Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(15): 2815-2831.e5, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752171

RESUMO

Protein import into mitochondria is a highly regulated process, yet how cells clear mitochondria undergoing dysfunctional protein import remains poorly characterized. Here we showed that mitochondrial protein import stress (MPIS) triggers localized LC3 lipidation. This arm of the mitophagy pathway occurs through the Nod-like receptor (NLR) protein NLRX1 while, surprisingly, without the engagement of the canonical mitophagy protein PINK1. Mitochondrial depolarization, which itself induces MPIS, also required NLRX1 for LC3 lipidation. While normally targeted to the mitochondrial matrix, cytosol-retained NLRX1 recruited RRBP1, a ribosome-binding transmembrane protein of the endoplasmic reticulum, which relocated to the mitochondrial vicinity during MPIS, and the NLRX1/RRBP1 complex in turn controlled the recruitment and lipidation of LC3. Furthermore, NLRX1 controlled skeletal muscle mitophagy in vivo and regulated endurance capacity during exercise. Thus, localization and lipidation of LC3 at the site of mitophagosome formation is a regulated step of mitophagy controlled by NLRX1/RRBP1 in response to MPIS.


Assuntos
Proteínas Mitocondriais , Mitofagia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico
2.
Immunity ; 49(6): 1049-1061.e6, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566882

RESUMO

Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.


Assuntos
Autoimunidade/imunologia , Encefalomielite Autoimune Experimental/imunologia , Imunidade Inata/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autoimunidade/genética , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Encefalomielite Autoimune Experimental/genética , Fatores de Iniciação em Eucariotos , Humanos , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/microbiologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
3.
EMBO J ; 40(13): e106272, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942347

RESUMO

Cellular stress has been associated with inflammation, yet precise underlying mechanisms remain elusive. In this study, various unrelated stress inducers were employed to screen for sensors linking altered cellular homeostasis and inflammation. We identified the intracellular pattern recognition receptors NOD1/2, which sense bacterial peptidoglycans, as general stress sensors detecting perturbations of cellular homeostasis. NOD1/2 activation upon such perturbations required generation of the endogenous metabolite sphingosine-1-phosphate (S1P). Unlike peptidoglycan sensing via the leucine-rich repeats domain, cytosolic S1P directly bound to the nucleotide binding domains of NOD1/2, triggering NF-κB activation and inflammatory responses. In sum, we unveiled a hitherto unknown role of NOD1/2 in surveillance of cellular homeostasis through sensing of the cytosolic metabolite S1P. We propose S1P, an endogenous metabolite, as a novel NOD1/2 activator and NOD1/2 as molecular hubs integrating bacterial and metabolic cues.


Assuntos
Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , NF-kappa B/metabolismo , Peptidoglicano/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/metabolismo , Células THP-1
4.
RNA ; 28(4): 449-477, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031583

RESUMO

Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.


Assuntos
Fatores de Restrição Antivirais , Imunidade Inata , Interferons , Proteínas de Ligação a RNA , Fatores de Restrição Antivirais/imunologia , Citoplasma , Proteína DEAD-box 58/metabolismo , Interferons/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo
5.
Toxicol Appl Pharmacol ; 485: 116875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437957

RESUMO

Cisplatin is an effective and commonly used chemotherapeutic drug; however, its use is accompanied by several adverse effects, including chemobrain. Ondansetron is a 5-HT3 antagonist, commonly used in prophylactic against chemotherapy-induced nausea and vomiting. Moreover, it has been identified as a novel neuroprotective agent in different animal models. However, its protective role against chemotherapy-induced chemobrain has not been investigated. The current study was the first study that explored the potential neuroprotective effect of ondansetron against cisplatin-induced chemobrain in rats. Cisplatin (5 mg/Kg) was injected intraperitoneally, once weekly, for 4 weeks with the daily administration of ondansetron (0.5 and 1 mg/Kg). Compared to the cisplatin-treated group, ondansetron administration showed a significant decrease in the latency time and a significant increase in ambulation, rearing, and grooming frequency in the open field test (OFT). Moreover, a significant improvement in the latency time in the rotarod and passive avoidance tests, following ondansetron administration. In addition, ondansetron treatment increased the percentage of alternation in the Y-maze test. Also, ondansetron showed a remarkable enhancement in the biochemical parameters in the hippocampus. It increased the acetylcholine (Ach) level and decreased the level of the acetylcholine esterase enzyme (AchE). Ondansetron significantly decreased interleukin-1ß (Il-1ß), tumor necrosis factor-alpha (TNF-α), toll-like receptor-4 (TLR-4), NOD-like receptor-3 (NLRP3) inflammasome as well as caspase-1 and caspase-3 levels. Furthermore, ondansetron significantly decreased the levels of copper transporter-1(CTR1) expression in the hippocampus. Collectively, these findings suggest that ondansetron may exhibit a neuroprotective and therapeutic activity against cisplatin-induced chemobrain.


Assuntos
Comportamento Animal , Cisplatino , Inflamassomos , Ondansetron , Animais , Ondansetron/farmacologia , Cisplatino/toxicidade , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ratos , Regulação para Baixo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Antineoplásicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico
6.
Pharmacol Res ; 208: 107411, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39270948

RESUMO

Despite considerable improvements in understanding the biology of glioblastoma (GB), it still remains the most lethal type of brain tumor in adults. The role of innate immune cells in the development of GB was recently described. In particular, the tumor-immune cell interactions are thought to be critical in enabling tumor tolerance and even protection against therapeutics. Interestingly, the GB cells express proteins belonging to the family of intracellular pattern-recognition receptors, namely the NOD-like receptors (NLRs). Their activation may trigger the formation of the inflammasome complex leading to the secretion of mature IL-1ß and IL-18 and thus resulting in cell death. Intrudingly, the expression of most NLRs was found to be correlated with tumor progression and poor prognosis. We speculate that recognizing the role of NOD-like receptors in GB has the potential to improve the effectiveness of diagnostic tools and prognosis, while also encouraging the development of novel precision medicine-based therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Glioblastoma/imunologia , Glioblastoma/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Prognóstico , Animais , Proteínas NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/imunologia
7.
Fish Shellfish Immunol ; 153: 109866, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214264

RESUMO

Aeromonas hydrophila, the pathogen that is the causative agent of motile Aeromonas septicemia (MAS) disease, commonly attacks freshwater fishes, including yellow catfish (Pelteobagrus fulvidraco). Although the kidney is one of the most important organs involved in immunity in fish, its role in disease progression has not been fully elucidated. Understanding the cellular composition and innate immune regulation mechanisms of the kidney of yellow catfish is important for the treatment of MAS. In this study, single-cell RNA sequencing (scRNA-seq) was performed on the kidney of hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂) after A. hydrophila infection. Nine types of kidney cells were identified using marker genes, and a transcription module of marker genes in the main immune cells of hybrid yellow catfish kidney tissue was constructed using in-situ hybridization. In addition, the single-cell transcriptome data showed that the differentially expressed genes of macrophages were primarily enriched in the Toll-like receptor and Nod-like receptor signaling pathways. The expression levels of genes involved in these pathways were upregulated in macrophages following A. hydrophila infection. Transmission electron microscopy and TUNEL analysis revealed the cellular characteristics of macrophages before and after A. hydrophila infection. These data provide empirical support for in-depth research on the role of the kidney in the innate immune response of hybrid yellow catfish.


Assuntos
Aeromonas hydrophila , Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Rim , Transcriptoma , Animais , Peixes-Gato/imunologia , Peixes-Gato/genética , Aeromonas hydrophila/fisiologia , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Transcriptoma/imunologia , Rim/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Análise de Célula Única
8.
Bull Exp Biol Med ; 177(5): 658-661, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39340620

RESUMO

The indicators of innate immunity and the composition of the microbiome in the nasopharyngeal mucosa in centenarians with different aging phenotypes were analyzed. A significant increase in the expression of pattern-recognizing receptor genes (TLR2, TLR4, and NLRP3) and proinflammatory cytokines (IL1B, IL18) was shown in the group of centenarians with pathological aging phenotype. In centenarians with successful aging phenotype, increased diversity of the microbiome composition was observed. At the same time, a moderate inverse correlation was found between an increase in the growth of the commensal bacterium Streptococcus salivarius and a decrease in the expression of proinflammatory cytokine genes IL1B and IL18. These findings can serve as biomarkers for the timely identification of the phenotype of aging in senile and elderly people.


Assuntos
Envelhecimento , Imunidade Inata , Microbiota , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Humanos , Imunidade Inata/genética , Envelhecimento/imunologia , Envelhecimento/genética , Microbiota/imunologia , Microbiota/genética , Idoso de 80 Anos ou mais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Masculino , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Feminino , Interleucina-18/genética , Interleucina-18/metabolismo , Fenótipo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Idoso , Nasofaringe/microbiologia , Nasofaringe/imunologia
9.
J Cell Sci ; 134(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34152391

RESUMO

The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern recognition receptors NOD1 and NOD2 (referred to collectively as NOD1/2). Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20 (also known as TNFAIP3), erlin-1, erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, erlin-1 and erlin-2 (erlin-1/2) specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated using protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ubiquitin ligase XIAP and treatment with RIPK2 inhibitors also led to the formation of RIPK2 cytosolic complexes. Although erlin-1/2 were recruited to RIPK2 complexes following XIAP inhibition, these proteins did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of erlin-1/2 to RIPK2 suggests a role in innate immune signaling, the biological response regulated by the erlin-1/2-RIPK2 association remains to be determined.


Assuntos
Proteína Adaptadora de Sinalização NOD2 , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteínas 14-3-3 , Citosol/metabolismo , Humanos , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Ligação Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais
10.
Fish Shellfish Immunol ; 141: 109083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722442

RESUMO

NOD-like receptors (NLRs) are one of the pattern recognition receptors which have been widely known for identifying pathogens and regulating innate immunity in mammals, but the functions of the NLR gene family in teleost fish remain poorly understood. In this study, we conducted a comprehensive identification and analysis of the flounder (Paralichthys olivaceus) NLR gene family, including bioinformatics information, evolutionary relationships, gene structures, conserved motifs, domain composition, expression patterns and protein-protein interaction (PPI). We identified 22 NLRs in flounder (flNLRs) which were clustered into three subfamilies according to their domain organizations and phylogenetic features, i.e., NLR-A (6 members) resembling mammalian NODs, NLR-B (1 member) resembling mammalian NLRPs, and NLR-C (15 members) unique to teleost fish. All flNLRs shared a conserved NACHT domain including an N-terminal nucleotide-binding domain, a middle helical domain 1, and a winged helix domain. Gene structure analysis displayed that flNLRs were significantly different, with exon numbers from 1 to 52. Conserved domain analysis showed that the N-terminus of flNLRs possessed different characteristics of the domains including CARD domain, PYRIN domain, RING domain, and fish-specific FISNA domain, and the C-terminus of seven NLR-C members contained an extra B30.2 domain, named NLRC-B30.2 group. Notably, flNLRs were expressed in all nine tested tissues, showing higher expressions in the systemic and mucosal immune tissues (e.g., kidney, spleen, hindgut, gills, skin, liver) in healthy flounder, and significant responses to intraperitoneal injection and immersion immunization of inactivated Vibrio anguillarum in mucosal tissues, especially the NLR-C members. In addition, PPI analysis demonstrated that some flNLRs of NLR-A and NLR-C shared the same interacting proteins such as RIPK2, TRAF6, MAVS, CASP, ASC, and ATG5, suggesting they might play crucial roles in host defense, antiviral innate immunity, inflammation, apoptosis and autophagy. This study for the first time characterized the NLR gene family of flounder at the genome-wide level, and the results provided a better understanding of the evolution of the NLR gene family and their immune functions in innate immunity in fish.

11.
J Fish Biol ; 103(6): 1476-1487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641389

RESUMO

Sex steroids are known to modulate immune responses and as a result many of the immune parameters in seasonally breeding organisms show reproductive-phase dependent variation. Androgens, the male sex steroids, are largely reported to be immunosuppressive. Together with other pattern recognition receptors, the nucleotide-binding and oligomerization domain-like receptors (NLRs) serve as intracellular sentinels and are essential to defense mechanisms. Interestingly, to date the transcriptional modulation of NLRs by androgens has not been explored. In the present study, we investigated the reproductive-phase dependent expression of NLRs in the male spotted snakehead Channa punctata. Furthermore, the effect of dihydrotestosterone (DHT) on NLR expression was studied. The expression of NLRs was observed to be most pronounced during the spawning phase of the fish, which is marked by the highest testosterone level. In vivo as well as in vitro studies showed the diverse effect of DHT on NLR expression depending on the duration and mode of treatment, as well as the immune tissue studied.


Assuntos
Channa punctatus , Di-Hidrotestosterona , Masculino , Animais , Di-Hidrotestosterona/farmacologia , Expressão Gênica , Fagocitose , Androgênios , Nucleotídeos
12.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769320

RESUMO

Neutrophilia and the production of neutrophil extracellular traps (NETs) are two of many measures of increased inflammation in severe COVID-19 that also accompany its autoimmune complications, including coagulopathies, myocarditis and multisystem inflammatory syndrome in children (MIS-C). This paper integrates currently disparate measures of innate hyperactivation in severe COVID-19 and its autoimmune complications, and relates these to SARS-CoV-2 activation of innate immunity. Aggregated data include activation of Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) receptors, NOD leucine-rich repeat and pyrin-domain-containing receptors (NLRPs), retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5). SARS-CoV-2 mainly activates the virus-associated innate receptors TLR3, TLR7, TLR8, NLRP3, RIG-1 and MDA-5. Severe COVID-19, however, is characterized by additional activation of TLR1, TLR2, TLR4, TLR5, TLR6, NOD1 and NOD2, which are primarily responsive to bacterial antigens. The innate activation patterns in autoimmune coagulopathies, myocarditis and Kawasaki disease, or MIS-C, mimic those of severe COVID-19 rather than SARS-CoV-2 alone suggesting that autoimmunity follows combined SARS-CoV-2-bacterial infections. Viral and bacterial receptors are known to synergize to produce the increased inflammation required to support autoimmune disease pathology. Additional studies demonstrate that anti-bacterial antibodies are also required to account for known autoantigen targets in COVID-19 autoimmune complications.


Assuntos
Doenças Autoimunes , COVID-19 , Coinfecção , Miocardite , Criança , Humanos , SARS-CoV-2 , Imunidade Inata , Síndrome de Resposta Inflamatória Sistêmica , Doenças Autoimunes/complicações
13.
Int Ophthalmol ; 43(12): 4869-4878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936001

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population, and Dry AMD is the most common clinical subtype. However, effective measures for the early diagnosis and treatment of dry AMD have not been proposed. In recent years, NOD-like receptors (NLRs) have received attention in the study of AMD as an important class of pattern recognition receptors. We attempted to elucidate the pathogenesis of NLRs in dry AMD from the perspective of chronic inflammation. METHODS: This study involved 13 patients with dry AMD, 10 age- and sex-matched normal population without any history of disease and 8 patients with wet AMD as controls. Using RT-qPCR, the mRNA expression levels of NLRs in peripheral blood peripheral blood mononuclear cells (PBMCs) were compared to analyze the statistical differences in the expression contents among the three populations. RESULTS: The relative RNA expression of nucleotide-binding oligomerization-like receptor protein 12 (NLRP12) with negative regulation of inflammation was significantly lower in dry AMD patients than in normal people and wet AMD patients. And NLRX1, which also has an anti-inflammatory effect, was lower in dry AMD patients than in wet AMD patients. However, NLRP3 with proinflammatory effect was significantly expressed in wet AMD. CONCLUSION: The significant decrease in NLRP12 in dry AMD may become a breakthrough in the study of dry AMD and systemic chronic inflammatory response. However, NLRP3 may have a more important role in wet AMD.


Assuntos
Atrofia Geográfica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Degeneração Macular Exsudativa , Idoso , Humanos , Atrofia Geográfica/diagnóstico , Inflamação , Leucócitos Mononucleares , Proteínas Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Degeneração Macular Exsudativa/diagnóstico , Degeneração Macular Exsudativa/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
Fish Shellfish Immunol ; 127: 166-175, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716971

RESUMO

Transport stress poses a threat to most teleost fish in production, causing mass losses to the aquaculture industry. Fish gills are a mucosa-associated lymphoid tissue in direct contact with water, and they represent an ideal tissue type to study mechanisms of transport stress. In this study, hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) were exposed to simulated transport stress for 16 h and then allowed to recover for 96 h. Gill tissues and blood samples were collected at 0 h, 2 h, 4 h, 8 h, and 16 h of transport stress and after 96 h of recovery, as well as from fish in a control group at the same sampling times. The activities of alkaline phosphatase, acid phosphatase, and superoxide dismutase and the total antioxidant capacity first increased and then decreased during the 16 h transport treatment. Exposure to 16 h of transport stress resulted in decreased serum triglyceride and total cholesterol contents, increased serum glucose content, increased activities of alanine aminotransferase and aspartate transaminase, and more mucus cells, compared with the control group. Transcriptome analysis revealed differential expression of 1525 genes (803 down-regulated and 722 up-regulated) between the control and 16 h transportation groups. Functional analyses revealed that the differentially expressed genes were enriched in immune response, signal transduction, and energy metabolism pathways. We found that tlr5, tnfɑ, hsp90ɑ, il-1ß, map2k4, il12ba were clearly up-regulated and arrdc2, syngr1a were clearly down-regulated following 8 h and/or 16 h simulated transport after qRT-PCR validation. These findings suggested that Toll- and NOD-like receptor signaling pathways potentially mediate transport stress. Transport stress altered innate immunity responses and energy use in the gill tissues of hybrid yellow catfish. After 96 h of recovery, only alanine aminotransferase and alkaline phosphatase activities and the number of mucus cells had returned to control levels. We speculate that for juvenile yellow catfish to recover to a normal state, a recovery period of more than 96 h is required after 16 h of transportation. These results provide new perspectives on the immune response of yellow catfish under transport stress and theoretical support for future optimization of their transportation.


Assuntos
Peixes-Gato , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Contagem de Células , Proteínas de Peixes , Brânquias/metabolismo , Imunidade Inata/genética , Muco/metabolismo , Transdução de Sinais
15.
J Periodontal Res ; 57(4): 891-903, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35734971

RESUMO

INTRODUCTION: NOD-like receptor C5 (NLRC5) plays a significant role in the immune system, and is one of the largest members of the pattern recognition receptor family. Previous studies have found that NLRC5 might be involved in the regulation of various diseases, such as fibrotic diseases and cancers; however, its effect on bone metabolism-related diseases has not been reported. METHODS: Skeletons of Nlrc5-/- mice generated by CRISPR/Cas9 and wild-type (WT) mice were compared using X-ray, micro-computed tomography, double labeling, and histological examination. Tartrate-resistant acid phosphatase and pit-absorption assays were performed to evaluate the effect of NLRC5 on osteoclasts differentiation and osteoclastic capacity. The influence of NLRC5 on osteoblasts differentiation and bone formation were studied using alkaline phosphatase and alizarin red staining, respectively. Experimental periodontitis was induced by Porphyromonas gingivalis infection and ligature to investigate the role of NLRC5 in inflammatory periodontal bone loss. RESULTS: Adenovirus-mediated NLRC5 overexpression in human bone marrow mesenchymal stem cells regulated osteogenesis positively. The femoral osteogenesis ability was significantly weakened in Nlrc5-/- mice. Histology showed that the area of the femoral trabeculae in the Nlrc5-/- mice was less than that in the WT mice, and radiology suggested that the Nlrc5-/- mice had fewer trabeculae and a thinner bone cortex than those of the WT mice. Nlrc5 knockout decreased osteoblast mineralization and increased osteoclastogenesis in vitro. NLRC5 was downregulated in periodontitis and P. gingivalis infection. In the experimental periodontitis model, the alveolar bone loss, inflammatory cell infiltration, and inflammatory cytokines secretion (interleukin [IL]-1ß, IL-6, and tumor necrosis factor alpha [TNF-α]) in the Nlrc5-/- mice were significantly enhanced compared to WT mice. CONCLUSION: We verified a novel role of NLRC5 in bone metabolism by regulating both osteoclasts activity and osteoblasts activity. Our results revealed a protective effect of NLRC5 against periodontal inflammation and alveolar bone destruction. NLRC5 could be a novel treatment target to prevent periodontal bone destruction.


Assuntos
Perda do Osso Alveolar , Osso e Ossos , Peptídeos e Proteínas de Sinalização Intracelular , Periodontite , Perda do Osso Alveolar/patologia , Animais , Osso e Ossos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Osteoclastos/metabolismo , Periodontite/metabolismo , Porphyromonas gingivalis , Microtomografia por Raio-X
16.
Acta Pharmacol Sin ; 43(11): 2789-2806, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35365780

RESUMO

Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.


Assuntos
Nefropatias Diabéticas , Proteínas NLR , Humanos , Proteínas NLR/metabolismo , Imunidade Inata , Rim/metabolismo , Proteínas de Transporte
17.
Immunopharmacol Immunotoxicol ; 44(1): 99-109, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34881658

RESUMO

Background: The intracellular NOD-like receptor (NLR) family of pathogen recognition receptors (PRRa) is involved in initiating the innate immune response of which NOD1 and NOD2 are the best-characterized members. Aberrant expression of NOD1 and NOD2 has been uncovered in a number of chronic inflammatory diseases, such as inflammatory bowel disease and rheumatoid arthritis. However, the mechanism underlying NOD1/NOD2 gene expression regulation is still in its infancy. Epigenetic modifications such as DNA methylation and histone acetylation regulate the expression of genes and alterations in their patterns have been linked to many inflammatory diseases. This study investigated whether epigenetic modifying drugs affect the regulation of NOD1/NOD2 activity and expression. DNA methyltransferase inhibitors have recently been used in the treatment of myelodysplastic syndrome and as combination therapy in cancer but the full extent of their effects has not been quantified.Methods: Pharmacological inhibition of epigenetic enzymes in a human monocytic THP-1 cell line was carried out and NOD1/NOD2 expression and pro-inflammatory responses were quantified.Results: Cells primed with a DNA methyltransferase inhibitor (but not a histone deacetylase [HDAC] inhibitor) were found to be consistently more responsive to NOD1/NOD2 stimulation and had increased basal expression.Conclusion: The novel experimentation carried out here suggests for the first time that NOD1/NOD2 receptor activity and expression in monocytes are possibly regulated directly by DNA methylation.


Assuntos
Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Linhagem Celular , DNA , Humanos , Metiltransferases/metabolismo , Monócitos/metabolismo , Proteínas NLR/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
18.
Immunology ; 162(3): 268-280, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314068

RESUMO

NLRX1 is a member of the NOD-like receptor family, a set of pattern recognition receptors associated with innate immunity. Interestingly, NLRX1 exists in somewhat of an exile from its NLR counterparts with unique features that mediate atypical functions compared with traditional NOD-like receptors (NLRs). Aside from a mitochondrial targeting sequence, the N-terminal region is yet to be characterized. Mitochondrially located, NLRX1 sits within a subgroup of regulatory NLRs responsible for negatively regulating cellular inflammatory signalling. As well as modulating pathogen response, emerging evidence is implicating NLRX1 as a central homeostatic gatekeeper between mitochondrial biology and immunological response. More recently, NLRX1 has been implicated in a wide range of disease, both pathogen-driven and otherwise. Emerging links of NLRX1 in cancer biology, autoimmunity and other inflammatory conditions are raising the potential of targeting NLRX1 therapeutically, with recent studies in inflammatory bowel disease showing great promise. Within this review, we address the unique features of NLRX1, its roles in innate immune signalling and its involvement in a range of inflammatory, metabolic and oncology disease indications with a focus on areas that could benefit from therapeutic targeting of NLRX1.


Assuntos
Imunidade Inata/imunologia , Proteínas Mitocondriais/imunologia , Animais , Humanos
19.
Biochem Soc Trans ; 49(6): 2601-2610, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34854889

RESUMO

The gut relies on the complex interaction between epithelial, stromal and immune cells to maintain gut health in the face of food particles and pathogens. Innate sensing by the intestinal epithelium is critical for maintaining epithelial barrier function and also orchestrating mucosal immune responses. Numerous innate pattern recognition receptors (PRRs) are involved in such sensing. In recent years, several Nucleotide-binding-domain and Leucine-rich repeat-containing receptors (NLRs) have been found to partake in pathogen or damage sensing while also being implicated in gut pathologies, such as colitis and colorectal cancer (CRC). Here, we discuss the current literature focusing on NLR family apoptosis inhibitory proteins (NAIPs) and other NLRs that have non-inflammasome roles in the gut. The mechanisms behind NLR-mediated protection often converges on similar signalling pathways, such as STAT3, MAPK and NFκB. Further understanding of how these NLRs contribute to the maintenance of gut homeostasis will be important for understanding gut pathologies and developing new therapies.


Assuntos
Inflamassomos/metabolismo , Mucosa Intestinal/metabolismo , Proteínas NLR/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Humanos
20.
Acta Pharmacol Sin ; 42(11): 1742-1756, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33589796

RESUMO

Autoimmune diseases are chronic immune diseases characterized by dysregulation of immune system, which ultimately results in a disruption in self-antigen tolerance. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) play essential roles in various autoimmune diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, multiple sclerosis (MS), etc. NLR proteins, consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-binding domain, and an N-terminal effector domain, form a group of pattern recognition receptors (PRRs) that mediate the immune response by specifically recognizing cellular pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and triggering numerous signaling pathways, including RIP2 kinase, caspase-1, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and so on. Based on their N-terminal domain, NLRs are divided into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. In this review, we briefly describe the structures and signaling pathways of NLRs, summarize the recent progress on NLR signaling in the occurrence and development of autoimmune diseases, as well as highlight numerous natural products and synthetic compounds targeting NLRs for the treatment of autoimmune diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Proteínas NLR/antagonistas & inibidores , Proteínas NLR/metabolismo , Animais , Doenças Autoimunes/imunologia , Furanos/administração & dosagem , Furanos/imunologia , Furanos/metabolismo , Humanos , Indenos/administração & dosagem , Indenos/imunologia , Indenos/metabolismo , Proteínas NLR/imunologia , Piridinas/administração & dosagem , Piridinas/imunologia , Piridinas/metabolismo , Sulfonamidas/administração & dosagem , Sulfonamidas/imunologia , Sulfonamidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA