Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 838, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242559

RESUMO

Fishmeal and fish oil have been the main sources of protein and fatty acid for aquaculture fish. However, their increasing price and low sustainability have led the aquafeed industry to seek sustainable alternative feedstuffs to meet the nutritional requirements of fish and improve their health and performance. Plant proteins have been successfully used to replace fishery derivatives in aquafeeds, but the presence of anti-nutritional substances is a potential drawback of this approach. Thus, it has been reported that phytate breakdown can be caused by feed supplementation with exogenous phytase. The inclusion of microalgae has been proposed to improve gut functionality in fish fed diets with a high vegetable protein content. The aim of this study was to evaluate the effect on the growth and gut microbiota of European seabass (Dicentrarchus labrax) juveniles of a diet containing a blend of microalgae (Arthrospira platensis and Nannochloropsis gaditana) and different concentrations of phytase. An 83-day feeding trial was conducted, comprising four experimental diets with 2.5% microalgae and 500, 1,000, 2,000, or 10,000 phytase units (FTU)/kg feed and a microalgae- and phytase-free control diet. At the end of the trial, a significantly increased body weight was observed in fish fed the diet with the highest phytase concentration (10,000 FTU/kg) versus controls, although the gut bacterial composition did not differ from controls in alpha or beta diversity with either majority (Weighted UniFrac) or minority bacterial strains (Unweighted UniFrac). In comparison to the control group, the groups fed diets with 1,000 or 2,000 FTU/kg diets had a lower alpha diversity (Shannon's diversity index), while those fed diets with 500 FTU/kg or 1,000 FTU/kg showed distinct clusters in beta diversity (involving minority ASVs). According to these findings, the diet containing the 2.5% microalgae blend with 10,000 FTU/kg may be useful to increase the aquafeed quality and sustain the growth performance of juvenile European seabass.


Assuntos
6-Fitase , Ração Animal , Bass , Suplementos Nutricionais , Microbioma Gastrointestinal , Microalgas , Animais , 6-Fitase/metabolismo , Bass/crescimento & desenvolvimento , Bass/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Aquicultura/métodos
2.
New Phytol ; 244(4): 1467-1481, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39253772

RESUMO

Nannochloropsis oceanica is an industrially relevant marine microalga rich in eicosapentaenoic acid (EPA, a valuable ω-3 polyunsaturated fatty acid), yet the algal production potential remains to be unlocked. Here we engineered N. oceanica to synthesize the high-value carotenoid astaxanthin independent of high-light (HL) induction for achieving multifaceted benefits. By screening ß-carotenoid ketolases and hydroxylases of various origins, and strategically manipulating compartmentalization, fusion patterns, and linkers of the enzyme pair, a remarkable 133-fold increase in astaxanthin content was achieved in N. oceanica. Iterative metabolic engineering efforts led to further increases in astaxanthin synthesis up to 7.3 mg g-1, the highest reported for microalgae under nonstress conditions. Astaxanthin was found in the photosystem components and allowed the alga HL resistance and augmented EPA production. Besides, we achieved co-production of astaxanthin and EPA by the engineered alga through a fed-batch cultivation approach. Our findings unveil the untapped potential of N. oceanica as a robust, light-driven chassis for constitutive astaxanthin synthesis and provide feasible strategies for the concurrent production of multiple high-value biochemicals from CO2, thereby paving the way for sustainable biotechnological applications of this alga.


Assuntos
Ácido Eicosapentaenoico , Luz , Engenharia Metabólica , Estramenópilas , Xantofilas , Xantofilas/metabolismo , Estramenópilas/metabolismo , Estramenópilas/efeitos da radiação , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biossíntese , Engenharia Metabólica/métodos , Microalgas/metabolismo , Organismos Aquáticos/metabolismo , Técnicas de Cultura Celular por Lotes
3.
J Microsc ; 293(2): 118-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149687

RESUMO

In this study, transmission electron microscopy (TEM) and cryo-scanning electron microscopy (cryo-SEM) were evaluated for their ability to detect lipid bodies in microalgae. To do so, Phaeodactylum tricornutum and Nannochloropsis oculata cells were harvested in both the mid-exponential and early stationary growth phase. Two different cryo-SEM cutting methods were compared: cryo-planing and freeze-fracturing. The results showed that, despite the longer preparation time, TEM visualisation preceded by cryo-immobilisation allows a clear detection of lipid bodies and is preferable to cryo-SEM. Using freeze-fracturing, lipid bodies were rarely detected. This was only feasible if crystalline layers in the internal structure, most likely related to sterol esters or di-saturated triacylglycerols, were revealed. Furthermore, lipid bodies could not be detected using cryo-planing. Cryo-SEM is also not the preferred technique to recognise other organelles besides lipid bodies, yet it did reveal chloroplasts in both species and filament-containing organelles in cryo-planed Nannochloropsis oculata samples.


Assuntos
Microalgas , Gotículas Lipídicas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica/métodos
4.
Environ Res ; 258: 119352, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876416

RESUMO

Renewable energy research is burgeoning with the anticipation of finding neat liquid fuel. Ultra sonification assisted biodiesel was derived from red algae Cyanidioschyzon merolae, with biodiesel yield of 98.9%. The results of GC MS of the prepared biodiesel showed higher concentration of methyl palmitate, methyl oleate, and stearate. This composition is appreciable, as this plays significance in desirable pour & cloud point properties. NMR spectrum revealed the ester linkages, presence of olefins, and α methyl position in olefins. Mixture of 30 wt% of biodiesel in diesel exhibited work efficiency, and also exhibited low pour point and, lower viscosity values. CeO2 and Fe2O3 nano particles were bio reduced, and were added as nano additive in biodiesel. 1:1 ratio of CeO2 and Fe2O3 added to biodiesel maximised the combustion ability of fuel owing to the oxygen storage capacity of CeO2. Further, this combination produced a satisfactory calorific value. Imbalanced ratios disrupted the catalytic and oxygen storage effects, reduced the overall energy release and calorific value of the biodiesel blend. Pour point and cetane number value of biodiesel blend ultrasonifacted with 1:1 mass ratio of Fe2O3 and CeO2 was observed to be around -7 °C and 53 °C respectively, and was better than other compositions. 1:1 mass ratio of NPS blended with 30 wt% BD in diesel showed tremendous increase in brake thermal efficiency, torque, and power. HC, NOX, and SOX emissions were reduced by 42.8%, 19.3%, and 57% respectively with 1:1 Fe2O3 and CeO2 mixed biodiesel blend. CeO2 favourably improved the oxygen storage capacity of the fuel, whereas Fe2O3 showed decrease in formation of gums and sediments in biodiesel.


Assuntos
Biocombustíveis , Rodófitas , Rodófitas/química , Biocombustíveis/análise , Óxido de Magnésio/química , Óxido de Magnésio/análise , Catálise
5.
Environ Res ; 257: 119349, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844029

RESUMO

Integrated aquaculture wastewater treatment systems (IAWTSs) are widely used in treating aquaculture wastewater with the aeration-microalgae unit serving as an important component. In this study, we artificially constructed an IAWTS and applied two aeration-microalgae methods: ordinary aeration or ozone nanobubbles (ONBs) with microalgae (Nannochloropsis oculata). The impact of N.oculata and ONBs on the removal performance of nutrients and the underlying micro-ecological mechanisms were investigated using 16S rRNA gene amplicon sequencing. The results demonstrated that the combined use of ONBs and N.oculata exhibited superior purification effects with 78.25%, 76.59% and 86.71% removal of CODMn, TN and TP. N.oculata played a pivotal role as the primary element in wastewater purification, while ONBs influenced nutrient dynamics by affecting both N.oculata and bacterial communities. N.oculata actively shaped bacterial communities, with a specific focus on nitrogen and phosphorus cycling in the micro-environment remodeled by ONBs. Rare bacterial communities displayed heightened activity in response to the changes in N.oculata, ONBs, and nutrient levels. These findings provide a novel approach to improve the technological processes the IAWTS, contributing to the advancement of sustainable aquaculture practices by offering valuable insights into wastewater purification efficiency and micro-ecological mechanisms.


Assuntos
Aquicultura , Microalgas , Microbiota , Ozônio , Eliminação de Resíduos Líquidos , Águas Residuárias , Aquicultura/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Microbiota/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Fósforo/metabolismo , Nitrogênio/metabolismo
6.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393025

RESUMO

In light of the escalating global energy crisis, microalgae have emerged as highly promising producers of biofuel and high-value products. Among these microalgae, Nannochloropsis has received significant attention due to its capacity to generate not only triacylglycerol (TAG) but also eicosapentaenoic acid (EPA) and valuable carotenoids. Recent advancements in genetic tools and the field of synthetic biology have revolutionized Nannochloropsis into a powerful biofactory. This comprehensive review provides an initial overview of the current state of cultivation and utilization of the Nannochloropsis genus. Subsequently, our review examines the metabolic pathways governing lipids and carotenoids, emphasizing strategies to enhance oil production and optimize carbon flux redirection toward target products. Additionally, we summarize the utilization of advanced genetic manipulation techniques in Nannochloropsis. Together, the insights presented in this review highlight the immense potential of Nannochloropsis as a valuable model for biofuels and synthetic biology. By effectively integrating genetic tools and metabolic engineering, the realization of this potential becomes increasingly feasible.


Assuntos
Ácido Eicosapentaenoico , Microalgas , Triglicerídeos/metabolismo , Engenharia Metabólica , Carotenoides/metabolismo , Microalgas/metabolismo , Biocombustíveis
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928505

RESUMO

Nannochloropsis gaditana, a microalga known for its photosynthetic efficiency, serves as a cell factory, producing valuable biomolecules such as proteins, lipids, and pigments. These components make it an ideal candidate for biofuel production and pharmaceutical applications. In this study, we genetically engineered N. gaditana to overexpress the enzyme fructose-1,6-bisphosphatase (cyFBPase) using the Hsp promoter, aiming to enhance sugar metabolism and biomass accumulation. The modified algal strain, termed NgFBP, exhibited a 1.34-fold increase in cyFBPase activity under photoautotrophic conditions. This modification led to a doubling of biomass production and an increase in eicosapentaenoic acid (EPA) content in fatty acids to 20.78-23.08%. Additionally, the genetic alteration activated the pathways related to glycine, protoporphyrin, thioglucosides, pantothenic acid, CoA, and glycerophospholipids. This shift in carbon allocation towards chloroplast development significantly enhanced photosynthesis and growth. The outcomes of this study not only improve our understanding of photosynthesis and carbon allocation in N. gaditana but also suggest new biotechnological methods to optimize biomass yield and compound production in microalgae.


Assuntos
Biomassa , Frutose-Bifosfatase , Metabolômica , Microalgas , Fotossíntese , Estramenópilas , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfatase/genética , Estramenópilas/genética , Estramenópilas/metabolismo , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/enzimologia , Microalgas/metabolismo , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Microalgas/enzimologia , Metabolômica/métodos , Citosol/metabolismo
8.
Int J Mol Sci ; 25(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39408634

RESUMO

The commercialization of algal lipids and biofuels remains impractical due to the absence of lipogenic strains. As lipogenesis is regulated by a multitude of factors, the success in producing industrially suitable algal strains through conventional methods has been constrained. We present a new AP2 transcription factor, designated as NgAP2a, which, upon overexpression, leads to a significant increase in lipid storage in Nannochloropsis gaditana while maintaining the integrity of other physiological functions. These provide methodologies for enhancing petroleum output and optimizing the carbon fluxes associated with specific products. An integrated analysis of RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data has elucidated that the NgAP2a-induced up-regulation of critical genes is implicated in lipogenesis. Specifically, NgAP2a has been demonstrated to directly bind to the M1 motif situated within the promoter region of the KCS gene, thereby promoting the transcriptional activation of genes pertinent to lipid metabolism. In summary, we elucidate a plausible pathway whereby NgAP2a serves as a direct modulator of the KCS gene (Naga_100083g23), thereby influencing the expression levels of genes and molecules associated with lipid biosynthesis.


Assuntos
Metabolismo dos Lipídeos , Estramenópilas , Metabolismo dos Lipídeos/genética , Estramenópilas/genética , Estramenópilas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Lipogênese/genética , Regulação da Expressão Gênica
9.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125802

RESUMO

The hair follicle is the basis of hair regeneration, and the dermal papilla is one of the most important structures in hair regeneration. New intervention and reversal strategies for hair loss may arise due to the prevention of oxidative stress. GC/MS analysis was used to determine the compounds contained in NSO. Then, NSO was applied to DPC for cell proliferation and oxidative stress experiments. RNA-seq was performed in cells treated with NSO and minoxidil. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to verify the gene expression. The effects of NSO on hair length, weight, the number and depth of hair follicles, and the dermal thickness were also studied. GC/MS analysis showed that the main components of NSO were eicosapentaenoic acid, palmitic acid, and linoleic acid. NSO promotes DPC proliferation and reduces H2O2-mediated oxidative damage. NSO can also activate hair growth-related pathways and upregulate antioxidant-related genes analyzed by gene profiling. The topical application of NSO significantly promotes hair growth and increases hair length and weight in mice. NSO extract promotes hair growth and effectively inhibits oxidative stress, which is beneficial for the prevention and treatment of hair loss.


Assuntos
Proliferação de Células , Folículo Piloso , Cabelo , Estresse Oxidativo , Proliferação de Células/efeitos dos fármacos , Animais , Humanos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/citologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Antioxidantes/farmacologia , Derme/metabolismo , Derme/citologia , Derme/efeitos dos fármacos
10.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612566

RESUMO

Rubisco large-subunit methyltransferase (LSMT), a SET-domain protein lysine methyltransferase, catalyzes the formation of trimethyl-lysine in the large subunit of Rubisco or in fructose-1,6-bisphosphate aldolases (FBAs). Rubisco and FBAs are both vital proteins involved in CO2 fixation in chloroplasts; however, the physiological effect of their trimethylation remains unknown. In Nannochloropsis oceanica, a homolog of LSMT (NoLSMT) is found. Phylogenetic analysis indicates that NoLSMT and other algae LSMTs are clustered in a basal position, suggesting that algal species are the origin of LSMT. As NoLSMT lacks the His-Ala/ProTrp triad, it is predicted to have FBAs as its substrate instead of Rubisco. The 18-20% reduced abundance of FBA methylation in NoLSMT-defective mutants further confirms this observation. Moreover, this gene (nolsmt) can be induced by low-CO2 conditions. Intriguingly, NoLSMT-knockout N. oceanica mutants exhibit a 9.7-13.8% increase in dry weight and enhanced growth, which is attributed to the alleviation of photoinhibition under high-light stress. This suggests that the elimination of FBA trimethylation facilitates carbon fixation under high-light stress conditions. These findings have implications in engineering carbon fixation to improve microalgae biomass production.


Assuntos
Aldeído Liases , Lisina , Ribulose-Bifosfato Carboxilase/genética , Biomassa , Dióxido de Carbono , Filogenia , Frutose-Bifosfato Aldolase , Histona-Lisina N-Metiltransferase , Cloroplastos/genética
11.
J Sci Food Agric ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354886

RESUMO

BACKGROUND: Nannochloropsis algae contain approximately 20% polyunsaturated fatty acids (PUFA) and hold significant potential for high-quality eicosapentaenoic acid (EPA) food industrialization. However, EPA in Nannochloropsis sp. is prone to oxidation, and microbial growth is a critical factor affecting the shelf life of fresh food. Storage composition and temperature are primary factors influencing microbial growth, yet these aspects are not fully understood. This study investigates the effects of temperature and encapsulation on EPA content in nano-products over time. Nano-powder and nanobeads derived from Nannochloropsis sp. served as raw materials. Additionally, changes in aerobic plate counts and coliform groups were monitored. RESULTS: The results indicated that nanobeads, due to their more complex processing and less mature packaging, were more susceptible to coliform contamination compared to nano-powder. In terms of EPA stability, nanobeads exhibited a longer storage life than nano-powder. The oxidation rate of both nano-powder and nanobeads was faster at 37 °C than at 25 °C. CONCLUSION: These findings can inform general shelf life estimation, rapid detection of total lipid content in nano-products and macro extraction of nano-oil. Moreover, they have significant implications for delaying EPA oxidation in nano-products and improving hygienic quality control for microbial detection. © 2024 Society of Chemical Industry.

12.
Microb Ecol ; 87(1): 4, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015286

RESUMO

Microalgae often undergo different CO2 experiment in their habitat. To adapt to low CO2, carbon concentrating mechanism (CCM) could be launched in majority of microalgae and CCM are regulated at RNA level are well known. However, epigenetic modifications and their potential regulation of the transcription of masked genes at the genome level in response to CO2 fluctuation remain unclear. Here epigenetic regulation in response to CO2 fluctuation and epigenome-association with phenotypic plasticity of CCM are firstly uncovered in marine microalga Nannochloropsis oceanica IMET1. The result showed that lysine butyrylation (Kbu) and histone H3K9m2 modifications were present in N. oceanica IMET1. Moreover, Kbu modification positively regulated gene expression. In response to CO2 fluctuation, there were 5,438 and 1,106 genes regulated by Kbu and H3K9m2 in Nannochloropsis, respectively. Gained or lost histone methylations were closely associated with activating or repressing gene expressions. Differential modifications were mainly enriched in carbon fixation, photorespiration, photosynthesis, and lipid metabolism etc. Massive genome-wide epigenetic reprogramming was observed after N. oceanica cells shifted from high CO2 to low CO2. Particularly, we firstly noted that the transcription of the key low CO2 responsive carbonic anhydrase (CA5), a key component involved in CCM stress signaling, was potentially regulated by bivalent Kbu-H3K9m2 modifications in microalgae. This study provides novel insights into the relationship between gene transcription and epigenetic modification in Nannochloropsis, which will lay foundation on genetic improvement of CCM at epigenetic level.


Assuntos
Dióxido de Carbono , Microalgas , Epigênese Genética , Histonas/genética , Microalgas/genética , Adaptação Fisiológica , Carbono
13.
Fish Shellfish Immunol ; 140: 108975, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488040

RESUMO

The parr-smolt transformation in salmonids involves a critical period characterized by systemic changes associated with the fish's immune response. In this context, as a dietary ingredient in functional diets, microalgae offer an alternative due to their nutritional and bioactive compounds that could strengthen the immune status. This study evaluated the effect of a diet supplemented with Schizochytrium spp and Nannochloropsis gaditana on the expression of genes associated with the antibacterial response. Additionally, the study assessed the effect on the leukocyte population and erythrocyte maturity in Salmo salar blood. Fish were fed for 30 days with a microalgal mixture (1:1) at a 10% inclusion. Each diet was randomly assigned to a tank using a completely randomized design (CRD) with four replications. Each tank was stocked with 70 Atlantic salmon fingerlings with an initial mean weight of 78.87 ± 0.84. Transcription levels were quantified and analyzed by qRT-PCR from cell isolates and mucus tissue. Furthermore, cell count and identification of leukocytes and classification of cellular maturity of erythrocytes using a neural network with a multilayer perceptron (MLP) were performed. Our results showed a significant (p < 0.05) increase in fold change expression of C3 (2.54 ± 0.65) and NK-Lysine (6.84 ± 0.94) in erythrocytes of microalgae-supplemented fish. Moreover, a significant increase of 1.59 and 2.35 times in monocytes and immature erythrocytes, respectively, was observed in the same group of fish (p < 0.05). This study's results indicate that dual microalgae (Schizochytrium spp and N. gaditana) supplementation can increase innate humoral antibacterial components, particularly in erythrocyte tissue, and increase phagocytic cells and immature erythrocytes in S. salar blood.


Assuntos
Microalgas , Salmo salar , Estramenópilas , Animais , Dieta/veterinária , Imunidade Inata , Eritrócitos , Antibacterianos , Ração Animal/análise
14.
Methods ; 204: 38-46, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35367367

RESUMO

Promoter is a key DNA element located near the transcription start site, which regulates gene transcription by binding RNA polymerase. Thus, the identification of promoters is an important research field in synthetic biology. Nannochloropsis is an important unicellular industrial oleaginous microalgae, and at present, some studies have identified some promoters with specific functions by biological methods in Nannochloropsis, whereas few studies used computational methods. Here, we propose a method called DNPPro (DenseNet-Predict-Promoter) based on densely connected convolutional neural networks to predict the promoter of Nannochloropsis. First, we collected promoter sequences from six Nannochloropsis strains and removed 80% similarity using CD-HIT for each strain to yield a reliable set of positive datasets. Then, in order to construct a robust classifier, within-group scrambling method was used to generate negative dataset which overcomes the limitation of randomly selecting a non-promoter region from the same genome as a negative sample. Finally, we constructed a densely connected convolutional neural network, with the sequence one-hot encoding as the input. Compared with commonly used sequence processing methods, DNPPro can extract long sequence features to a greater extent. The cross-strain experiment on independent dataset verifies the generalization of our method. At the same time, T-SNE visualization analysis shows that our method can effectively distinguish promoters from non-promoters.


Assuntos
Redes Neurais de Computação , Biologia Sintética , Regiões Promotoras Genéticas
15.
Biofouling ; 39(5): 483-501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394974

RESUMO

In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Fotobiorreatores , Biofilmes , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Propriedades de Superfície
16.
Mar Drugs ; 21(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132950

RESUMO

Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.


Assuntos
Microalgas , Estramenópilas , Humanos , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2 , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
17.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686401

RESUMO

The cell cycle is the fundamental cellular process of eukaryotes. Although cell-cycle-related genes have been identified in microalgae, their cell cycle progression differs from species to species. Cell enlargement in microalgae is an essential biological trait. At the same time, there are various causes of cell enlargement, such as environmental factors, especially gene mutations. In this study, we first determined the phenotypic and biochemical characteristics of a previously obtained enlarged-cell-size mutant of Nannochloropsis oceanica, which was designated ECS. Whole-genome sequencing analysis of the insertion sites of ECS indicated that the insertion fragment is integrated inside the 5'-UTR of U/P-type cyclin CYCU;1 and significantly decreases the gene expression of this cyclin. In addition, the transcriptome showed that CYCU;1 is a highly expressed cyclin. Furthermore, cell cycle analysis and RT-qPCR of cell-cycle-related genes showed that ECS maintains a high proportion of 4C cells and a low proportion of 1C cells, and the expression level of CYCU;1 in wild-type (WT) cells is significantly increased at the end of the light phase and the beginning of the dark phase. This means that CYCU;1 is involved in cell division in the dark phase. Our results explain the reason for the larger ECS size. Mutation of CYCU;1 leads to the failure of ECS to fully complete cell division in the dark phase, resulting in an enlargement of the cell size and a decrease in cell density, which is helpful to understand the function of CYCU;1 in the Nannochloropsis cell cycle.


Assuntos
Ciclinas , Microalgas , Humanos , Hipertrofia , Tamanho Celular , Crescimento Celular , Divisão Celular , Regiões 5' não Traduzidas , Microalgas/genética
18.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762626

RESUMO

Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.


Assuntos
Antioxidantes , Microalgas , Antioxidantes/farmacologia , Endocanabinoides/metabolismo , Queratinócitos/metabolismo , Fosfolipídeos/metabolismo , Raios Ultravioleta/efeitos adversos
19.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836689

RESUMO

The bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through acid hydrolysis of OPW was used as a substrate in the cultivation of the marine microalgae Nannochloropsis oculata. Photoheterotrophic (PH) and Photoautotrophic (PA) cultivations were performed in OWE medium and f/2 medium (obtained by supplementing OWE with macro- and micronutrients of f/2 medium), respectively, for 14 days. The biomass yields in PA and PH cultures were 390 mg L-1 and 450 mg L-1, while oil yields were 15% and 28%, respectively. The fatty acid (FA) profiles of PA cultures were mostly represented by saturated (43%) and monounsaturated (46%) FAs, whereas polyunsaturated FAs accounted for about 10% of the FAs. In PH cultures, FA profiles changed remarkably, with a strong increase in monounsaturated FAs (77.49%) and reduced levels of saturated (19.79%) and polyunsaturated (2.72%) FAs. Lipids obtained from PH cultures were simultaneously extracted and converted into glycerol-free biodiesel using an innovative microwave-assisted one-pot tandem protocol. FA methyl esters were then analyzed, and the absence of glycerol was confirmed. The FA profile was highly suitable for biodiesel production and the microwave-assisted one-pot tandem protocol was more effective than traditional extraction techniques. In conclusion, N. oculata used OWE photoheterotrophically, resulting in increased biomass and oil yield. Additionally, a more efficient procedure for simultaneous oil extraction and conversion into glycerol-free biodiesel is proposed.


Assuntos
Citrus sinensis , Microalgas , Eliminação de Resíduos , Estramenópilas , Glicerol , Biocombustíveis , Alimentos , Ácidos Graxos , Biomassa
20.
J Environ Sci Health B ; 58(4): 345-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006160

RESUMO

The present study assessed the removal of fenamiphos, imidacloprid, and oxamyl pesticides from water using algal Nannochloropsis oculata biomass. Several factors, such as algal biomass concentration, incubation time, and pesticide concentration, were studied for their impact on pesticide removal. Analysis and quantification of pesticides by rapid HPLC have been developed and validated. The optimum conditions were obtained at 15 min, 50 mg/L of pesticide concentration, and 4,500 mg/L of the algal biomass with 92.24% and 90.43% removal for fenamiphos and imidacloprid, respectively. While optimum parameters of 10 min incubation, 250 mg/L of pesticide concentration, and 2,750 mg/L of the algal biomass exhibited 67.34% removal for oxamyl. N. oculata, marine microalgae, successively removed different concentrations of the tested pesticides from water, and the algal biomass showed a potential reduction of pesticides in polluted water samples.


Assuntos
Microalgas , Praguicidas , Estramenópilas , Biomassa , Água , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA