Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(15): 3595-3604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676823

RESUMO

Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the "activated" sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP-L-ribitol pyrophosphorylase A, and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase showed abnormal levels of guanosine-5'-diphosphate-α-D-mannose (GDP-Man), cytidine-5'-diphosphate-L-ribitol (CDP-ribitol), and cytidine-5'-monophosphate-N-acetyl-ß-D-neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.


Assuntos
Cromatografia de Fase Reversa , Fibroblastos , Espectrometria de Massas em Tandem , Humanos , Fibroblastos/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Nucleotídeos/análise , Nucleotídeos/metabolismo , Ânions/análise , Espectrometria de Massa com Cromatografia Líquida
2.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376550

RESUMO

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Assuntos
Autofagia , Glicoproteínas , Animais , Cricetinae , Células CHO , Cricetulus , Glicoproteínas/genética , Nucleotídeos , Açúcares
3.
Nano Lett ; 23(18): 8620-8627, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37690030

RESUMO

Nucleotide sugars, the glycosyl donors in the biosynthesis of carbohydrates, are critical ingredients in the growth and development of all living organisms. A variety of nucleotide sugars simultaneously exist in biological samples. They, however, have only minor structural differences, which make them extremely difficult to discriminate. In this work, a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA) hetero-octamer was applied to sense nucleotide sugars. Five representative nucleotide sugars, including guanosine diphosphate mannose (GDP-Man), adenosine diphosphate glucose (ADP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), and uridine diphosphate glucoronic acid (UDP-GlcA), were successfully distinguished. A custom machine learning algorithm was also employed to automatically identify events, reporting a general accuracy of 99.4%. This sensing strategy provides a rapid, direct, and accurate method for identifying different nucleotide sugars. However, single-molecule identification of nucleotide sugars has never been previously reported, to the best of our knowledge.


Assuntos
Nanoporos , Açúcares de Uridina Difosfato , Humanos , Nucleotídeos , Açúcares , Uridina Difosfato N-Acetilglicosamina
4.
J Biol Chem ; 298(4): 101809, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271853

RESUMO

Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.


Assuntos
Hidroliases , Nucleotídeos , Açúcares , Hidroliases/química , Hidroliases/metabolismo , Nucleosídeos/química , Nucleotídeos/química , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo
5.
Plant J ; 109(6): 1416-1426, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913539

RESUMO

Galactose toxicity (Gal-Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP-galactose (UDP-Gal) and UDP-glucose is catalyzed by the enzymes galactokinase, UDP-sugar pyrophosphorylase (USP) and UDP-galactose 4-epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose-mediated toxicity in plants. In this study, we investigated the role of galactose-containing metabolites like galactose-1-phosphate (Gal-1P) and UDP-Gal in Gal-Tox. Recently published data from mouse models suggest that a reduction of the Gal-1P level via an mRNA-based therapy helps to overcome Gal-Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal-1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L-1 Gal). Nucleotide sugar analysis via high-performance liquid chromatography-mass spectrometry revealed highly elevated UDP-Gal levels in roots of seedlings grown on 1.5 mmol L-1 galactose versus 1.5 mmol L-1 sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal-feeding conditions, indicating that glycoproteins are a major target for elevated UDP-Gal levels in plants.


Assuntos
Arabidopsis/enzimologia , Galactose , Açúcares , UDPglucose 4-Epimerase , UTP-Glucose-1-Fosfato Uridililtransferase , Galactose/toxicidade , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Difosfato de Uridina
6.
Chembiochem ; 24(23): e202300549, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728070

RESUMO

A promiscuous CDP-tyvelose 2-epimerase (TyvE) from Thermodesulfatator atlanticus (TaTyvE) belonging to the nucleotide sugar active short-chain dehydrogenase/reductase superfamily (NS-SDRs) was recently discovered. TaTyvE performs the slow conversion of NDP-glucose (NDP-Glc) to NDP-mannose (NDP-Man). Here, we present the sequence fingerprints that are indicative of the conversion of UDP-Glc to UDP-Man in TyvE-like enzymes based on the heptagonal box motifs. Our data-mining approach led to the identification of 11 additional TyvE-like enzymes for the conversion of UDP-Glc to UDP-Man. We characterized the top two wild-type candidates, which show a 15- and 20-fold improved catalytic efficiency, respectively, on UDP-Glc compared to TaTyvE. In addition, we present a quadruple variant of one of the identified enzymes with a 70-fold improved catalytic efficiency on UDP-Glc compared to TaTyvE. These findings could help the design of new nucleotide production pathways starting from a cheap sugar substrate like glucose or sucrose.


Assuntos
Hexoses , Racemases e Epimerases , Humanos , Carboidratos , Difosfato de Uridina/química , Nucleotídeos , Glucose
7.
Am J Physiol Cell Physiol ; 322(6): C1201-C1213, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442826

RESUMO

Hyaluronan is a versatile macromolecule capable of an exceptional range of functions from cushioning and hydration to dynamic signaling in development and disease. Because of its critical roles, hyaluronan production is regulated at multiple levels including epigenetic, transcriptional, and posttranslational control of the three hyaluronan synthase (HAS) enzymes. Precursor availability can dictate the rate and amount of hyaluronan synthesized and shed by the cells producing it. However, the nucleotide-activated sugar substrates for hyaluronan synthesis by HAS also participate in exquisitely fine-tuned cross-talking pathways that intersect with glycosaminoglycan production and central carbohydrate metabolism. Multiple UDP-sugars have alternative metabolic fates and exhibit coordinated and reciprocal allosteric control of enzymes within their biosynthetic pathways to preserve appropriate precursor ratios for accurate partitioning among downstream products, while also sensing and maintaining energy homeostasis. Since the dysregulation of nucleotide sugar and hyaluronan synthesis is associated with multiple pathologies, these pathways offer opportunities for therapeutic intervention. Recent structures of several key rate-limiting enzymes in the UDP-sugar synthesis pathways have offered new insights to the overall regulation of hyaluronan production by precursor fate decisions. The details of UDP-sugar control and the structural basis for underlying mechanisms are discussed in this review.


Assuntos
Ácido Hialurônico , Uridina Difosfato N-Acetilglicosamina , Glicosaminoglicanos , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Nucleotídeos , Açúcares , Uridina Difosfato N-Acetilglicosamina/metabolismo
8.
Am J Hum Genet ; 104(5): 835-846, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982613

RESUMO

Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fibroblastos/metabolismo , Galactose/administração & dosagem , Fosfoglucomutase/deficiência , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Células Cultivadas , Estudos de Coortes , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Glicosilação , Humanos
9.
J Inherit Metab Dis ; 43(5): 994-1001, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441338

RESUMO

Nucleotide sugars (NS) are fundamental molecules in life and play a key role in glycosylation reactions and signal conduction. Several pathways are involved in the synthesis of NS. The Leloir pathway, the main pathway for galactose metabolism, is crucial for production of uridine diphosphate (UDP)-glucose and UDP-galactose. The most common metabolic disease affecting this pathway is galactose-1-phosphate uridylyltransferase (GALT) deficiency, that despite a lifelong galactose-restricted diet, often results in chronically debilitating complications. Alterations in the levels of UDP-sugars leading to galactosylation abnormalities have been hypothesized as a key pathogenic factor. However, UDP-sugar levels measured in patient cell lines have shown contradictory results. Other NS that might be affected, differences throughout development, as well as tissue specific profiles have not been investigated. Using recently established UHPLC-MS/MS technology, we studied the complete NS profiles in wildtype and galt knockout zebrafish (Danio rerio). Analyses of UDP-hexoses, UDP-hexosamines, CMP-sialic acids, GDP-fucose, UDP-glucuronic acid, UDP-xylose, CDP-ribitol, and ADP-ribose profiles at four developmental stages and in tissues (brain and gonads) in wildtype zebrafish revealed variation in NS levels throughout development and differences between examined tissues. More specifically, we found higher levels of CMP-N-acetylneuraminic acid, GDP-fucose, UDP-glucuronic acid, and UDP-xylose in brain and of CMP-N-glycolylneuraminic acid in gonads. Analysis of the same NS profiles in galt knockout zebrafish revealed no significant differences from wildtype. Our findings in galt knockout zebrafish, even when challenged with galactose, do not support a role for abnormalities in UDP-glucose or UDP-galactose as a key pathogenic factor in GALT deficiency, under the tested conditions.


Assuntos
Galactose/metabolismo , Galactosemias/enzimologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/deficiência , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Animais , Feminino , Galactosemias/genética , Cinética , Masculino , Espectrometria de Massas em Tandem , Peixe-Zebra
10.
Anal Bioanal Chem ; 412(15): 3683-3693, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32300845

RESUMO

N-Linked glycosylation is a cellular process transferring sugars from glycosyl donors to proteins or lipids. Biopharmaceutical products widely produced by culturing mammalian cells such as Chinese hamster ovary (CHO) cells are typically glycosylated during biosynthesis. For some biologics, the N-linked glycan is a critical quality attribute of the drugs. Nucleotide sugars are the glycan donors and impact the intracellular glycosylation process. In current analytical methods, robust separation of nucleotide sugar isomers such as UDP glucose and UDP galactose remains a challenge because of their structural similarity. In this study, we developed a strategy to resolve the separation of major nucleotide sugars including challenging isomers based on the use of ion-pair reverse phase (IP-RP) chromatography. The strategy applies core-shell columns and connects multiple columns in tandem to increase separation power and ultimately enables high-resolution detection of nucleotide sugars from cell extracts. The key parameters in the IP-RP method, including temperature, mobile phase, and flow rates, have been systematically evaluated in this work and the theoretical mechanisms of the chromatographic behavior were proposed. Graphical abstract.


Assuntos
Cromatografia de Fase Reversa/métodos , Açúcares de Nucleosídeo Difosfato/análise , Animais , Células CHO , Cricetulus , Glicosilação , Isomerismo , Açúcares de Nucleosídeo Difosfato/isolamento & purificação
11.
Proc Natl Acad Sci U S A ; 114(16): 4261-4266, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373556

RESUMO

In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Biotechnol Bioeng ; 116(7): 1612-1626, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802295

RESUMO

Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch-to-batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade-off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding - specifically that of galactose and uridine - on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher-performing bioprocesses.


Assuntos
Anticorpos Monoclonais/biossíntese , Modelos Biológicos , Animais , Células CHO , Cricetulus , Glicosilação
13.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557948

RESUMO

Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.


Assuntos
Leite Humano/química , Oligossacarídeos/química , Isótopos de Carbono/química , Catálise , Glicosiltransferases/química , Humanos , Isótopos de Nitrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nucleotídeos de Uracila/química
14.
Proc Natl Acad Sci U S A ; 112(1): 291-6, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535363

RESUMO

The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Citocininas/metabolismo , Retículo Endoplasmático/metabolismo , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Uridina Difosfato N-Acetilglicosamina/metabolismo , Arabidopsis/ultraestrutura , Transporte Biológico , Meristema/metabolismo , Meristema/ultraestrutura , Fenótipo
15.
Angew Chem Int Ed Engl ; 57(26): 7644-7648, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29756380

RESUMO

O-Linked glycosylation of serine and threonine residues of nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) residues is catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc is conserved within mammals and is implicated in a wide range of physiological processes. Herein, we describe metabolic precursor inhibitors of OGT suitable for use both in cells and in vivo in mice. These 5-thiosugar analogues of N-acetylglucosamine are assimilated through a convergent metabolic pathway, most likely involving N-acetylglucosamine-6-phosphate de-N-acetylase (NAGA), to generate a common OGT inhibitor within cells. We show that of these inhibitors, 2-deoxy-2-N-hexanamide-5-thio-d-glucopyranoside (5SGlcNHex) acts in vivo to induce dose- and time-dependent decreases in O-GlcNAc levels in various tissues. Decreased O-GlcNAc correlates, both in vitro within adipocytes and in vivo within mice, with lower levels of the transcription factor Sp1 and the satiety-inducing hormone leptin, thus revealing a link between decreased O-GlcNAc levels and nutrient sensing in peripheral tissues of mammals.


Assuntos
Acetilglucosamina/metabolismo , Inibidores Enzimáticos/farmacologia , Leptina/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Adipócitos/metabolismo , Animais , Relação Dose-Resposta a Droga , Eletroforese Capilar , Ensaio de Imunoadsorção Enzimática , Glicosilação , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Especificidade por Substrato
16.
Biotechnol Bioeng ; 114(4): 924-928, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27775150

RESUMO

Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/gcell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 gproduct /L, 86% yield (based on UDP), and a total turnover number of 103 gUDP-glc /gcell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc.


Assuntos
Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Uridina Difosfato Glucose/análise , Uridina Difosfato Glucose/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Glicosilação , Nucleotídeos , Proteínas Recombinantes/metabolismo
17.
Microb Cell Fact ; 15(1): 182, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776529

RESUMO

BACKGROUND: Nucleotide sugars serve as sugar donors for the synthesis of various glycones. The biological and chemical properties of glycones can be altered depending which sugar is attached. Bacteria synthesize unusual nucleotide sugars. A novel nucleotide sugar can be synthesized in Escherichia coli by introducing nucleotide biosynthetic genes from other microorganisms into E. coli. The engineered E. coli strains can be used as a platform for the synthesis of novel glycones. RESULTS: Four genes, Pdeg (UDP-N-acetylglucosamine C4,6-dehydratase), Preq (UDP-4-reductase), UDP-GlcNAc 6-DH (UDP-N-acetylglucosamine 6-dehydrogenase), and UXNAcS (UDP-N-acetylxylosamine synthase), were employed to synthesize UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid, and UDP-N-acetylxylosamine in E. coli. We engineered an E. coli nucleotide sugar biosynthetic pathway to increase the pool of substrate for the target nucleotide sugars. Uridine diphosphate dependent glycosyltransferase (UGT) was also selected and introduced into E. coli. Using engineered E. coli, high levels of three novel flavonoid glycosides were obtained; 158.3 mg/L quercetin 3-O-(N-acetyl)quinovosamine, 172.5 mg/L luteolin 7-O-(N-acetyl)glucosaminuronic acid, and 160.8 mg/L quercetin 3-O-(N-acetyl)xylosamine. CONCLUSIONS: We reconstructed an E. coli nucleotide pathway for the synthesis of UDP-quinovosamine, UDP-N-acetylglucosaminuronic acid and UDP-N-acetylxylosamine in an E. coli galU (UDP-glucose 1-phosphate uridylyltransferase) or pgm (phosphoglucomutase) deletion mutant. Using engineered E. coli strains harboring a specific UGT, three novel flavonoids glycones were synthesized. The E. coli strains used in this study can be used for the synthesis of diverse glycones.


Assuntos
Amino Açúcares/biossíntese , Escherichia coli/metabolismo , Flavonoides/biossíntese , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia Metabólica/métodos
18.
Anal Bioanal Chem ; 408(20): 5651-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27271261

RESUMO

The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.


Assuntos
Músculo Esquelético/química , Neoplasias Experimentais/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Fosfatos Açúcares/análise , Fosfatos Açúcares/química , Animais , Linhagem Celular Tumoral , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos
19.
Mar Drugs ; 13(9): 5993-6018, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393622

RESUMO

Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.


Assuntos
Diatomáceas/metabolismo , Glicoconjugados/biossíntese , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Diatomáceas/química , Regulação da Expressão Gênica , Oligossacarídeos/química , Polissacarídeos/química
20.
Anal Biochem ; 448: 14-22, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24299991

RESUMO

Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques.


Assuntos
Carboidratos/análise , Cromatografia Líquida de Alta Pressão , Nucleotídeos/análise , Espectrometria de Massas em Tandem , Arabidopsis/química , Arabidopsis/metabolismo , Carboidratos/química , Parede Celular/química , Parede Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oryza/química , Oryza/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA