Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36714981

RESUMO

The vertebrate eye is shaped as a cup, a conformation that optimizes vision and is acquired early in development through a process known as optic cup morphogenesis. Imaging living, transparent teleost embryos and mammalian stem cell-derived organoids has provided insights into the rearrangements that eye progenitors undergo to adopt such a shape. Molecular and pharmacological interference with these rearrangements has further identified the underlying molecular machineries and the physical forces involved in this morphogenetic process. In this Review, we summarize the resulting scenarios and proposed models that include common and species-specific events. We further discuss how these studies and those in environmentally adapted blind species may shed light on human inborn eye malformations that result from failures in optic cup morphogenesis, including microphthalmia, anophthalmia and coloboma.


Assuntos
Coloboma , Olho , Animais , Humanos , Desenvolvimento Embrionário , Organogênese , Morfogênese/genética , Retina , Mamíferos
2.
Biochem Biophys Res Commun ; 638: 163-167, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459880

RESUMO

Chronic inflammation of the retina, like that of diabetic retinopathy, disrupts the blood-retina barrier (BRB). Disruption of the BRB increases vascular permeability and leads to vision loss. Basigin gene products, cell-adhesion molecules and members of the immunoglobulin superfamily, are expressed on endothelial cells, photoreceptor cells and Müller glial cells. Basigin variant-1 on photoreceptors interacts with Basigin variant-2 on Müller glial cells and to rod-derived cone viability factor (RdCVF) to form metabolic support mechanisms necessary for the survival of photoreceptor neurons. The goal of the current study was to determine the gene expression changes of Basigin gene products in ex vivo neonatal, adolescent, and adult retina when exposed to an inflammatory insult in acute and chronic phases. Retinas extracted from mice at postnatal day (P) 7, 30, and 180 were incubated with either phosphate-buffered saline (PBS), as a control, or lipopolysaccharide (LPS), an endotoxin, for 3, 6, 12, or 24 h. RNA was then extracted and Basigin gene products were quantified by qPCR. Analyses indicate both gene products are influenced by LPS exposure in a time and age dependent manner. Specifically, P180 retinas exposed to LPS showed significant decreases in both Basigin gene products, suggesting older retinas may be susceptible to chronic inflammation and subsequent vision loss.


Assuntos
Basigina , Células Endoteliais , Animais , Camundongos , Basigina/genética , Lipopolissacarídeos/metabolismo , Retina/metabolismo , Inflamação/genética , Inflamação/metabolismo , RNA/metabolismo
3.
Exp Eye Res ; 228: 109406, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740160

RESUMO

Utilizing cell type-specific knockout mice has been an excellent tool for decades not only to explore the role of a gene in a specific cell, but also to unravel the underlying mechanism in diseases. To investigate the mechanistic association between dysfunction of the peroxisomal protein multifunctional protein 2 (MFP2) and retinopathy, we generated and phenotyped multiple transgenic mouse models with global or cell type-specific MFP2 deletion. These studies pointed to a potential role of MFP2 specifically in rod bipolar cells. To explore this, we aimed to create rod bipolar cell specific knockout mice of Mfp2 by crossing Mfp2L/L mice with L7Cre-2 mice (also known as PCP2Cre), generating L7-Mfp2-/- mice. L7Cre-2 mice express Cre recombinase under the control of the L7 promoter, which is believed to be exclusively expressed in rod bipolar cells and cerebellar Purkinje cells. Unexpectedly, only sporadic Cre activity was observed in the rod bipolar cells of L7-Mfp2-/- mice, despite efficient Cre recombination in cerebellar Purkinje cells. Moreover, a variable fraction of photoreceptors was targeted, which does not correspond with the supposed specificity of L7Cre-2 mice. These observations indicate that L7Cre-2 mice can be exploited to manipulate Purkinje cells in the cerebellum, whereas they cannot be used to generate rod bipolar cell specific knockout mice. For this aim, we suggest utilizing an independently generated mouse line named BAC-L7-IRES-Cre.


Assuntos
Células de Purkinje , Células Bipolares da Retina , Camundongos , Animais , Camundongos Transgênicos , Camundongos Knockout
4.
Exp Eye Res ; 223: 109194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868364

RESUMO

Diabetic Retinopathy is prevalent among patients with uncontrolled hyperglycemia resulting in vision loss. Despite numerous challenges to create a link among these conditions, the characterization of pathological neovascularization causing retinal damage due to the prognosis of early non-proliferative diabetic retinopathy to late proliferative diabetic retinopathy needs deep understanding. In this study, meta-analysis-based integration of gene expression datasets for the fibrovascular membrane of PDR and neural retina of NPDR were compared, to investigate the differentially expressed genes involved in retinal angiogenesis. Human samples with gene expression profiling of the same experiment type and platform with sufficient information for analysis were included in the study. The studies from cell lines and non-human studies, human samples that include serum, cornea, lens, and/or other ocular tissues or fluids, and studies that lack basic information for analysis were excluded. The microarray datasets available in the Gene Expression Omnibus database of the early and late stages in DR were screened to find common gene expression profiles. Using the INMEX bioinformatics tool, significantly upregulated and downregulated genes in the neural retina of Non-Proliferative Diabetic Retinopathy and fibrovascular membrane of Proliferative Diabetic Retinopathy were compared and studied by the combine effect size method. Using the STRING database PPI network, 50 upregulated and 50 downregulated genes were used to find the key candidate genes involved in retinal disease/degeneration in eye/retinal tissues. In the extensive gene expression meta-analysis performed using INMEX bioinformatics tool, overall, 7935 differentially expressed genes were identified and the respective heatmap was created by using the visualization tools of INVEX. STRING database PPI network identified Retinol Binding Protein 3, Neural Retina Leucine Zipper, S-Antigen Visual Arrestin, Peripherin 2, and Aryl Hydrocarbon Receptor Interacting Protein Like-1 to be the most highly ranked hub genes. The newly discovered potential genes related to retinal angiogenesis causing FVM formation in DR may provide insight into the cellular pathogenesis of NPDR to PDR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Arrestinas/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Expressão Gênica , Humanos , Neovascularização Patológica/metabolismo , Periferinas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Retina/metabolismo , Proteínas de Ligação ao Retinol/metabolismo
5.
Cell Mol Life Sci ; 78(9): 4417-4433, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33782712

RESUMO

Retinal ganglion cells (RGCs) are the only projection neurons in the neural retina. They receive and integrate visual signals from upstream retinal neurons in the visual circuitry and transmit them to the brain. The function of RGCs is performed by the approximately 40 RGC types projecting to various central brain targets. RGCs are the first cell type to form during retinogenesis. The specification and differentiation of the RGC lineage is a stepwise process; a hierarchical gene regulatory network controlling the RGC lineage has been identified and continues to be elaborated. Recent studies with single-cell transcriptomics have led to unprecedented new insights into their types and developmental trajectory. In this review, we summarize our current understanding of the functions and relationships of the many regulators of the specification and differentiation of the RGC lineage. We emphasize the roles of these key transcription factors and pathways in different developmental steps, including the transition from retinal progenitor cells (RPCs) to RGCs, RGC differentiation, generation of diverse RGC types, and central projection of the RGC axons. We discuss critical issues that remain to be addressed for a comprehensive understanding of these different aspects of RGC genesis and emerging technologies, including single-cell techniques, novel genetic tools and resources, and high-throughput genome editing and screening assays, which can be leveraged in future studies.


Assuntos
Diferenciação Celular , Células Ganglionares da Retina/metabolismo , Animais , Linhagem da Célula , Regulação da Expressão Gênica , Humanos , Retina/metabolismo , Células Ganglionares da Retina/citologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Altern Lab Anim ; 50(1): 27-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35302924

RESUMO

Neural retinal organ cultures are used to investigate ocular pathomechanisms. However, these cultures lack the essential retinal pigment epithelium (RPE) cells, which are part of the actual in vivo retina. To simulate a more realistic ex vivo model, porcine neural retina explants were cocultured with ARPE-19 cells (ARPE-19 group), which are derived from human RPE. To identify whether the entire cells or just the cell factors are necessary, in a second experimental group, porcine neural retina explants were cultured with medium derived from ARPE-19 cells (medium group). Individually cultured neural retina explants served as controls (control group). After 8 days, all neural retinas were analysed to evaluate retinal thickness, photoreceptors, microglia, complement factors and synapses (n = 6-8 per group). The neural retina thickness in the ARPE-19 group was significantly better preserved than in the control group (p = 0.031). Also, the number of L-cones was higher in the ARPE-19 group, as compared to the control group (p < 0.001). Furthermore, the ARPE-19 group displayed an increased presynaptic glutamate uptake (determined via vGluT1 labelling) and enhanced post-synaptic density (determined via PSD-95 labelling). Combined Iba1 and iNOS detection revealed only minor effects of ARPE-19 cells on microglial activity, with a slight downregulation of total microglia activity apparent in the medium group. Likewise, only minor beneficial effects on photoreceptors and synaptic structure were found in the medium group. This novel system offers the opportunity to investigate interactions between the neural retina and RPE cells, and suggests that the inclusion of a RPE feeder layer has beneficial effects on the ex vivo maintenance of neural retina. By modifying the culture conditions, this coculture model allows a better understanding of photoreceptor death and photoreceptor-RPE cell interactions in retinal diseases.


Assuntos
Retina , Epitélio Pigmentado da Retina , Animais , Técnicas de Cocultura , Neurônios , Técnicas de Cultura de Órgãos , Epitélio Pigmentado da Retina/metabolismo , Suínos
7.
Dev Biol ; 458(1): 1-11, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589834

RESUMO

Epithelial morphogenesis, a fundamental aspect of development, generates 3-dimensional tissue structures crucial for organ function. Underlying morphogenetic mechanisms are, in many cases, poorly understood, but mutations that perturb organ development can affect epithelial cell shape and orientation - difficult features to quantify in three dimensions. The basic structure of the eye is established via epithelial morphogenesis: in the embryonic optic cup, the retinal progenitor epithelium enwraps the lens. We previously found that loss of the extracellular matrix protein laminin-alpha1 (lama1) led to mislocalization of apical polarity markers and apparent misorientation of retinal progenitors. We sought to visualize and quantify this phenotype, and determine whether loss of the apical polarity determinant pard3 might rescue the phenotype. To this end, we developed LongAxis, a MATLAB-based program optimized for the retinal progenitor neuroepithelium. LongAxis facilitates 3-dimensional cell segmentation, visualization, and quantification of cell orientation and morphology. Using LongAxis, we find that retinal progenitors in the lama1-/- optic cup are misoriented and slightly less elongated. In the lama1;MZpard3 double mutant, cells are still misoriented, but larger. Therefore, loss of pard3 does not rescue loss of lama1, and in fact uncovers a novel cell size phenotype. LongAxis enables population-level visualization and quantification of retinal progenitor cell orientation and morphology. These results underscore the importance of visualizing and quantifying cell orientation and shape in three dimensions within the retina.


Assuntos
Forma Celular , Células Epiteliais , Processamento de Imagem Assistida por Computador , Retina , Software , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Laminina/genética , Laminina/metabolismo , Retina/citologia , Retina/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Exp Eye Res ; 200: 108207, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866532

RESUMO

Claudin-3, an integral component of tight junction, has recently been shown to be expressed in retinal ganglion cells, retinal pigment cells, and retinal vascular endothelial cells. However, the role of claudin-3 in the development of the neural retina and its vessels remains undefined. This study aimed to investigate the role of zebrafish claudin-h (cldnh), the closest ortholog of mouse and human claudin-3, in the development of the neural retina and its vessels. Cldnh levels in green fluorescent protein transgenic zebrafish were genetically manipulated by cldnh morpholino oligonucleotide (MO) and cldnh mRNA to investigate gene function. The expression of cldnh was analyzed using polymerase chain reaction and immunofluorescence staining. The altered morphological, cellular and molecular events in the cldnh MO-morphant eyes were detected using hematoxylin-eosin staining, fluorescent dye injection, confocal in vivo imaging, BrdU labeling, TUNEL assay, RNA sequencing, and Western blot. We demonstrated that the cldnh protein was expressed in the neural retina and the hyaloid vessel which is the predecessor of the retinal vessel in zebrafish. Cldnh knockdown delayed lamination of the neural retina and reduced its thickness, which might be associated with the downregulation of the retinal development-related genes of atoh7, pcdh17, crx, neurod1, insm1a, sox9b and cdh11, and the upregulation of the cell cycle and apoptosis-associated genes of tp53, cdkn1a and casp8. Cldnh knockdown also reduced the density and interrupted the lumenization of the hyaloid vessels, which might be owing to the downregulation of the vessel formation-related genes of hlx1 and myl7. In conclusion, cldnh was required for the normal development of the neural retina and its vessels in zebrafish, providing a basis for elucidating its role in the pathogenesis of retinal vascular or inflammatory diseases.


Assuntos
Barreira Hematorretiniana/fisiologia , Claudinas/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA/genética , Retina/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Western Blotting , Claudinas/biossíntese , Modelos Animais , Retina/crescimento & desenvolvimento , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese
9.
Dev Biol ; 434(1): 24-35, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29166577

RESUMO

Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Embrião de Mamíferos/embriologia , Olho/embriologia , Proteínas Hedgehog/metabolismo , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Proteína Gli2 com Dedos de Zinco/metabolismo , Animais , Quinases Ciclina-Dependentes/genética , Embrião de Mamíferos/citologia , Olho/citologia , Feminino , Proteínas Hedgehog/genética , Masculino , Camundongos , Camundongos Mutantes , Proteína Gli2 com Dedos de Zinco/genética , Quinase Ativadora de Quinase Dependente de Ciclina
10.
Dev Growth Differ ; 61(3): 252-262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30843193

RESUMO

The forebrain develops into the telencephalon, diencephalon, and optic vesicle (OV). The OV further develops into the optic cup, the inner and outer layers of which develop into the neural retina and retinal pigmented epithelium (RPE), respectively. We studied the change in fate of the OV by using embryonic transplantation and explant culture methods. OVs excised from 10-somite stage chick embryos were freed from surrounding tissues (the surface ectoderm and mesenchyme) and were transplanted back to their original position in host embryos. Expression of neural retina-specific genes, such as Rax and Vsx2 (Chx10), was downregulated in the transplants. Instead, expression of the telencephalon-specific gene Emx1 emerged in the proximal region of the transplants, and in the distal part of the transplants close to the epidermis, expression of an RPE-specific gene Mitf was observed. Explant culture studies showed that when OVs were cultured alone, Rax was continuously expressed regardless of surrounding tissues (mesenchyme and epidermis). When OVs without surrounding tissues were cultured in close contact with the anterior forebrain, Rax expression became downregulated in the explants, and Emx1 expression became upregulated. These findings indicate that chick OVs at stage 10 are bi-potential with respect to their developmental fates, either for the neural retina or for the telencephalon, and that the surrounding tissues have a pivotal role in their actual fates. An in vitro tissue culture model suggests that under the influence of the anterior forebrain and/or its surrounding tissues, the OV changes its fate from the retina to the telencephalon.


Assuntos
Retina/embriologia , Animais , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Retina/citologia , Retina/metabolismo , Pigmentos da Retina/metabolismo , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/metabolismo
11.
Dev Biol ; 421(2): 118-125, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845051

RESUMO

Embryonic neural retinas of avians produce lenses under spreading culture conditions. This phenomenon has been regarded as a paradigm of transdifferentiation due to the overt change in cell type. Here we elucidated the underlying mechanisms. Retina-to-lens transdifferentiation occurs in spreading cultures, suggesting that it is triggered by altered cell-cell interactions. Thus, we tested the involvement of Notch signaling based on its role in retinal neurogenesis. Starting from E8 retina, a small number of crystallin-expressing lens cells began to develop after 20 days in control spreading cultures. By contrast, addition of Notch signal inhibitors to cultures after day 2 strongly promoted lens development beginning at day 11, and a 10-fold increase in δ-crystallin expression level. After Notch signal inhibition, transcription factor genes that regulate the early stage of eye development, Prox1 and Pitx3, were sequentially activated. These observations indicate that the lens differentiation potential is intrinsic to the neural retina, and this potential is repressed by Notch signaling during normal embryogenesis. Therefore, Notch suppression leads to lens transdifferentiation by disinhibiting the neural retina-intrinsic program of lens development.


Assuntos
Transdiferenciação Celular , Cristalino/citologia , Receptores Notch/metabolismo , Retina/citologia , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Immunoblotting , Cristalino/efeitos dos fármacos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Dev Biol ; 430(1): 32-40, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778798

RESUMO

Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse.


Assuntos
Cílios/metabolismo , Olho/embriologia , Olho/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Padronização Corporal , Proteínas do Citoesqueleto , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Camundongos , Modelos Biológicos , Morfogênese , Mutação/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Gli2 com Dedos de Zinco
13.
Development ; 142(10): 1850-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968316

RESUMO

The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are differentially specified is not well defined. In the present study, we have analyzed these issues by manipulating signaling pathways in intact chick embryo and explant assays. Our results provide evidence that at blastula stages, BMP signals inhibit the acquisition of eye-field character, but from neural tube/optic vesicle stages, BMP signals from the lens are crucial for the maintenance of eye-field character, inhibition of dorsal telencephalic cell identity and specification of neural retina cells. Subsequently, our results provide evidence that a Rax2-positive eye-field state is not sufficient for the progress to a neural retina identity, but requires BMP signals. In addition, our results argue against any essential role of Wnt or FGF signals during the specification of neural retina cells, but provide evidence that Wnt signals together with BMP activity are sufficient to induce cells of retinal pigment epithelial character. We conclude that BMP activity emanating from the lens ectoderm maintains eye-field identity, inhibits telencephalic character and induces neural retina cells. Our findings link the requirement of the lens ectoderm for neural retina specification with the molecular mechanism by which cells in the forebrain become specified as neural retina by BMP activity.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cristalino/metabolismo , Retina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Embrião de Galinha , Ectoderma/citologia , Ectoderma/metabolismo , Cristalino/citologia , Retina/citologia
14.
Dev Biol ; 413(1): 104-11, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27001188

RESUMO

The light-sensitive neural retina (NR) and the retinal pigmented epithelium (RPE) develop from a common primordium, the optic vesicle, raising the question of how they acquire and maintain distinct identities. Here, we demonstrate that sustained misexpression of the Chx10 homeobox gene in the presumptive RPE in chick suppresses accumulation of melanin pigments and promotes ectopic NR-like neural differentiation. This phenotypic change involved ectopic expression of NR transcription factor genes, Sox2, Six3, Rx1 and Optx2, which, when misexpressed, counteracted RPE development without upregulating Chx10. These results suggest that Chx10 can function as a cell autonomous regulator of the regional identity in the primordial retina, presumably through a downstream transcriptional cascade.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição/fisiologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Eletroporação , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenótipo , Pigmentação , Retina/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/genética , Transfecção , Proteína Homeobox SIX3
15.
Cell Mol Neurobiol ; 37(6): 1141-1145, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27815658

RESUMO

The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.


Assuntos
Basigina/genética , Regulação da Expressão Gênica , Glândula Pineal/metabolismo , Animais , Basigina/metabolismo , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/metabolismo
16.
Stem Cells ; 33(8): 2416-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25827910

RESUMO

We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Humanos , Epitélio Pigmentado da Retina/citologia
17.
Exp Eye Res ; 138: 22-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122047

RESUMO

The LIM-homeodomain transcription factor Islet-1 (Isl1) has been widely used as a marker of different subtypes of neurons in the developing and mature retina of vertebrates. During retinal neurogenesis, early Isl1 expression is detected in the nuclei of neuroblasts that give rise to ganglion, amacrine, bipolar, and horizontal cells. In the mature retina, Isl1 expression is restricted to the nuclei of ganglion cells, cholinergic amacrine cells, ON-bipolar cells, and subpopulations of horizontal cells. Recent studies have explored the functional mechanisms of Isl1 during specification and differentiation of these retinal cell types. Thus, conditional inactivation of Isl1 in the developing mouse retina disrupts retinal function, and also results in optic nerve hypoplasia, marked reductions in mature ganglion, amacrine, and bipolar cells, and a substantial increase in horizontal cells. Furthermore, conditional knockout shows delayed ganglion cell axon growth, ganglion cell axon guidance error, and ganglion cell nerve fiber defasciculation. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different vertebrate retinal cell types. This review examines whether the expression pattern of Isl1 during vertebrate retinal development is conserved across vertebrate species, and discusses current understanding of the developmental functions of Isl1 in retinogenesis.


Assuntos
Biomarcadores/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Neurogênese/fisiologia , Retina/embriologia , Neurônios Retinianos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Olho/embriologia , Humanos , Retina/fisiologia
18.
Dev Dyn ; 243(5): 663-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24478172

RESUMO

BACKGROUND: A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. RESULTS: Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. CONCLUSIONS: We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis.


Assuntos
Embrião não Mamífero/metabolismo , Olho/embriologia , Organogênese/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Embrião não Mamífero/citologia , Olho/citologia , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas de Xenopus/genética , Xenopus laevis
19.
Gen Comp Endocrinol ; 195: 183-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24239556

RESUMO

Retinal ganglion cells (RGCs) have been shown to be sites of growth hormone (GH) production and GH action in the embryonic (embryo day 7, ED7) chick neural retina. Primary RGC cell cultures were previously used to determine autocrine or paracrine actions of GH in the retina, but the antibody used in their immunopanning (anti-Thy-1) is no longer available. We have therefore characterized an immortalized neural retina (QNR/D) cell line derived from ED7 embryonic quail as a replacement experimental model. These cells express the GH gene and have GH receptor (GHR)-immunoreactivity. They are also immunoreactive for RGC markers (islet-1, calretinin, RA4) and neural fibers (neurofilament, GAP 43, vimentin) and they express the genes for Thy-1, neurotrophin 3 (NTF3), neuritin 1 (NRN1) and brn3 (POU4F). These cells are also electrically active and therefore resemble the RGCs in the neural retina. They are also similarly responsive to exogenous GH, which induces overexpression of the neurotrophin 3 and insulin-like growth factor (IGF) 1 genes and stimulates cell survival, as in the chick embryo neural retina. QNR/D cells are therefore a useful experimental model to assess the actions of GH in retinal function.


Assuntos
Hormônio do Crescimento/farmacologia , Modelos Biológicos , Células Ganglionares da Retina/metabolismo , Neurônios Retinianos/metabolismo , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Eletrofisiologia , Técnicas Imunoenzimáticas , Codorniz/embriologia , Codorniz/metabolismo , Células Ganglionares da Retina/citologia , Neurônios Retinianos/citologia
20.
Surv Ophthalmol ; 69(2): 179-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37778668

RESUMO

Diseases leading to retinal cell loss can cause severe visual impairment and blindness. The lack of effective therapies to address retinal cell loss and the absence of intrinsic regeneration in the human retina leads to an irreversible pathological condition. Progress in recent years in the generation of human three-dimensional retinal organoids from pluripotent stem cells makes it possible to recreate the cytoarchitecture and associated cell-cell interactions of the human retina in remarkable detail. These human three-dimensional retinal organoid systems made of distinct retinal cell types and possessing contextual physiological responses allow the study of human retina development and retinal disease pathology in a way animal model and two-dimensional cell cultures were unable to achieve. We describe the derivation of retinal organoids from human pluripotent stem cells and their application for modeling retinal disease pathologies, while outlining the opportunities and challenges for its application in academia and industry.


Assuntos
Células-Tronco Pluripotentes , Doenças Retinianas , Animais , Humanos , Retina , Células-Tronco Pluripotentes/metabolismo , Organoides/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Descoberta de Drogas , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA