Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nano Lett ; 24(4): 1160-1167, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237067

RESUMO

An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the fcc copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis. The 1-D growth unexpectedly proceeded across surface steps in a self-assembled manner and extended over several 100 nm. The long-range formation of a 1-D quasi-periodic structure on a surface has been theoretically modeled as a 1-D quasi-crystal and the predicted conditions matched the structural parameters obtained by the experimental work here. The quasi-periodic 1-D copper boride system enabled a way to examine 1-D quasi-crystallinity on an actual material.

2.
Small ; 19(7): e2205079, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504439

RESUMO

Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro- and nanoscale systems; however, to date, large-scale fabrication of these nanochains is limited by the need for an external magnetic field during the synthesis. In this work, the unique self-assembly of nanoparticles into chains as a result of their intrinsic dipolar interactions only is examined. In particular, it is shown that in a high concentration reaction regime, the dipole-dipole coupling between two neighboring magnetic iron cobalt (FeCo) nanocubes, was significantly strengthened due to small separation between particles and their high magnetic moments. This dipole-dipole interaction enables the independent alignment and synthesis of magnetic FeCo nanochains without the assistance of any templates, surfactants, or even external magnetic field. Furthermore, the precursor concentration ([M] = 0.016, 0.021, 0.032, 0.048, 0.064, and 0.096 m) that dictates the degree of dipole interaction is examined-a property dependent on particle size and inter-particle distance. By varying the spinner speed, it is demonstrated that the balance between magnetic dipole coupling and fluid dynamics can be used to understand the self-assembly process and control the final structural topology from that of dimers to linear chains (with aspect ratio >10:1) and even to branched networks. Simulations unveil the magnetic and fluid force landscapes that determine the individual nanoparticle interactions and provide a general insight into predicting the resulting nanochain morphology. This work uncovers the enormous potential of an intrinsic magnetic dipole-induced assembly, which is expected to open new doors for efficient fabrication of 1D magnetic materials, and the potential for more complex assemblies with further studies.

3.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772188

RESUMO

Honeycomb structure composites are taking an increasing proportion in aircraft manufacturing because of their high strength-to-weight ratio, good fatigue resistance, and low manufacturing cost. However, the hollow structure is very prone to liquid ingress. Here, we report a fast and automatic classification approach for water, alcohol, and oil filled in glass fiber reinforced polymer (GFRP) honeycomb structures through terahertz time-domain spectroscopy (THz-TDS). We propose an improved one-dimensional convolutional neural network (1D-CNN) model, and compared it with long short-term memory (LSTM) and ordinary 1D-CNN models, which are classification networks based on one dimension sequenced signals. The automated liquid classification results show that the LSTM model has the best performance for the time-domain signals, while the improved 1D-CNN model performed best for the frequency-domain signals.

4.
Nano Lett ; 19(10): 7370-7376, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498635

RESUMO

Semiconductors are generally considered far superior to metals as thermoelectric materials because of their much larger Seebeck coefficients (S). However, a maximum value of S in a semiconductor is normally accompanied by a minuscule electrical conductivity (σ), and hence, the thermoelectric power factor (P = S2σ) remains small. An attempt to increase σ by increasing the Fermi energy (EF), on the other hand, decreases S. This trade-off between S and σ is a well-known dilemma in developing high-performance thermoelectric devices based on semiconductors. Here, we show that the use of metallic carbon nanotubes (CNTs) with tunable EF solves this long-standing problem, demonstrating a higher thermoelectric performance than semiconducting CNTs. We studied the EF dependence of S, σ, and P in a series of CNT films with systematically varied metallic CNT contents. In purely metallic CNT films, both S and σ monotonically increased with EF, continuously boosting P while increasing EF. Particularly, in an aligned metallic CNT film, the maximum of P was ∼5 times larger than that in the highest-purity (>99%) single-chirality semiconducting CNT film. We attribute these superior thermoelectric properties of metallic CNTs to the simultaneously enhanced S and σ of one-dimensional conduction electrons near the first van Hove singularity.

5.
Molecules ; 24(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683567

RESUMO

The trans-resveratrol (RSV)-loaded silica aerogel (RLSA) was prepared by the sol-gel method, adding the drug during the aging process, solvent replacement and freeze drying. A series of characterizations showed that RSV stays in the silica aerogel in two ways. First, RSV precipitates due to minimal solubility in water during the solvent replacement process. After freeze drying, the solvent evaporates and the RSV recrystallizes. It can be seen from scanning electron microscope (SEM) and transmission electron microscope (TEM) images that the recrystallized RSV with micron-sized long rod-shaped is integrated with the dense silica network skeleton. Second, from small-angle X-ray scattering (SAXS) results, a portion of the RSV molecules is not crystallized and the size is extremely small. This can be attached to the primary and secondary particles of silica to enhance its network structure and inhibit shrinkage, which is why the volume and pore size of RLSA is larger. In addition, the diffusion of RSV in silica alcogel was studied by a one-dimensional model. The apparent diffusion coefficients of inward diffusion, outward diffusion and internal diffusion were calculated by fitting the time- and position-dependent concentration data. It was found that the outward diffusion coefficient (5.25 × 10-10 m2/s) is larger than the inward (2.93 × 10-10 m2/s), which is probably due to the interface effect. The diffusion coefficients obtained for different concentrations in the same process (inward diffusion) are found to be different. This suggests that the apparent diffusion coefficient obtained is affected by molecular adsorption.


Assuntos
Géis/química , Resveratrol/química , Dióxido de Silício/química , Adsorção , Difusão , Liofilização , Nitrogênio/química , Porosidade , Espalhamento a Baixo Ângulo , Temperatura , Termogravimetria , Difração de Raios X
6.
Proc Natl Acad Sci U S A ; 111(8): 2926-30, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516156

RESUMO

The nature of transport of electrons and classical waves in disordered systems depends upon the proximity to the Anderson localization transition between freely diffusing and localized waves. The suppression of average transport and the enhancement of relative fluctuations in conductance in one-dimensional samples with lengths greatly exceeding the localization length, L>>ξ, are related in the single-parameter scaling (SPS) theory of localization. However, the difficulty of producing an ensemble of statistically equivalent samples in which the electron wave function is temporally coherent has so-far precluded the experimental demonstration of SPS. Here we demonstrate SPS in random multichannel systems for the transmittance T of microwave radiation, which is the analog of the dimensionless conductance. We show that for L∼4ξ, a single eigenvalue of the transmission matrix (TM) dominates transmission, and the distribution of the T is Gaussian with a variance equal to the average of −ln T, as conjectured by SPS. For samples in the cross-over to localization, L∼ξ, we find a one-sided distribution for T. This anomalous distribution is explained in terms of a charge model for the eigenvalues of the TM τ in which the Coulomb interaction between charges mimics the repulsion between the eigenvalues of TM. We show in the localization limit that the joint distribution of T and the effective number of transmission eigenvalues determines the probability distributions of intensity and total transmission for a single-incident channel.


Assuntos
Elétrons , Micro-Ondas , Modelos Químicos , Física/métodos , Simulação por Computador , Probabilidade
7.
Front Cell Dev Biol ; 12: 1352279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694822

RESUMO

Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.

8.
ACS Nano ; 17(21): 21432-21442, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37870378

RESUMO

Organic nanostructured electrodes are very attractive for next-generation sodium-ion batteries. Their great advantages in improved electron and ion transport and more exposed redox-active sites would lead to a higher actual capacity and enhanced rate performance. However, facile and cost-effective methods for the fabrication of nanostructured organic electrodes are still highly challenging and very rare. In this work, we utilize a bioinspired self-assembly strategy to fabricate nanostructured cathodes based on a rationally designed N-hydroxy naphthalene imide sodium salt (NDI-ONa) for high-performance sodium-organic batteries. Such a well-organized nanostructure can greatly enhance both ion and electron transport. When used as cathode for sodium-organic batteries, it provides among the best battery performances, such as high capacity (171 mA h g-1 at 0.05 A g-1), excellent rate performance (153 mA h g-1 at 5.0 A g-1), and ultralong cycling life (93% capacity retention after 20000 cycles at 3.0 A g-1). Even at low temperature or without a conductive additive, it can also perform well. It is believed that self-assembly is a very powerful strategy to construct high-performance nanostructured electrodes.

9.
ACS Nano ; 17(9): 8755-8766, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070712

RESUMO

Comprehensively understanding the interdependency between the orientated atomic array and intrinsic piezoelectricity in one-dimension (1D) tellurium (Te) crystals will greatly benefit their practical piezo-catalytic applications. Herein, we successfully synthesized the various 1D Te microneedles by precisely orientating the atomic growth orientation by tuning (100)/(110) planes ratios (Te-0.6, Te-0.3, Te-0.4) to reveal the secrets of piezoelectricity. Explicitly, the theoretical simulations and experimental results have solidly validated that the Te-0.6 microneedle grown along the [110] orientation possesses a stronger asymmetric distribution of Te atoms array causing the enhanced dipole moment and in-plane polarization, which boosts a higher transfer and separation efficiency of the electron and hole pairs and a higher piezoelectric potential under the same stress. Additionally, the orientated atomic array along the [110] has p antibonding states with a higher energy level, resulting in a higher CB potential and a broadened band gap. Meanwhile, it also has a much lower barrier toward the valid adsorption of H2O and O2 molecules over other orientations, effectively conducive to the production of reactive oxygen species (ROS) for the efficient piezo-catalytic sterilization. Therefore, this study not only broadens the fundamental perspectives in understanding the intrinsic mechanism of piezoelectricity in 1D Te crystals but also provides a candidate 1D Te microneedle for practical piezo-catalytic applications.

10.
J Phys Condens Matter ; 35(3)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36347043

RESUMO

Mobility edge (ME), a critical energy separating localized and extended states in spectrum, is a central concept in understanding localization physics. However, there are few models with exact MEs, and their presences are fragile against perturbations. In the paper, we generalize the Aubry-André-Harper model proposed in (Ganeshanet al2015Phys. Rev. Lett.114146601) and recently realized in (Anet al2021Phys. Rev. Lett.126040603), by introducing a relative phase in the quasiperiodic potential. Applying Avila's global theory, we analytically compute localization lengths of all single-particle states and determine the exact expression of ME, which both significantly depend on the relative phase. They are verified by numerical simulations, and physical perception of the exact expression is also provided. We show that old exact MEs, guaranteed by the delicate self-duality which is broken by the relative phase, are special ones in a series controlled by the phase. Furthermore, we demonstrate that out of expectation, exact MEs are invariant against a shift in the quasiperiodic potential, although the shift changes the spectrum and localization properties. Finally, we show that the exact ME is related to the one in the dual model which has long-range hoppings.

11.
ACS Nano ; 16(12): 19810-19839, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36475644

RESUMO

Continuous, one-dimensional (1D) stretchable conductors have attracted significant attention for the development of wearables and soft-matter electronics. Through the use of advanced spinning, printing, and textile technologies, 1D stretchable conductors in the forms of fibers, wires, and yarns can be designed and engineered to meet the demanding requirements for different wearable applications. Several crucial parameters, such as microarchitecture, conductivity, stretchability, and scalability, play essential roles in designing and developing wearable devices and intelligent textiles. Methodologies and fabrication processes have successfully realized 1D conductors that are highly conductive, strong, lightweight, stretchable, and conformable and can be readily integrated with common fabrics and soft matter. This review summarizes the latest advances in continuous, 1D stretchable conductors and emphasizes recent developments in materials, methodologies, fabrication processes, and strategies geared toward applications in electrical interconnects, mechanical sensors, actuators, and heaters. This review classifies 1D conductors into three categories on the basis of their electrical responses: (1) rigid 1D conductors, (2) piezoresistive 1D conductors, and (3) resistance-stable 1D conductors. This review also evaluates the present challenges in these areas and presents perspectives for improving the performance of stretchable 1D conductors for wearable textile and flexible electronic applications.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Têxteis , Eletrodos , Condutividade Elétrica
12.
Nanomicro Lett ; 14(1): 170, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987921

RESUMO

Rational designing of one-dimensional (1D) magnetic alloy to facilitate electromagnetic (EM) wave attenuation capability in low-frequency (2-6 GHz) microwave absorption field is highly desired but remains a significant challenge. In this study, a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method. The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique, indicating the excellent magnetic loss ability under an external EM field. Then, the in-depth analysis shows that many factors, including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy, primarily contribute to the enhanced EM wave absorption performance. Therefore, the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm. Thus, this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.

13.
ACS Appl Mater Interfaces ; 13(13): 15939-15949, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779132

RESUMO

1D structures have been gaining traction in the microwave absorption (MA) field benefiting from their electromagnetic (EM) anisotropy. However, there remain considerable challenges in adjusting EM properties by structural design. Herein, using the coaxial electrospinning and solvothermal method, the EM gradient has been achieved in TiO2@Co/C@Co/Ni multilayered microtubes. From the outer layer to the inner one, the impedance matching is gradually worsened, while the EM loss capacity is continuously enhanced, facilitating both the incidence and attenuation of microwave. Besides, 1D structural anisotropy simultaneously realizes multilevel magnetic interaction and 3D conductive double network. Therefore, the 1D EM-gradient hierarchical TiO2@Co/C@Co/Ni carbon microtube composite exhibits excellent MA performance. Its maximum reflection loss (RL) value reaches -53.99 dB at 2.0 mm and effective absorption bandwidth (EAB, RL ≤ -10 dB) is as wide as 6.0 GHz, covering most of the Ku band with only 15% filling. The unique design of 1D EM-gradient hierarchical composites promises great potential in the construction of advanced MA materials.

14.
Chem Asian J ; 16(19): 2947-2951, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34403216

RESUMO

Ohmic contacts are of critical importance to improve the performance of semiconductor devices as well as those of low-dimensional materials. Halogen-bridged metal complexes (MX-Chains) are fascinating quasi-one-dimensional (1D) electronic materials. However, reports on the electrical characteristics of MX-Chains remain elusive. Herein, we report the electrical characteristics of single crystals of [Ni(chxn)2 Br]Br2 (chxn: (1R,2R)-(-)-1,2-cyclohexanediamine), which is a 1D Mott insulator, using different probe arrangements. [Ni(chxn)2 Br]Br2 was shown for the first time to exhibit Ohmic characteristics on the crystal surface, albeit that the conductivity behavior of the interior of the crystal is nonlinear due to the Joule heating effect. The current flow on the surface is shallow (a few micrometers in depth) despite the millimeter-scale crystal size; this phenomenon is strongly connected to its structural anisotropy. The Ohmic contact revealed in this work should be valuable for the application of MX-Chains as electronic devices in the near future.

15.
Adv Colloid Interface Sci ; 298: 102562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34768137

RESUMO

Metal-organic frameworks (MOFs) are as a category of crystalline porous materials. Extensive interest has been devoted to energy storage and energy conversion applications owing to their unique advantages of periodic architecture, high specific surface area, high adsorption, high conductivity, high specific capacitance, and high porosity. One-dimensional (1D) nanostructures have unique surface effects, easily regulated size, good agglutination of the substrate, and other distinct properties amenable to the field of energy storage and conversion. Therefore, 1D nanostructures could further improve the characteristic properties of MOFs, and it is of great importance for practical applications to control the size and morphological characteristics of MOFs. The electrochemical application of 1D MOFs is mainly discussed in this review, including energy storage applications in supercapacitors and batteries and energy conversion applications in catalysis. In addition, various synthesis strategies for 1D MOFs and their architectures are presented.

16.
J Phys Condens Matter ; 33(13)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33412534

RESUMO

The presence of disorder in one-dimensional crystals leads to the localization of all charge carriers and the calculation of the indirect exchange interaction (Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction) cannot be performed perturbatively on disorder. In two and three-dimensional systems it makes sense to calculate the magnitude of RKKY interaction perturbatively treating nearly free carriers scattering on the random potential, and this approach results in a rather high magnitude of the exchange interaction due to interference effects similar to weak localization. We show that in one-dimensional systems the indirect exchange interaction should be described as a random value with heavy-tail distribution function, which is calculated in this work, on scales of carriers localization length. We also demonstrate that heavy tails and the absence of a characteristic value of RKKY interaction magnitude leads to a significant change in observables for these systems. We calculate a specific heat for the one-dimensional XY model taking into account the effect of disorder and assuming that typical distance between impurities exceeds the localization length. In contrast to an ideal system, where specific heat temperature dependence has a peak at a certain temperature proportional to exchange constant describing characteristic energy scale, disorder eliminates the peak as soon as there is no characteristic excitation energy in this case anymore.

17.
Front Artif Intell ; 3: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733173

RESUMO

In-utero progress of fetal development is normally assessed through manual measurements taken from ultrasound images, requiring relatively expensive equipment and well-trained personnel. Such monitoring is therefore unavailable in low- and middle-income countries (LMICs), where most of the perinatal mortality and morbidity exists. The work presented here attempts to identify a proxy for IUGR, which is a significant contributor to perinatal death in LMICs, by determining gestational age (GA) from data derived from simple-to-use, low-cost one-dimensional Doppler ultrasound (1D-DUS) and blood pressure devices. A total of 114 paired 1D-DUS recordings and maternal blood pressure recordings were selected, based on previously described signal quality measures. The average length of 1D-DUS recording was 10.43 ± 1.41 min. The min/median/max systolic and diastolic maternal blood pressures were 79/102/121 and 50.5/63.5/78.5 mmHg, respectively. GA was estimated using features derived from the 1D-DUS and maternal blood pressure using a support vector regression (SVR) approach and GA based on the last menstrual period as a reference target. A total of 50 trials of 5-fold cross-validation were performed for feature selection. The final SVR model was retrained on the training data and then tested on a held-out set comprising 28 normal weight and 25 low birth weight (LBW) newborns. The mean absolute GA error with respect to the last menstrual period was found to be 0.72 and 1.01 months for the normal and LBW newborns, respectively. The mean error in the GA estimate was shown to be negatively correlated with the birth weight. Thus, if the estimated GA is lower than the (remembered) GA calculated from last menstruation, then this could be interpreted as a potential sign of IUGR associated with LBW, and referral and intervention may be necessary. The assessment system may, therefore, have an immediate impact if coupled with suitable intervention, such as nutritional supplementation. However, a prospective clinical trial is required to show the efficacy of such a metric in the detection of IUGR and the impact of the intervention.

18.
ACS Appl Bio Mater ; 2(3): 1278-1285, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021375

RESUMO

DNA nanotechnology can construct various nanostructures with diverse functionalities. However, conformation fluctuations due to the structural flexibility of duplex DNA compromise the efficiency to realize the functionality and reactivity of DNA nanostructures. To understand and control the structural deviation from the design represents a major challenge as well as an opportunity for DNA nanotechnology. In the present work, two series of one-dimensional assemblies of DNA tetrahedrons (DTHs) were fabricated and applied to demonstrate the manipulations of conformation dynamics of a one-dimensional DTH assembly by simple variation on linkage styles at single-molecule resolution. A stepwise strategy allows both nanoassembly with a high fidelity in the number and sequence of DTH units to be assembled with a minimum number of linkage sequences. The characterization for these nanostructures with atomic force microscope (AFM) and a solid-state nanopore technique indicates the difference in conformation dynamics and bending stiffness between two analogous nanoassemblies both in the immobilized state on the surface and free state in solution. This work showed the power of fine-tuning the dynamic conformation of the nanostructures and could see the applications in single-molecule biosensing and functionalization of DNA nanostructures.

19.
Biotechniques ; 65(1): 15-19, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30014733

RESUMO

We describe a system for horizontal 1D or 2D PAGE comprising an apparatus and microgels. There is no buffer outside the gel, making handling and sample loading easy. Specially designed electrodes on all four sides allow 2D electrophoresis without gel rotation. Electrophoresis is completed within 20 min and sensitivity is in the subnanogram range. The system is temperature controlled for speed, denaturation of nucleic acid molecules and maintaining molecules single-stranded. The system allows characterization of structure, conformation and damage in complex nucleic acid preparations. Besides quick 1D PAGE, 2D applications include characterization of efficiency of complex molecular procedures, checking quality of biosamples and detecting DNA damage in cells and body fluids. The system should also run protein gels.


Assuntos
DNA/análise , Eletroforese em Gel de Poliacrilamida/instrumentação , Proteínas/análise , RNA/análise , Eletroforese em Gel de Poliacrilamida/métodos , Temperatura
20.
Sci Bull (Beijing) ; 63(3): 159-168, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659001

RESUMO

Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus (BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears. This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding (CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV (bulk) to indirect 1.17 eV (2L) and four (two) complex, highly anisotropic and layer-dependent hole (electron) pockets in the first Brillouin zone. It also exhibits an extraordinarily high hole mobility (∼105 cm2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This "one-dimension-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA