Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.599
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 81(19): 3888-3903, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34464593

RESUMO

The development and functional potential of metazoan cells is dependent on combinatorial roles of transcriptional enhancers and promoters. Macrophages provide exceptionally powerful model systems for investigation of mechanisms underlying the activation of cell-specific enhancers that drive transitions in cell fate and cell state. Here, we review recent advances that have expanded appreciation of the diversity of macrophage phenotypes in health and disease, emphasizing studies of liver, adipose tissue, and brain macrophages as paradigms for other tissue macrophages and cell types. Studies of normal tissue-resident macrophages and macrophages associated with cirrhosis, obese adipose tissue, and neurodegenerative disease illustrate the major roles of tissue environment in remodeling enhancer landscapes to specify the development and functions of distinct macrophage phenotypes. We discuss the utility of quantitative analysis of environment-dependent changes in enhancer activity states as an approach to discovery of regulatory transcription factors and upstream signaling pathways.


Assuntos
Elementos Facilitadores Genéticos , Macrófagos/metabolismo , Microglia/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Ativação Transcricional , Animais , Linhagem da Célula , Microambiente Celular , Humanos , Macrófagos/patologia , Microglia/patologia , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
EMBO J ; 43(5): 806-835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287188

RESUMO

In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.


Assuntos
RNA Helicases DEAD-box , Interferon Tipo I , NF-kappa B , Infecções por Vírus de RNA , Ribonuclease III , Animais , Humanos , NF-kappa B/genética , Interferência de RNA , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Infecções por Vírus de RNA/enzimologia
3.
Am J Hum Genet ; 111(2): 295-308, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232728

RESUMO

Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.


Assuntos
Predisposição Genética para Doença , Hipersensibilidade , Inflamação , Humanos , Estudo de Associação Genômica Ampla , Hipersensibilidade/genética , Inflamação/genética , Subunidade p50 de NF-kappa B/genética , Biobanco do Reino Unido
4.
Immunity ; 48(4): 745-759.e6, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669252

RESUMO

It is unclear how quiescence is enforced in naive T cells, but activation by foreign antigens and self-antigens is allowed, despite the presence of inhibitory signals. We showed that active transforming growth factor ß (TGF-ß) signaling was present in naive T cells, and T cell receptor (TCR) engagement reduced TGF-ß signaling during T cell activation by downregulating TGF-ß type 1 receptor (TßRI) through activation of caspase recruitment domain-containing protein 11 (CARD11) and nuclear factor κB (NF-κB). TGF-ß prevented TCR-mediated TßRI downregulation, but this was abrogated by interleukin-6 (IL-6). Mitigation of TCR-mediated TßRI downregulation through overexpression of TßRI in naive and activated T cells rendered T cells less responsive and suppressed autoimmunity. Naive T cells in autoimmune patients exhibited reduced TßRI expression and increased TCR-driven proliferation compared to healthy subjects. Thus, TCR-mediated regulation of TßRI-TGF-ß signaling acts as a crucial criterion to determine T cell quiescence and activation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Guanilato Ciclase/metabolismo , Ativação Linfocitária/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Autoimunidade/imunologia , Proteínas Adaptadoras de Sinalização CARD/genética , Linhagem Celular , Proliferação de Células , Colite/imunologia , Colite/patologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Guanilato Ciclase/genética , Células HEK293 , Humanos , Interleucina-6/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/biossíntese , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/biossíntese
5.
Proc Natl Acad Sci U S A ; 121(31): e2314760121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052834

RESUMO

Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.


Assuntos
Amônia , Proteínas de Membrana Transportadoras , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Animais , Humanos , Camundongos , Amônia/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/genética , Camundongos Knockout , Músculo Esquelético/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(7): e2212940120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749725

RESUMO

Missense mutations that inactivate p53 occur commonly in cancer, and germline mutations in TP53 cause Li Fraumeni syndrome, which is associated with early-onset cancer. In addition, there are over two hundred germline missense variants of p53 that remain uncharacterized. In some cases, these germline variants have been shown to encode lesser-functioning, or hypomorphic, p53 protein, and these alleles are associated with increased cancer risk in humans and mouse models. However, most hypomorphic p53 variants remain un- or mis-classified in clinical genetics databases. There thus exists a significant need to better understand the behavior of p53 hypomorphs and to develop a functional assay that can distinguish hypomorphs from wild-type p53 or benign variants. We report the surprising finding that two different African-centric genetic hypomorphs of p53 that occur in distinct functional domains of the protein share common activities. Specifically, the Pro47Ser variant, located in the transactivation domain, and the Tyr107His variant, located in the DNA binding domain, both share increased propensity to misfold into a conformation specific for mutant, misfolded p53. Additionally, cells and tissues containing these hypomorphic variants show increased NF-κB activity. We identify a common gene expression signature from unstressed lymphocyte cell lines that is shared between multiple germline hypomorphic variants of TP53, and which successfully distinguishes wild-type p53 and a benign variant from lesser-functioning hypomorphic p53 variants. Our findings will allow us to better understand the contribution of p53 hypomorphs to disease risk and should help better inform cancer risk in the carriers of p53 variants.


Assuntos
Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Animais , Camundongos , Humanos , Proteína Supressora de Tumor p53/metabolismo , Predisposição Genética para Doença , Síndrome de Li-Fraumeni/genética , Genes p53 , Heterozigoto , Mutação em Linhagem Germinativa
7.
J Biol Chem ; 300(4): 107153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462163

RESUMO

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Proteínas de Membrana , NF-kappa B , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Animais , Humanos , Sistemas CRISPR-Cas , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia
8.
J Virol ; 98(7): e0040524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38874362

RESUMO

Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE: F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.


Assuntos
Proteínas de Ciclo Celular , Proteínas F-Box , Proteína 7 com Repetições F-Box-WD , Produtos do Gene tax , Vírus Linfotrópico T Tipo 1 Humano , Ubiquitina-Proteína Ligases , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Produtos do Gene tax/metabolismo , Produtos do Gene tax/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ligação Proteica
9.
Exp Cell Res ; 441(1): 114153, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39013486

RESUMO

P-glycoprotein (P-gp) mediated multidrug resistance (MDR) is the leading cause of chemotherapy failure since it causes the efflux of chemotherapeutic drugs from the cancer cells. Solasodine, a steroidal alkaloid and oxaspiro compound, present in the Solanaceae family showed significant cytotoxic effects on various cancer cells. However, the effect of solasodine on reversing P-gp mediated drug resistance is still unknown. Primarily in this study, the integrative network pharmacology analysis found 71 common targets between solasodine and cancer MDR, among them NF-κB was found as a potential target. The results of immunofluorescence analysis showed that solasodine significantly inhibits NF-κB-p65 nuclear translocation which caused downregulated P-gp expression in KBChR-8-5 cells. Further, solasodine binds to the active sites of the TMD region of P-gp and inhibits P-gp transport activity. Moreover, solasodine significantly promotes doxorubicin intracellular accumulation in the drug resistant cells. Solasodine reduced the fold resistance and synergistically sensitized doxorubicin's therapeutic effects in KBChR-8-5 cells. Additionally, the solasodine and doxorubicin combination treatment increased the apoptotic cell populations and G2/M phase cell cycle arrest in KBChR-8-5 cells. The MDR tumor bearing xenograft mice showed tumor-suppressing characteristics and P-gp downregulation during the combination treatment of solasodine and doxorubicin. These results indicate that solasodine targets NF-κB signaling to downregulate P-gp overexpression, inhibit P-gp transport activity, and enhance chemosensitization in MDR cancer cells. Considering its multifaceted impact, solasodine represents a potent natural fourth-generation P-gp modulator for reversing MDR in cancer.


Assuntos
Apoptose , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , NF-kappa B , Transdução de Sinais , Alcaloides de Solanáceas , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Alcaloides de Solanáceas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proliferação de Células/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
10.
Mol Cell Proteomics ; 22(5): 100537, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001587

RESUMO

The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remain elusive. Leveraging whole-cell proteomics, we determined host signaling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.1 and the variants of concern Delta and Omicron BA.1. Our findings illustrate alterations in the global host proteome landscape upon infection with SARS-CoV-2 variants and the resulting host immune responses. Additionally, viral proteome kinetics reveal declining levels of viral protein expression during Omicron BA.1 infection when compared to ancestral B.1 and Delta variants, consistent with its reduced replication rates. Moreover, molecular assays reveal deferral activation of specific host antiviral signaling upon Omicron BA.1 and BA.2 infections. Our study provides an overview of host proteome profile of multiple SARS-CoV-2 variants and brings forth a better understanding of the instigation of key immune signaling pathways causative for the differential pathogenicity of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Pandemias , Antivirais , Anticorpos Neutralizantes
11.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664795

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Atrofia Muscular Espinal , Transdução de Sinais , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/imunologia , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
12.
J Cell Physiol ; 239(2): e31164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149816

RESUMO

Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Emetina/metabolismo , Emetina/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Histonas/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/patologia , Sirtuína 1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
13.
Clin Immunol ; 261: 110165, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423196

RESUMO

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Assuntos
Imunodeficiência de Variável Comum , Irmãos , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Haploinsuficiência/genética , Variações do Número de Cópias de DNA , NF-kappa B/genética , Imunodeficiência de Variável Comum/genética , Sequências Reguladoras de Ácido Nucleico , Subunidade p50 de NF-kappa B/genética
14.
J Clin Immunol ; 44(7): 160, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990428

RESUMO

BACKGROUND: Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE: In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS: The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS: A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS: Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.


Assuntos
Mutação , Subunidade p50 de NF-kappa B , Subunidade p52 de NF-kappa B , Humanos , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação/genética , Subunidade p50 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/genética , Fenótipo
15.
Respir Res ; 25(1): 62, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287405

RESUMO

BACKGROUND: Circular RNAs (CircRNAs) have been associated with acute lung injury (ALI), but their molecular mechanisms remain unclear. METHODS: This study developed a rat model of lipopolysaccharide (LPS)-induced ALI and evaluated the modeling effect by hematoxylin and eosin staining, Masson's trichrome staining, lung wet-to-dry weight ratio, terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) detection of inflammatory factors (interleukin-1ß, tumor necrosis factor alpha, and interleukin-6). Using lung tissues from a rat model of LPS-induced ALI, we then conducted circRNA sequencing, mRNA sequencing, and bioinformatics analysis to obtain differential circRNA and mRNA expression profiles as well as potential ceRNA networks. Furthermore, we performed quantitative real-time polymerase chain reaction (qRT-PCR) assays to screen for circ-Phkb in ALI rat lung tissues, alveolar macrophages, and LPS-induced NR8383 cells. We conducted induction with or without LPS with circ-Phkb siRNA and overexpression lentivirus in NR8383. Cell Counting Kit-8, C5-Ethynyl-2'-deoxyuridine (Edu), TUNEL, and cytometry were used to identify proliferation and apoptosis, respectively. We detected inflammatory factors using ELISA. Finally, we used Western blot to detect the apoptosis-related proteins and TLR4/MyD88/NF-kB/CCL2 pathway activation. RESULTS: Our results revealed that both circRNA and mRNA profiles are different from those of the Sham group. We observed a significant circ-Phkb upregulation in NR8383 cells and LPS-exposed rats. Apoptosis and inflammation were greatly reduced when circ-Phkb expression was reduced in NR8383 cells, cell proliferation was increased, and circ-Phkb overexpression was decreased. CONCLUSIONS: In terms of mechanism, circ-Phkb suppression inhibits CCL2 expression via the TLR4/MyD88/NF-kB pathway in LPS-induced alveolar macrophages.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Ratos , Animais , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , RNA Circular/genética , Apoptose , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , RNA Mensageiro/metabolismo , MicroRNAs/genética
16.
Arch Biochem Biophys ; 759: 110112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111613

RESUMO

Inflammation is the body's response to injuries, which depends on numerous regulatory factors. Among them, miRNAs have gained much attention for their role in regulating inflammatory gene expression at multiple levels. In particular, miR-21 is up-regulated during the inflammatory response and reported to be involved in the resolution of inflammation by down-regulating pro-inflammatory mediators, including MyD88. Herein, we evaluated the regulatory effects of miR-21 on the TLR-4/MyD88 pathway in an in vitro model of 6-mer HA oligosaccharides-induced inflammation in human chondrocytes. The exposition of chondrocytes to 6-mer HA induced the activation of the TLR4/MyD88 pathway, which culminates in NF-kB activation. Changes in miR-21, TLR-4, MyD88, NLRP3 inflammasome, IL-29, Caspase1, MMP-9, iNOS, and COX-2 mRNA expression of 6-mer HA-stimulated chondrocytes were examined by qRT-PCR. Protein amounts of TLR-4, MyD88, NLRP3 inflammasome, p-ERK1/2, p-AKT, IL-29, caspase1, MMP-9, p-NK-kB p65 subunit, and IKB-a have been evaluated by ELISA kits. NO and PGE2 levels have been assayed by colorimetric and ELISA kits, respectively. HA oligosaccharides induced a significant increase in the expression of the above parameters, including NF-kB activity. The use of a miR-21 mimic attenuated MyD88 expression levels and the downstream effectors. On the contrary, treatment with a miR-21 inhibitor induced opposite effects. Interestingly, the use of a MyD88 siRNA confirmed MyD88 as the target of miR-21 action. Our results suggest that miR-21 expression could increase in an attempt to reduce the inflammatory response, targeting MyD88.


Assuntos
Condrócitos , Ácido Hialurônico , Inflamação , MicroRNAs , Fator 88 de Diferenciação Mieloide , Oligossacarídeos , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Inflamação/genética , Oligossacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , NF-kappa B/metabolismo , Células Cultivadas
17.
Brain Behav Immun ; 117: 529-540, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38346596

RESUMO

Perioperative stress and inflammatory signaling can invigorate pro-metastatic molecular processes in patients' tumors, potentially worsening long-term survival. Yet, it is unknown whether pre-operative psychotherapeutic interventions can attenuate such effects. Herein, three weeks before surgery, forty women diagnosed with stage I-III invasive ductal/lobular breast carcinoma were randomized to a 6-week one-on-one psychological intervention (6 meetings with a medical psychologist and bi-weekly phone calls) versus standard nursing-staff-attention. The intervention protocol was individually tailored based on evaluation of patients' emotional, cognitive, physiological, and behavioral stress response-patterns, and also included psychoeducation regarding medical treatments and recruitment of social support. Resected primary tumors were subjected to whole-genome RNA sequencing and bioinformatic analyses, assessing a priori hypothesized cancer-relevant molecular signatures. Self-report questionnaires (BSI-18, Hope-18, MSPSS, and a stress-scale) were collected three (T1) and one (T2) week before surgery, a day before (T3) and after (T4) surgery, and three weeks (T5) and 3-months (T6) following surgery. The intervention reduced distress (GSI), depression, and somatization scores (BSI-18: p < 0.01, p < 0.05, p < 0.05; T5 vs. T1). Additionally, tumors from treated patients (vs. controls) showed: (i) decreased activity of transcription control pathways involved in adrenergic and glucocorticoid signaling (CREB, GR) (p < 0.001), pro-inflammatory signaling (NFkB) (p < 0.01), and pro-malignant signaling (ETS1, STAT and GATA families) (p < 0.001, p < 0.01, p < 0.005); (ii) increased M1 macrophage polarization (p < 0.05), and CD4+ T cell activity (p < 0.01); and an unexpected increase in epithelial-to-mesenchymal-transition (EMT) signature (p < 0.005). This is the first randomized controlled trial to show beneficial effects of a psychological perioperative intervention on tumor pro-metastatic molecular biomarkers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/cirurgia , Intervenção Psicossocial , Biomarcadores , Adrenérgicos , Cognição
18.
Cell Commun Signal ; 22(1): 214, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570838

RESUMO

Smoking is the major cause of cardiovascular diseases and cancer. It induces oxidative stress, leading to DNA damage and cellular senescence. Senescent cells increase the expression and release of pro-inflammatory molecules and matrix metalloproteinase, which are known to play a vital role in the initiation and progression of cardiovascular diseases and metastasis in cancer. The current study investigated the smoking induced cellular senescence and employed colchicine that blocked senescence in endothelial cells exposed to tobacco smoke condensate. Colchicine prevented oxidative stress and DNA damage in tobacco smoke-condensate-treated endothelial cells. Colchicin reduced ß-gal activity, improved Lamin B1, and attenuated cell growth arrest markers P21 and P53. Colchicine also ameliorated the expression of SASP factors and inhibited the activation of NF-kB and MAPKs P38 and ERK. In summary, colchicine inhibited tobacco smoke condensate-induced senescence in endothelial cells by blocking the activation of NF-kB and MAPKs P38 and ERK.


Assuntos
Doenças Cardiovasculares , Neoplasias , Poluição por Fumaça de Tabaco , Humanos , NF-kappa B/metabolismo , Células Endoteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Fumaça/efeitos adversos , Senescência Celular
19.
Neurochem Res ; 49(6): 1577-1587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38276990

RESUMO

Parkinson's disease (PD) is characterized by oxidative stress and neuroinflammation as key pathological features. Emerging evidence suggests that nuclear factor erythroid 2 related factor 2-antioxidant response element (Nrf2-ARE), phosphatidylinositol 3­kinase-protein kinase B (PI3K-Akt), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1/2 (JNK-ERK1/2), and toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kB) pathways play pivotal roles in PD pathogenesis. Orientin, a phenolic phytoconstituent, has demonstrated modulatory potential on these pathways in various experimental conditions other than PD. In this study, we aimed to evaluate the neuroprotective effects of Orientin against rotenone-induced neurodegeneration in SH-SY5Y cell lines and the Swiss albino mice model of PD. Orientin was administered at doses 10 and 20 µM in cell lines and 10 and 20 mg/kg in mice, and its effects on rotenone-induced neurodegeneration were investigated. Oxidative stress markers including mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as inflammatory markers including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were measured. The expression levels of genes related to Nrf2-ARE (Nrf2), PI3K/Akt (Akt), JNK-ERK1/2 (TNF-α), and TLR4/NF-kB (TNF-α) pathways were measured to understand the modulatory effect of Orientin on these pathways. Additionally, behavioral studies assessing locomotor activity, muscle coordination, and muscle rigidity were conducted with mice. Our results indicate that Orientin dose-dependently attenuated rotenone-induced changes in oxidative stress markers, inflammatory markers, gene expression levels, and behavioral parameters. Therefore, our study concludes that Orientin exhibits significant neuroprotective benefits against rotenone-induced PD by modulating Nrf2-ARE, PI3K-Akt, JNK-ERK1/2, and TLR4/NF-kB pathways.


Assuntos
Flavonoides , Glucosídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Rotenona , Receptor 4 Toll-Like , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotenona/toxicidade , Humanos , NF-kappa B/metabolismo , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
20.
Fish Shellfish Immunol ; 149: 109529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561069

RESUMO

This study was designed to investigate the potential neuronal damage mechanism of the okadaic acid (OA) in the brain tissues of zebrafish embryos by evaluating in terms of immunofluorescence of Nf KB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG signaling pathways. We also evaluated body malformations. For this purpose, zebrafish embryos were exposed to 0.5 µg/ml, 1 µg/ml and 2.5 µg/ml of OA for 5 days. After application, FITC/GFP labeled protein-specific antibodies were used in immunofluorescence assay for NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG respectively. The results indicated that OA caused immunofluorescence positivity of NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG in a dose-dependent manner in the brain tissues of zebrafish embryos. Pericardial edema (PE), nutrient sac edema (YSE) and body malformations, tail malformation, short tail and head malformation (BM) were detected in zebrafish embryos. These results suggest that OA induces neuronal damage by affecting the modulation of DNA damage, apoptotic, and inflammatory activities in the brain tissues of zebrafish embryos. The increase in signaling pathways shows that OA can cause damage in the structure and function of brain nerve cells. Our results provide a new basis for the comprehensive assessment of the neural damage of OA and will offer enable us to better understand molecular the mechanisms underlying the pathophysiology of OA toxicity.


Assuntos
Encéfalo , NF-kappa B , Ácido Okadáico , Transdução de Sinais , Receptor 4 Toll-Like , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Encéfalo/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Okadáico/toxicidade , NF-kappa B/metabolismo , NF-kappa B/imunologia , 8-Hidroxi-2'-Desoxiguanosina , Caspase 3/metabolismo , Caspase 3/genética , Larva/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA