to the commercial standard. In conclusion, the combined US and NaOH method has the potential in real application as an efficient process to obtain high quality PHAs from MMC, and cost-effectiveness can be further optimized.


Assuntos
Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Ultrassom , Hidróxido de Sódio , Biomassa , Digestão
8.
J Environ Manage ; 336: 117695, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907062

RESUMO

Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.


Assuntos
Butiratos , Oryza , Fermentação , Biomassa
9.
Environ Sci Technol ; 56(14): 10339-10348, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786926

RESUMO

Biofouling in anaerobic membrane bioreactors (AnMBRs) has not been studied widely. Moreover, the effect of membrane surface properties on biofilm formation beyond initial deposition is controversial. We investigated biofouling with polyvinyldifluoride, polyacrylonitrile, and zwitterion-modified polyethersulfone ultrafiltration membranes having different properties during 72 h filtration using natural anaerobes isolated from AnMBR and analyzed biofilm characteristics by physicochemical and molecular techniques. A decrease in membrane performance was positively correlated with biofilm formation on polyvinyldifluoride and polyacrylonitrile membranes, and as expected, physical cleaning effectively mitigated biofilm on hydrophilic and low-roughness membranes. Surprisingly, while the biofilm on the hydrophilic and low-surface roughness zwitterion-modified membrane was significantly impaired, the impact on transmembrane pressure was the highest. This was ascribed to the formation of a soft compressible thin biofilm with high hydraulic resistance, and internal clogging and pore blocking due to high pore-size distribution. Anaerobe community analysis demonstrated some selection between the bulk and biofilm anaerobes and differences in the relative abundance of the dominant anaerobes among the membranes. However, correlation analyses revealed that all membrane properties studied affected microbial communities' composition, highlighting the system's complexity. Overall, our findings indicate that the membrane properties can affect biofilm formation and the anaerobic microbial population but not necessarily alleviate biofouling.


Assuntos
Incrustação Biológica , Anaerobiose , Bactérias Anaeróbias , Biofilmes , Reatores Biológicos , Membranas Artificiais , Ultrafiltração/métodos
10.
J Appl Microbiol ; 132(1): 532-546, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34245640

RESUMO

AIMS: To study the effects of mixed culture fermentation (MCF) of Bacillus amyloliquefaciens and Trichoderma longibrachiatum on its constituent strains and the application values for agricultural production, with the intention of developing efficient and environmentally friendly biocontrol agents. METHODS AND RESULTS: In this study, an in vitro antifungal growth experiment showed that the inhibitory rate of the MCF broth on pathogenic fungi (Fusarium oxysporum f. sp. lycopersici, Botrytis cinerea, Trichothecium roseum and Colletotrichum gloeosporioides) was less than that of B. amyloliquefaciens culture fermentation (BCF). Moreover, the content and gene expression of lipopeptide antibiotics were also lower than that in the BCF group. However, the pot experiments based on irrigation with appropriately diluted fermentation broth showed that the biocontrol effect of MCF on tomato Fusarium wilt was significantly higher than that of TCF (T. longibrachiatum culture fermentation) and BCF, and was approximately 15.79% higher than that of the BTF group which made by mixing equivalent amounts of BCF and TCF. In MCF broth, two micro-organisms antagonized and coexisted, and the growth of T. longibrachiatum was inhibited. Using transcriptomic analysis, we speculated that MCF can upregulate the expression of genes related to carbon and nitrogen metabolism, oxidation-reduction activity, sporulation, environmental information response and chemotaxis, and biosynthesis of secondary metabolites of B. amyloliquefaciens, which might enhance the nutrient substances metabolism and competitiveness, survival ability, colonization and adaptability to the environment to increase its biocontrol potential. CONCLUSIONS: Mixed culture fermentation could promote the more reasonable and effective utilization of biocontrol micro-organisms though improving biocontrol effect, enhancing strains survival and competitiveness, increasing beneficial metabolites, combined with resistance induction or synergistic control. SIGNIFICANCE AND IMPACT OF THE STUDY: Using MCF agronomically utilizes biocontrol agents in an efficient way, which has a good potential for commercial implementation and could reduce production costs.


Assuntos
Bacillus amyloliquefaciens , Fusarium , Solanum lycopersicum , Fermentação , Hypocreales , Doenças das Plantas
11.
Appl Microbiol Biotechnol ; 106(12): 4801-4811, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759034

RESUMO

The electricity production via psychrophilic microbial fuel cell (PMFC) for wastewater treatment in cold regions offers an alternative to avoid the unwanted methane dissolution of traditional anaerobic fermentation. But, it is seldom reported by mixed-culture, especially closed to 0 °C. Thus, a two-chamber mixed-culture PMFC at 4 °C was successfully operated in this study using acetate as an electron donor. The main results demonstrated a good performance of PMFC, including the maximum voltage of 513 mV at 1000 Ω, coulombic efficiency of 53%, and power density of 689 mW/m2. The cyclic voltammetry curves of enriched biofilm showed a direct electron transfer pathway. These good performances of mixed-culture PMFC were due to the high psychrophilic activity of enriched biofilm, including exoelectrogens genera of Geobacter (6.1%), Enterococcus (17.5%), and Clostridium_sensu_stricto_12 (3.8%). Consequently, a mixed-culture PMFC provides a reasonable strategy to enrich exoelectrogens with high activity. For low-temperature regions, the mixed-culture PMFC involved biotechnologies shall benefit energy generation and valuable chemical production in the future. KEY POINTS: • PMFC showed a maximum voltage of around 513 mV under a resistance of 1000 Ω. • The coulombic efficiency was 53% and the max power density was 689 mW/m2. • Geobacter, Enterococcus, and Clostridium_sensu_stricto_12 were key exoelectrogens.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Biofilmes , Clostridium , Eletricidade , Eletrodos , Geobacter/metabolismo , Metano/metabolismo
12.
Appl Microbiol Biotechnol ; 106(12): 4427-4443, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35763070

RESUMO

The electrochemical process of microbial electrosynthesis (MES) is used to drive the metabolism of electroactive microorganisms for the production of valuable chemicals and fuels. MES combines the advantages of electrochemistry, engineering, and microbiology and offers alternative production processes based on renewable raw materials and regenerative energies. In addition to the reactor concept and electrode design, the biocatalysts used have a significant influence on the performance of MES. Thus, pure and mixed cultures can be used as biocatalysts. By using mixed cultures, interactions between organisms, such as the direct interspecies electron transfer (DIET) or syntrophic interactions, influence the performance in terms of productivity and the product range of MES. This review focuses on the comparison of pure and mixed cultures in microbial electrosynthesis. The performance indicators, such as productivities and coulombic efficiencies (CEs), for both procedural methods are discussed. Typical products in MES are methane and acetate, therefore these processes are the focus of this review. In general, most studies used mixed cultures as biocatalyst, as more advanced performance of mixed cultures has been seen for both products. When comparing pure and mixed cultures in equivalent experimental setups a 3-fold higher methane and a nearly 2-fold higher acetate production rate can be achieved in mixed cultures. However, studies of pure culture MES for methane production have shown some improvement through reactor optimization and operational mode reaching similar performance indicators as mixed culture MES. Overall, the review gives an overview of the advantages and disadvantages of using pure or mixed cultures in MES. KEY POINTS: • Undefined mixed cultures dominate as inoculums for the MES of methane and acetate, which comprise a high potential of improvement • Under similar conditions, mixed cultures outperform pure cultures in MES • Understanding the role of single species in mixed culture MES is essential for future industrial applications.


Assuntos
Dióxido de Carbono , Metano , Acetatos/metabolismo , Dióxido de Carbono/metabolismo , Eletroquímica , Eletrodos , Metano/metabolismo
13.
Can J Microbiol ; 68(9): 605-613, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35896041

RESUMO

Isoproturon (IPU) is widely used to control annual grasses and broad leaf weeds in cereal crops. In this study, four IPU-degrading bacterial strains, i.e., Sphingomonas sp. ISP1, Arthrobacter sp. ISP2, Acinetobacter baumannii 4IA, and Pseudomonas sp. ISP3, were isolated from agricultural soil. The mixed culture of four isolates completely degraded the herbicide at 100 mg/L within 10 days. During IPU degradation, several transient accumulations of the metabolites, including 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, 4-isopropylaniline, and 4-toluidine, were also identified. Moreover, the inoculation of the isolated mixed culture into the soil from a mountain with no previous herbicide application increased the degradation rate by 51% of the herbicide on average. Furthermore, bioaugmentation with isolated bacteria in the soil resulted in short-term variations in bacterial structure compared to the unaugmented soil. The findings of this study were instrumental in understanding the mechanisms of pesticide breakdown and bioremediation in liquid media and soil.


Assuntos
Herbicidas , Poluentes do Solo , Bactérias/metabolismo , Biodegradação Ambiental , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacologia , Compostos de Fenilureia , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
14.
Lett Appl Microbiol ; 75(4): 888-898, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35611563

RESUMO

This study demonstrates a remarkably high level of microbial-induced calcium carbonate precipitation (MICP) using a mixed culture containing TBRC 1396 (Priestia megaterium), TBRC 8147 (Neobacillus drentensis) and ATCC 11859 (Sporosarcina pasteurii) bacterial strains. The mixed culture produced CaCO3 weights 1·4 times higher than those obtained from S. pasteurii, the gold standard for efficient MICP processes. The three strains were selected after characterization of various Bacillus spp. and related species for their ability to induce the MICP process, especially in an alkaline and high-temperature environment. Results showed that the TBRC 1396 and TBRC 8147 strains, as well as TBRC 5949 (Bacillus subtilis) and TBRC 8986 (Priestia aryabhattai) strains, could generate calcium carbonate at pH 9-12 and temperature 30-40°C, which is suitable for construction and consolidation purposes. The TBRC 8147 strain also exhibited CaCO3 precipitation at 45°C. The TBRC 8986 and TBRC 8147 strains are nonureolytic bacteria capable of MICP in the absence of urea, which can be used to avoid the generation of undesirable ammonia associated with the ureolytic MICP process. These findings facilitate the successful use of MICP as a sustainable and environmentally friendly technology for the development of various materials, including self-healing concrete and soil consolidation.


Assuntos
Amônia , Carbonato de Cálcio , Bactérias , Solo , Ureia/química
15.
J Environ Manage ; 319: 115700, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982552

RESUMO

Volatile fatty acids, intermediate products of anaerobic digestion, are one of the most promising biobased products. In this study, the effects of acidic (pH 5), neutral (without pH adjustment) and alkali (pH 10) pH on production efficiency and composition of volatile fatty acids (VFAs) and bacterial community profile were analyzed. The anaerobic sequencing batch reactors were fed cheese production wastewater as substrate and inoculated by anaerobic granular seed sludge. The results showed that acidic pH improved VFA production yield (0.92 at pH 5; 0.42 at pH 10 and 0.21 gCOD/gVS at neutral pH). Furthermore, propionic acid was dominant under both pH 10 (64 ± 20%) and neutral pH (72 ± 8%), whereas, acetic acid (23 ± 20%4), propionic acid (22 ± 3%), butyric acid (21 ± 4%) and valeric acid (15 ± 8%) were almost equally distributed under pH 5. Adaptation of bacterial community to different pH conditions might steer the acid profile: Bacteroidetes (50.07 ± 2%) under pH 10, Proteobacteria (40.74 ± 7%) under neutral pH and Firmicutes (47.64 ± 9%) under pH 5 were the most dominant phylum, respectively. Results indicated pH plays a significant role in VFA production, acid composition, and bacterial community structure. However, in order to gain a concrete understanding effects of pH, characterization of intracellular and extracellular metabolites with dynamics of the microbial community is required.


Assuntos
Ácidos Graxos Voláteis , Propionatos , Ácidos/metabolismo , Anaerobiose , Bactérias/metabolismo , Reatores Biológicos , Ácidos Graxos Voláteis/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Propionatos/metabolismo , Esgotos/química
16.
J Environ Manage ; 321: 115892, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988402

RESUMO

Biological hydrogen production using palm oil mill effluent (POME) as a carbon source through dark fermentation process has been suggested to be a promising bioenergy potential and enacts as alternative renewable energy source. Results have indicated that among various 1.5% (w/v) chemical pre-treatments (sodium hydroxide, NaOH; hydrochloric acid, HCl; sulphuric acid, H2SO4; phosphoric acid, H3PO4 and nitric acid, HNO3) on POME, using H3PO4 would generate maximum biohydrogen production of 0.193 mmol/L/h, which corresponded to a yield of 1.51 mol H2/mol TCconsumed with an initial total soluble carbohydrate concentration of 23.52 g/L. Among H3PO4 concentrations (1%-10%), the soluble carbohydrate content and the biohydrogen produced was highest and increased by 1.70-fold and 2.35-fold respectively at 2.5% (w/v), as compared to untreated POME. The batch fermentation maximum hydrogen production rate and yield of 0.208 mmol/L/h and 1.69 mol H2/mol TCconsumed were achieved at optimum pre-treatment conditions of pH 5.5 and thermophilic temperature (60 °C). This study suggests that chemical pre-treatment approaches manage to produce and improve the carbohydrate utilisation process further. Continuous fermentation in CSTR at the optimum conditions produce heightened 1.5-fold biohydrogen yield for 2.5% H3PO4 at 6 h HRT as compared to batch scale. Bacterial community via next-generation sequencing analysis at optimum HRT (6 h) revealed that Thermoanaerobacterium thermosaccharolyticum registered the highest relative frequency of 20.24%. At the class level, Clostridia, Bacilli, Bacteroidia, Thermoanaerobacteria, and Gammaproteobacteria were identified as the biohydrogen-producing bacteria in the continuous system. Insightful findings from this study suggest the substantial practical utility of dilute chemical pre-treatment in improving biohydrogen production.


Assuntos
Bactérias , Hidrogênio , Anaerobiose , Carboidratos , Fermentação , Óleo de Palmeira
17.
Compr Rev Food Sci Food Saf ; 21(5): 4076-4107, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038529

RESUMO

The use of Jiuqu as a saccharifying and fermenting starter in the production of fermented foods is a very old biotechnological process that can be traced back to ancient times. Jiuqu harbors a hub of microbial communities, in which prokaryotes and eukaryotes cohabit, interact, and communicate. However, the spontaneous fermentation based on empirical processing hardly guarantees the stable assembly of the microbiome and a standardized quality of Jiuqu. This review describes the state of the art, limitations, and challenges towards the application of traditional and omics-based technology to study the Jiuqu microbiome and highlights the need for integrating meta-omics data. In addition, we review the varieties of Jiuqu and their production processes, with particular attention to factors shaping the microbiota of Jiuqu. Then, the potentials of integrated omics approaches used in Jiuqu research are examined in order to understand the assembly of the microbiome and improve the quality of the products. A variety of different approaches, including molecular and mass spectrometry-based techniques, have led to scientific advances in the analysis of the complex ecosystem of Jiuqu. To date, the extensive research on Jiuqu has mainly focused on the microbial community diversity, flavor profiles, and biochemical characteristics. An integrative approach to large-scale omics datasets and cultivated microbiota has great potential for understanding the interrelation of the Jiuqu microbiome. Further research on the Jiuqu microbiome may explain the inherent property of compositional stability and stable performance of a complex microbiota coping with environmental perturbations and provide important insights to reconstruct synthetic microbiota and develop modern intelligent manufacturing procedures for Jiuqu.


Assuntos
Alimentos Fermentados , Microbiota , Fermentação
18.
Biotechnol Bioeng ; 118(4): 1636-1648, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438216

RESUMO

Mixed-culture fermentation (MCF) enables carbon recycling from complex organic waste streams into valuable feedstock chemicals. Using complex microbial consortia, MCF systems can be tuned to produce a range of biochemicals to meet market demand. However, the metabolic mechanisms and community interactions which drive biochemical production changes under differing conditions are currently poorly understood. These mechanisms are critical to useful MCF production models. Furthermore, predictable product transitions are currently limited to pH-driven changes between butyrate and ethanol, and chain-elongation (fed by lactate, acetate, and ethanol) to butyrate, valerate, and hexanoate. Lactate, a high-value biopolymer feedstock chemical, has been observed in transition states, but sustained production has not been described. In this study, steady state lactate production was achieved by increasing the organic loading rate of a butyrate-producing system from limiting to nonlimiting conditions at pH 5.5. Crucially, butyrate production resumed upon return to substrate-limited conditions. 16S ribosomal DNA community profiling combined with metaproteomics demonstrated that the butyrate-producing lineage Megasphaera redirected carbon flow through the methylglyoxal bypass when substrate was nonlimiting, which altered the community structure and metabolic expression toward lactate production. This metabolic mechanism can be included in future MCF models to describe the changes in product generation in substrate nonlimiting conditions.


Assuntos
Reatores Biológicos , Glucose/metabolismo , Ácido Láctico/biossíntese , Consórcios Microbianos , Técnicas de Cocultura , Fermentação
19.
Biotechnol Bioeng ; 118(2): 703-714, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064298

RESUMO

Recent research has demonstrated that synthetic methanotroph-photoautotroph cocultures offer a highly promising route to convert biogas into value-added products. However, there is a lack of techniques for fast and accurate characterization of cocultures, such as determining the individual biomass concentration of each organism in real-time. To address this unsolved challenge, we propose an experimental-computational protocol for fast, easy, and accurate quantitative characterization of the methanotroph-photoautotroph cocultures. Besides determining the individual biomass concentration of each organism in the coculture, the protocol can also obtain the individual consumption and production rates of O2 and CO2 for the methanotroph and photoautotroph, respectively. The accuracy and effectiveness of the proposed protocol was demonstrated using two model coculture pairs, Methylomicrobium alcaliphilum 20ZR-Synechococcus sp. PCC7002 that prefers high pH high salt condition, and Methylococcus capsulatus-Chlorella sorokiniana that prefers low salt and neutral pH medium. The performance of the proposed protocol was compared with a flow cytometry-based cell counting approach. The experimental results show that the proposed protocol is much easier to carry out and delivers faster and more accurate results in measuring individual biomass concentration than the cell counting approach without requiring any special equipment.


Assuntos
Chlorella/crescimento & desenvolvimento , Simulação por Computador , Methylococcaceae/crescimento & desenvolvimento , Methylococcus capsulatus/crescimento & desenvolvimento , Modelos Biológicos , Técnicas de Cocultura
20.
Biotechnol Bioeng ; 118(5): 1943-1950, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547801

RESUMO

In this study, we investigated the operational performance and product spectrum of glucose-fermenting anaerobic granular sludge reactor at pH 4. A selective environment for the growth of granules was implemented by the introduction of a 2 min settling phase, a hydraulic retention time of 6 h and a solid retention time of 12 ± 3 days. The fermentation products were ethanol, lactate, and volatile fatty acids (VFA) with yields of 0.55 ± 0.03, 0.15 ± 0.02, and 0.20 ± 0.04 gram chemical oxygen demand (gCOD)/gCOD glucose, respectively. The obtained product spectrum was remarkably different from the VFA-dominated product spectrum reported in a previous study when the same system was operated at higher pH (4.5-5.5). The shift in product spectrum coincided with a shift in the microbial community structure with the dominance of eukaryotic Candida tropicalis, Pichia jaroonii, and prokaryotic Lactobacillus species instead of the Clostridia species obtained at higher pH-values. The control of the microbiomes and the associated product spectra provides bioprocess engineers with the option to tailor a suitable precursor compound mixture for subsequent chain elongation fermentation or PHA biopolymer production.


Assuntos
Reatores Biológicos/microbiologia , Etanol , Esgotos/microbiologia , Anaerobiose , Etanol/análise , Etanol/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação/fisiologia , Glucose/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA